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Introduction

A convenient way of representing the levels of an economic time series  is
through the so-called trend-cycle decomposition

 =  + 

 = deterministic trend

 = random cycle/noise

For simplicity, assume

 = + 

() = ()  ∼(0 2)

where () = 1−1− · · ·−
 and  () = 1+ 1+ · · ·+  It is

assumed that the polynomial () = 0 has at most one root on the complex
unit circle and () = 0 has all roots outside the unit circle.



Trend Stationary and Difference Processes

Defn: The series  is called trend stationary if the roots of () = 0 are
outside the unit circle

Defn: The series  is called difference stationary if () = 0 has one root on
the unit circle and the others outside the unit circle.



Trend Stationary Process

If  is trend stationary then () is invertible and  has the stationary or
Wold representation

 = ()−1() = ()

() = ()−1() =
∞X
=0


 0 = 1 and (1) 6= 0

Here,  exhibits mean reversion around the deterministic trend  = + 

 =  + ()

and the detrended series  −  = () is covariance stationary.



Estimating the Trend

Suppose  is trend stationary and  is covariance stationary ARMA(p,q)

 =  +  = + + ()−1()

• Trend parameters  and  can be consistently estimated by OLS ignoring
the ARMA(p,q) structure in the errors

• Use Newey-West standard errors to correct for autocorrelation in 

• ARMA(p,q) parameters can be consistently estimated from detrended se-
ries ̂ =  − ̂− ̂



Example: Trend Stationary AR(2)

Let

 =  + 

 = + 

() =  () = 1− 1− 2
2

Assume that () = 0 has all roots outside unit circle. Then  is mean-
reverting about the deterministic trend +  That is,

() = ()(+ ) + ()⇒
()( − − ) = 

or

̃ = 1̃−1 + 2̃−2 +  ̃ =  − − 



Difference Stationary Processes

If  is difference stationary then () can be factored as

() = (1− )∗()

where ∗() = 0 has all − 1 roots outside the unit circle. In this case, ∆
has the stationary ARMA(− 1 ) representation

∆ = ∗()−1() = ∗()

∗() = ∗()−1() =
∞X
=0

∗
 ∗0 = 1 and 

∗(1) 6= 0

and  does not exhibit mean reversion around the deterministic trend  =

+ 



Example: Difference stationary AR(2)

Let

 =  + 

() =  () = 1− 1− 2
2

Assume that () = 0 has one root equal to unity and the other root real
valued with absolute value less than 1. Factor () so that

() = (1− ∗)(1− ) = ∗()(1− )

∗() = 1− ∗ with |∗|  1

Then

() = (1− ∗)(1− ) = (1− ∗)∆

so that ∆ follows an AR(1) process.



Then

() = () + ()⇒
(1− ∗)(1− ) = (1− ∗)(1− ) + (1− ∗)(1− )⇒

(1− ∗)∆ = (1− ∗)∆ + (1− ∗)∆⇒
(1− ∗)(∆ − ) = 

or

∆̃ = ∗∆̃ +  ∆̃ = ∆ − 

Note:

∆ = + − (+ (− 1)) = 



Difference Stationary Process and Stochastic Trends

Let

 =  + 

 = + 

∗()∆ = ⇒ ∆ = ∗() = 

Because  = −1 +  by recursive substitution

 = 0 +
X

=1

 = 0 + 

 = stochastic trend
 = −1 +  0 = 0

Then

 = 0 +  + 



I(1) and I(0) Processes

If the cycle series  is difference stationary then we say that  is integrated
of order 1 and we write  ∼ (1). To see why, note that

∆ = ∗() = 

 is stationary

It follows that  = −1 +  and by recursive substitution starting at time
 = 0 we have

 = 0 +
X

=1



so that  can be represented as the (integrated) sum of  stationary innovations
{}=1



Remarks:

1. Since  is stationary we say that  is integrated of order zero, and write
 ∼ (0) to signify that  cannot be written as the sum of stationary
innovations.

2. An (1) process is a random walk process when  ∼  (0 2)

3. If ∆ is an ARMA(p,q) process then  is called an ARIMA(p,1,q)
process. The term ARIMA refers to an autoregressive integrated mov-
ing average process.



Trend Stationary vs. Difference Stationary: Why Do We Care?

• Different views about the nature of trends in economic data

— TS: trends are smooth predictable deterministic functions of time and
do not change quickly. Forecasts of trend are precise.

— DS: trends are not smooth or predictable functions of time and change
often. Forecasts of trend are not precise.

• Detrending a DS process can create spurious cycles

• Differencing a TS process can induce negative autocorrelation



Trend Stationary vs. Difference Stationary: Why Do We Care? (cont’d)

• Regression models with trend stationary variables can be dealt with by
including trends in the regression or by detrending the variables

 = + +  + 

̃ = 0 + ̃ + 

̃ =  − ̂− ̂ ̃ =  − ̂ − ̂

• Regression models with the levels of difference stationary variables must
be handled with extreme care due to the problem of spurious regression

— Regression in levels only makes sense if variables are cointegrated.



Impulse Response Functions from I(1) Processes

Consider an (1) process with Wold representation ∆ = ∗() Since
∆ =  − −1 the level  may be represented as

 = −1 +∆

Similarly, the level at time +  may be represented as

+ = −1 +∆ +∆+1 + · · ·+∆+

The impulse response on the level of + of a shock to  is

+


=
∆


+
∆+1


+ · · ·+ ∆+


= 1 + ∗1 + · · ·+ ∗



The long-run impact of a shock to the level of  is given by

lim
→∞

+


=
∞X
=1

∗ = ∗(1)

Hence, ∗(1) measures the permanent effect of a shock, , to the level of .

Note: If  ∼ (0) with Wold representation  = () then

lim
→∞

+


= lim
→∞

 = 0



Remarks:

1. Since 
= 1 it follows that ∗(1) can also be interpreted as the long-run

effect of a shock relative to the immediate effect of a shock.

2. If ∗(1) = 0 then  ∼ (0) To see this suppose  ∼ (0) and has the
Wold representation  = () with (1) 6= 0 Then

∆ = (1− ) = (1− )() = ∗()
∗() = (1− )()

It follows that ∗(1) = (1− 1)(1) = 0



Forecasting from an I(1) Process

Forecasting from an I(1) process follows directly from writing + as

+ =  +∆+1 +∆+2 + · · ·+∆+

Then

+| =  +∆+1| +∆+2| + · · ·+∆+|

=  +
X

=1

∆+|

Notice that forecasting an I(1) process proceeds from the most recent observa-
tion.



Example: Forecasting from an AR(1) model for ∆

Let ∆ follow an AR(1) process

∆ −  = (∆−1 − ) +   ∼(0 2)

where ||  1 Using the chain-rule of forecasting, the h-step ahead forecast
of ∆+based on information at time  is

∆+| = + (∆ − )

Then, the h-step ahead forecast of + is

+| =  +
X

=1

[+ (∆ − )]

=  + + (∆ − )
X

=1





Unit Root Tests

Consider the trend-cycle decomposition of a time series 

 =  + 

The basic issue in unit root testing is to determine if  contains a stochas-
tic trend, . Two classes of tests, both called unit root tests, have been
developed to answer this question:

• 0 :  6= 0 ( ∼ (1)) vs.  = 0 ( ∼ (0))

• 0 :  = 0 ( ∼ (0)) vs.  6= 0 ( ∼ (1))



Autoregressive Unit Root Tests

These tests are based on the following set-up. Let

() =   ∼ (0)

() = 1− 1− · · ·− 
  = 1 + · · ·+ 

The null and alternative hypothesis are

0 :  = 1 (() = 0 has a unit root,  6= 0)
1 : ||  1 (() = 0 has all roots outside unit circle,  = 0)

The most popular of these tests are the Dickey-Fuller (ADF) test and the
Phillips-Perron (PP) test. The ADF and PP tests differ mainly in how they
treat serial correlation in the test regressions.



Moving Average Unit Root Tests (Stationarity Tests)

Consider the first difference of  :

∆ = ∗()  ∼ iid(0 2)

The null and alternative hypotheses are

0 : ∗(1) = 0 (∗() = 0 has a unit root,  = 0)

1 : ∗(1)  0 (∗() = 0 has roots outside unit circle,  6= 0)

The most popular stationarity tests are the Kitawoski-Phillips-Schmidt-Shin
(KPSS) test and the Leyborne-McCabe test. As with the ADF and PP tests
the KPSS and Leyborne-McCabe tests differ main in how they treat serial
correlation in the test regressions.



Statistical Issues with Unit Root Tests

Conceptually the unit root tests are straightforward. In practice, however, there
are a number of difficulties:

• Unit root tests generally have nonstandard and non-normal asymptotic
distributions.

• These distributions are functions of standard Brownian motions, and do
not have convenient closed form expressions. Consequently, critical values
must be calculated using simulation methods.

• The distributions are affected by the inclusion of deterministic terms, e.g.
constant, time trend, dummy variables, and so different sets of critical
values must be used for test regressions with different deterministic terms.



Distribution Theory for Unit Root Tests

Consider the simple AR(1) model

 = −1 +  where  ∼WN(0 2)

The hypotheses of interest are

0 :  = 1 (unit root in () = 0)⇒  ∼ (1)

1 : ||  1⇒  ∼ (0)

The test statistic is

=1 =
̂− 1
SE(̂)

̂ = least squares estimate



If {} is stationary (i.e., ||  1) then
√
 (̂− )

→ (0 (1− 2))

̂
∼ 

µ

1


(1− 2)

¶
=0

∼ (0 1)



However, under the null hypothesis of nonstationarity  = 1 the above result
gives

̂
∼  (1 0)

=1 =
̂− 1
SE(̂)

→ 0

0
= undefined

which clearly does not make any sense.



Problem: under the unit root null, {} is not stationary and ergodic, and the
usual sample moments do not converge to fixed constants. Instead, Phillips
(1987) showed that the sample moments of {} converge to random functions
of Brownian motion:

−32
X
=1

−1
→ 

Z 1
0
 ()

−2
X
=1

2−1
→ 2

Z 1
0
 ()2

−1
X
=1

−1
→ 2

Z 1
0
 () ()

where () denotes a standard Brownian motion (Wiener process) defined on
the unit interval.



A Wiener process  (·) is a continuous-time stochastic process, associating
each date  ∈ [0 1] a scalar random variable  () that satisfies:

1.  (0) = 0

2. For any dates 0 ≤ 1 ≤ · · · ≤  ≤ 1 the changes (2)− (1) (3)−
 (2)     ()− (−1) are independent normal with

 ()− () ∼ (0 (− ))

3.  () is continuous in .

Intuition: A Wiener process is the scaled continuous-time limit of a random
walk



Using the above results Phillips showed that under the unit root null0 :  = 1

 (̂− 1) →
R 1
0  () ()R 1
0  ()2

=1
→

R 1
0  () ()³R 1
0  ()2

´12



For example,

̂− 1 =

⎛⎝ X
=1

2−1

⎞⎠−1 X
=1

−1

⇒  (̂− 1) =
⎛⎝−2 X

=1

2−1

⎞⎠−1 −1 X
=1

−1

→
ÃZ 1
0
 ()2

!−1 Z 1
0
 () ()



Phillips’ derivations yield some surprising results:

• ̂ is super-consistent; that is, ̂
→  at rate  instead of the usual rate

 12.

• ̂ is not asymptotically normally distributed, and =1 is not asymptotically
standard normal.

• The limiting distribution of =1 is called the Dickey-Fuller (DF) distri-
bution and does not have a closed form representation. Consequently,
quantiles of the distribution must be computed by numerical approxima-
tion or by simulation.



• Since the normalized bias  (̂−1) has a well defined limiting distribution
that does not depend on nuisance parameters it can also be used as a test
statistic for the null hypothesis 0 :  = 1.

• =1 is used much more often than  (̂− 1)



Distn/Quantile 1% 5% 10%
Normal -2.326 -1.645 -1.282
DF -2.565 -1.941 -1.617

Table 1: Normal and DF Left Tail Quantiles

Remarks:

• The usual one-sided 5% critical value for standard normal is −1645

• The one-sided 5% critical value for the DF distribution is −1941

• −1645 is the 9.45% quantile of the DF distribution



Trend Cases

When testing for unit roots, it is crucial to specify the null and alternative
hypotheses appropriately to characterize the trend properties of the data at
hand.

• If the observed data does not exhibit an increasing or decreasing trend,
then the appropriate null and alternative hypotheses should reflect this.

• The trend properties of the data under the alternative hypothesis will de-
termine the form of the test regression used.

• The type of deterministic terms in the test regression will influence the
asymptotic distributions of the unit root test statistics.



Case I: Constant Only

The test regression is

 = + −1 + 

and includes a constant to capture the nonzero mean under the alternative.
The hypotheses to be tested are

0 :  = 1  = 0 ⇒  ∼ (1) without drift

1 : ||  1⇒  ∼ (0) with nonzero mean

This formulation is appropriate for non-trending economic and financial series
like interest rates, exchange rates, and spreads.



The test statistics =1 and  (̂−1) are computed from the above regression.
Under 0 :  = 1  = 0 the asymptotic distributions of these test statistics
are influenced by the presence, but not the coefficient value, of the constant in
the test regression:

 (̂− 1) ⇒
R 1
0 

() ()R 1
0 

()2

=1 ⇒
R 1
0 

() ()³R 1
0 

()2
´12

where

() = ()−
Z 1
0
 ()

is a “de-meaned” Wiener process. That is,Z 1
0
() = 0



Remarks:

• Derivation requires special trick from Sims, Stock and Watson (1989)
ECTA.

• See Hayashi Chapter 9 for details.

• See Hamilton’s Time Series textbook for gory details.



Distn/Quantile 1% 5% 10%
Normal -2.326 -1.645 -1.282
DF -2.565 -1.941 -1.617
DF -3.430 -2.861 -2.567

Table 2: Normal and DF Left Tail Quantiles

Remarks:

• Inclusion of a constant pushes the distribution of =1 to the left.

• The 5% normal quantile, −1645 is the 45.94% quantile of the DF

distribution!



Case II: Constant and Time Trend

The test regression is

 = + + −1 + 

and includes a constant and deterministic time trend to capture the determin-
istic trend under the alternative. The hypotheses to be tested are

0 :  = 1  = 0 ⇒  ∼ (1) with drift

1 : ||  1⇒  ∼ (0) with deterministic time trend

This formulation is appropriate for trending time series like asset prices or the
levels of macroeconomic aggregates like real GDP. The test statistics =1 and
 (̂− 1) are computed from the above regression.



Under 0 :  = 1  = 0 the asymptotic distributions of these test statistics
are influenced by the presence but not the coefficient values of the constant
and time trend in the test regression.

 (̂− 1) ⇒
R 1
0 

() ()R 1
0 

()2

=1 ⇒
R 1
0 

() ()³R 1
0 

()2
´12

where

() =()− 12( − 1
2
)
Z 1
0
(− 1

2
) ()

is a “de-meaned” and “de-trended” Wiener process.



Distn/Quantile 1% 5% 10%
Normal -2.326 -1.645 -1.282
DF -2.565 -1.941 -1.617
DF -3.430 -2.861 -2.567
DF -3.958 -3.410 -3.127

Table 3: Normal and DF Left Tail Quantiles

Remarks:

• The inclusion of a constant and trend in the test regression further shifts
the distribution of =1 to the left.

• The 5% normal quantile,−1645 is the 77.52% quantile of the DF dis-
tribution!



Dickey-Fuller Unit Root Tests

• The unit root tests described above are valid if the time series  is well
characterized by an AR(1) with white noise errors.

• Many economic and financial time series have a more complicated dynamic
structure than is captured by a simple AR(1) model.

• Said and Dickey (1984) augment the basic autoregressive unit root test to
accommodate general ARMA( ) models with unknown orders and their
test is referred to as the augmented Dickey-Fuller (ADF) test



Basic model

 =  +  = β0D + 

() = ()  ∼WN(0 2)
D = deterministic terms

 ∼ (∗ ∗)

Question: Does () = 0 have a unit root?

Said and Dickey insight: Approximate ARMA(p∗,q∗) process by AR(p) process
for appropriately chosen p



Approximating (∗ ∗) by ()

() = ()  ∼WN(0 2)
() = 1− 1− · · ·− ∗

∗

() = 1 + 1+ · · ·+ ∗
∗

Assume that roots of () = 0 lie outside unit circle (MA poly is invertible).
Then ()−1 exists and

()−1() = ()−1() = 

⇒ ̃() = 

̃() = 1− ̃1− ̃2
2 − · · ·

≈ 1− ̃1− · · ·− ̃




The ADF test tests the null hypothesis that a time series  is (1) against
the alternative that it is (0), assuming that the dynamics in the data have an
ARMA structure. The ADF test is based on estimating the test regression

 = β0D + −1 +
X

=1

∆− + 

D = deterministic terms
∆− captures serial correlation

The ADF t-statistic and normalized bias statistic are

ADF = =1 =
̂− 1
SE()

ADF =
 (̂− 1)

1− ̂1 − · · ·− ̂

Result: ADFADF have same asymptotic distributions as =1 and  (̂−1)
under white noise errors provided  is selected appropriately.



Intuition: Re-parameterize AR(2) model

 = 1−1 + 2−2 + 

= 1−1 + 2−1 − 2−1 + 2−2 + 

= (1 + 2)−1 − 2∆−1 + 

= −1 + ∆−1 + 

where

 = (1 + 2)

 = −2
Remarks:

• −1 ∼ (1)⇒ ̂ has non-normal distribution



• ∆−1 ∼ (0)⇒ ̂ has normal distribution!

• Derivation requires trick from Sims, Stock and Watson (1989) ECTA



Important results:

• In the AR(2) model with a unit root

 = 1−1 + 2−2 + 

the model may be reparameterized such that 2 is the coefficient on an
(0) variable

 = (1 + 2)−1 − 2∆−1 + 

The Sims, Stock and Watson trick then shows that ̂2 has an asymptotic
normal distribution.

• The model cannot be reparameterized such that  = 1 + 2 is the
coefficient on an (0) variable. It is the coefficient on an (1) variable.
Therefore, ̂ has an asymptotic “unit root” distribution.



Alternative formulation of the ADF test regression:

∆ = β0D + −1 +
X

=1

∆− + 

 = − 1

Under the null hypothesis,

∆ ∼ (0)⇒  = 0

The ADF t-statistic and normalized bias statistics are

ADF = =0 =
̂

SE()

ADF =
 ̂

1− ̂1 − · · ·− ̂

and these are equivalent to the previous statistics.



Choosing the Lag Length for the ADF Test

An important practical issue for the implementation of the ADF test is the
specification of the lag length .

• If  is too small then the remaining serial correlation in the errors will bias
the test.

• If  is too large then the power of the test will suffer.

• Monte Carlo experiments suggest it is better to error on the side of includ-
ing too many lags.



Ng and Perron “Unit Root Tests in ARMA Models with Data-Dependent Meth-
ods for the Selection of the Truncation Lag,” JASA, 1995.

• Set an upper bound max for .

• Estimate the ADF test regression with  = max

• If the absolute value of the t-statistic for testing the significance of the
last lagged difference is greater than 1.6 then set  = max and perform
the unit root test. Otherwise, reduce the lag length by one and repeat the
process.



• A common rule of thumb for determining max, suggested by Schwert
(1989), is

max =

"
12 ·

µ


100

¶14#
where [] denotes the integer part of . However, this choice is ad hoc!



Ng and Perron “Lag Length Selection and the Construction of Unit Root Tests
with Good Size and Power,” ECTA, 2001.

• Select  as  = argmin≤max() where

() = ln(̂2) +
2( () + )

 − max

 () =
̂2
P
=max+1

−1
̂2

̂2 =
1

 − max

X
=max+1

̂2


