
Estimation and Inference in Cointegration

Models

Economics 582

Eric Zivot

May 17, 2012

Tests for Cointegration

Let the (× 1) vector Y be (1). Recall, Y is cointegrated with 0    

cointegrating vectors if there exists an ( × ) matrix B0 such that

B0Y =

⎛⎜⎝ β01Y
...

β0Y

⎞⎟⎠ =
⎛⎜⎝ 1

...



⎞⎟⎠ ∼ (0)

Testing for cointegration may be thought of as testing for the existence of

long-run equilibria among the elements of Y.



Cointegration tests cover two situations:

• There is at most one cointegrating vector

— Originally considered by Engle and Granger (1986), Econometrica.

They developed a simple two-step residual-based testing procedure

based on regression techniques.

• There are possibly 0 ≤    cointegrating vectors.

— Originally considered by Johansen (1988), Journal of Economics Dy-

namics and Control. He developed a sophisticated sequential procedure

for determining the existence of cointegration and for determining the

number of cointegrating relationships based on maximum likelihood

techniques (covered in econ 584)

Residual-Based Tests for Cointegration

Engle and Granger’s two-step procedure for determining if the (× 1) vector
β is a cointegrating vector is as follows:

• Form the cointegrating residual β0Y = 

• Perform a unit root test on  to determine if it is (0).

The null hypothesis in the Engle-Granger procedure is no-cointegration and the

alternative is cointegration.



There are two cases to consider.

1. The proposed cointegrating vector β is pre-specified (not estimated). For

example, economic theory may imply specific values for the elements in

β such as β = (1−1)0. The cointegrating residual is then readily con-
structed using the prespecified cointegrating vector.

2. The proposed cointegrating vector is estimated from the data and an esti-

mate of the cointegrating residual β̂
0
Y = ̂ is formed.

Note: Tests for cointegration using a pre-specified cointegrating vector are gen-

erally much more powerful than tests employing an estimated vector.

Testing for Cointegration When the Cointegrating Vector Is Pre-specified

Let Y denote an (× 1) vector of (1) time series, let β denote an (× 1)
prespecified cointegrating vector and let

 = β0Y = cointegrating residual

The hypotheses to be tested are

0 :  = β0Y ∼ (1) (no cointegration)

1 :  = β0Y ∼ (0) (cointegration)



Remarks:

• Any unit root test statistic may be used to evaluate the above hypotheses.

• Cointegration is found if the unit root test rejects the no-cointegration
null.

• It should be kept in mind, however, that the cointegrating residual may
include deterministic terms (constant or trend) and the unit root tests

should account for these terms accordingly.

Testing for Cointegration When the Cointegrating Vector Is Estimated

LetY denote an (×1) vector of (1) time series and let β denote an (×1)
unknown cointegrating vector. The hypotheses to be tested are

0 :  = β0Y ∼ (1) (no cointegration)

1 :  = β0Y ∼ (0) (cointegration)



Remarks:

• Since β is unknown, to use the Engle-Granger procedure it must be first
estimated from the data.

• Before β can be estimated some normalization assumption must be made
to uniquely identify it.

• A common normalization is to specify Y = (1Y
0
2)
0 where Y2 =

(2     )
0 is an ((− 1)× 1) vector and the cointegrating vector is

normalized as β = (1−β02)0.

Engle and Granger propose estimating the normalized cointegrating vector β2
by least squares from the regression

1 = γ0D + β02Y2 + 

D = deterministic terms

and testing the no-cointegration hypothesis with a unit root test using the

estimated cointegrating residual

̂ = 1 − γ̂0D − β̂2Y2

The unit root test regression in this case is without deterministic terms (con-

stant or constant and trend).

For example, if one uses the ADF test, the test regression is

∆̂ = ̂−1 +
X

=1

∆̂− + 



Distribution Theory

• Phillips and Ouliaris (PO) (1990) show that ADF unit root tests (t-tests
and normalized bias) applied to the estimated cointegrating residual do

not have the usual Dickey-Fuller distributions under the null hypothesis of

no-cointegration.

• Due to the spurious regression phenomenon under the null hypothesis, the
distribution of the ADF unit root tests have asymptotic distributions that

are functions of Wiener processes that

— Depend on the deterministic terms in the regression used to estimate

β2

— Depend on the number of variables, − 1 in Y2.

PO Critical Values for Engle-Granger Cointegration Test. (Constant included

in test regression)

n-1 1% 5%

1 -3.89 -3.36

2 -4.29 -3.74

3 -4.64 -4.09

4 -4.96 -4.41

5 -5.24 -4.71



To further complicate matters, Hansen (1992) showed the appropriate PO dis-

tributions of the ADF and PP unit root tests applied to the residuals also

depend on the trend behavior of 1 and Y2 as follows:

Case I: Y2 and 1 are both (1) without drift and D = 1. The ADF unit

root test statistics follow the PO distributions, adjusted for a constant,

with dimension parameter − 1

Case II: Y2 is (1) with drift, 1 may or may not be (1) with drift and

D = 1. The ADF and PP unit root test statistics follow the PO dis-

tributions, adjusted for a constant and trend, with dimension parameter

− 2. If − 2 = 0 then the ADF unit root test statistics follow the DF

distributions adjusted for a constant and trend.

Case III: Y2 is (1) without drift, 1 is (1) with drift and D = (1 )0.
The resulting ADF unit root test statistics on the residuals follow the PO

distributions, adjusted for a constant and trend, with dimension parameter

− 1.



Regression-Based Estimates of Cointegrating Vectors and Error Correc-

tion Models

Least Square Estimator

Least squares may be used to consistently estimate a normalized cointegrating

vector. However, the asymptotic behavior of the least squares estimator is non-

standard. The following results about the behavior of β̂2 if Y is cointegrated

are due to Stock (1987) and Phillips (1991):

•  (β̂2 − β2) converges in distribution to a non-normal random variable

not necessarily centered at zero.

• The least squares estimate β̂2 is consistent for β2 and converges to β2 at
rate  instead of the usual rate  12. That is, β̂2 is super consistent.

• β̂2 is consistent even if Y2 is correlated with  so that there is no

asymptotic simultaneity bias.

• In general, the asymptotic distribution of  (β̂2 − β2) is asymptotically

biased and non-normal. The usual OLS formula for computing d(β̂2)
is incorrect and so the usual OLS standard errors are not correct.

• Even though the asymptotic bias goes to zero as  gets large β̂2 may be

substantially biased in small samples. The least squres estimator is also

not efficient.

The above results indicate that the least squares estimator of the cointegrating

vector β2 could be improved upon. A simple improvement is suggested by

Stock and Watson (1993).



Stock and Watson’s Efficient Lead/Lag Estimator

Stock and Watson (1993) provide a very simple method for obtaining an as-

ymptotically efficient (equivalent to maximum likelihood) estimator for the nor-

malized cointegrating vector β2 as well as a valid formula for computing its

asymptotic variance. Let

Y = (1Y
0
2)
0

Y2 = (2     )
0

β = (1−β02)0

Stock and Watson’s efficient estimation procedure is:

• Augment the cointegrating regression of 1 on Y2 with appropriate de-
terministic terms D with  leads and lags of ∆Y2

1 = γ0D + β02Y2 +
X

=−
ψ0∆Y2− + 

= γ0D + β02Y2 +ψ00∆Y2
+ψ0+∆Y2+ + · · ·+ψ0+1∆Y2+1
+ψ0−1∆Y2−1 + · · ·+ψ0−∆Y2− + 

• Estimate the augmented regression by least squares. The resulting estima-
tor of β2 is called the dynamic OLS estimator and is denoted β̂2. It

will be consistent, asymptotically normally distributed and efficient (equiv-

alent to MLE) under certain assumptions (see Stock and Watson (1993))



• Asymptotically valid standard errors for the individual elements of β̂2

are computed using the Newey-West HAC standard errors.

Estimating Error Correction Models by Least Squares

Consider a bivariate (1) vector Y = (1 2)
0 and assume that Y is coin-

tegrated with cointegrating vector β = (1−2)0 so that β0Y = 1−22

is (0). Suppose one has a consistent estimate ̂2 (by OLS or DOLS) of the

cointegrating coefficient and is interested in estimating the corresponding error

correction model for ∆1 and ∆2 using

∆1 = 1 + 1(1−1 − ̂22−1)
+
X




11∆1− +

X




12∆2− + 1

∆2 = 2 + 2(1−1 − ̂22−1)
+
X




21∆1− +

X


222∆2− + 2



• Because ̂2 is super consistent it may be treated as known in the ECM,
so that the estimated disequilibrium error 1− ̂22 may be treated like

the known disequilibrium error 1 − 22.

• Since all variables in the ECM are (0), the two regression equations may

be consistently estimated using ordinary least squares (OLS).

• Alternatively, the ECM system may be estimated by seemingly unrelated

regressions (SUR) to increase efficiency if the number of lags in the two

equations are different.

VAR Models and Cointegration

• The Granger representation theorem links cointegration to error correction
models.

• In a series of important papers and in a marvelous textbook, Soren Jo-
hansen firmly roots cointegration and error correction models in a vector

autoregression framework.

• This section outlines Johansen’s approach to cointegration modeling.



The Cointegrated VAR

Consider the levels VAR() for the (× 1) vector Y

Y = ΦD +Π1Y−1 + · · ·+ΠY− + ε

D = deterministic terms

The VAR() model is stable if

det(I −Π1 − · · ·−Π
) = 0

has all roots outside the complex unit circle.

• If there are roots on the unit circle then some or all of the variables in Y

are (1) and they may also be cointegrated.

VECM Representation

• If  is cointegrated then the VAR representation is not the most suit-
able representation for analysis because the cointegrating relations are not

explicitly apparent.

• The cointegrating relations become apparent if the levels VAR is trans-
formed to the vector error correction model (VECM)

∆Y = ΦD +ΠY−1 + Γ1∆Y−1
+ · · ·+ Γ−1∆Y−+1 + ε

Π = Π1 + · · ·+Π − I

Γ = −
X

=+1

Π  = 1     − 1



Cointegration Restrictions

• In the VECM, ∆Y and its lags are (0).

• The term ΠY−1 is the only one which includes potential (1) variables
and for ∆Y to be (0) it must be the case that ΠY−1 is also (0).
Therefore, ΠY−1 must contain the cointegrating relations if they exist.

• If the VAR() process has unit roots ( = 1) then
det(I −Π1 − · · ·−Π) = 0

⇒ det(Π) = 0

⇒ Π is singular

If Π is singular then it has reduced rank; that is (Π) =   .

There are two cases to consider:

1. (Π) = 0. This implies that

Π = 0

Y ∼ (1) and not cointegrated

The VECM reduces to a VAR(− 1) in first differences

∆Y= ΦD + Γ1∆Y−1 + · · ·+ Γ−1∆Y−+1 + ε



2. 0  (Π) =   . This implies that Y is (1) with  linearly

independent cointegrating vectors and  −  common stochastic trends

(unit roots). Since Π has rank  it can be written as the product

Π
(×)

= α
(×)

β
(×)

0

where α and β are (×) matrices with (α) = (β) = . The

rows of β0 form a basis for the  cointegrating vectors and the elements

of α distribute the impact of the cointegrating vectors to the evolution of

∆Y. The VECM becomes

∆Y = ΦD +αβ0Y−1 + Γ1∆Y−1
+ · · ·+ Γ−1∆Y−+1 + ε

where β0Y−1 ∼ (0) since β0 is a matrix of cointegrating vectors.

Non-uniqueness

It is important to recognize that the factorization Π = αβ0 is not unique since
for any  ×  nonsingular matrix H we have

αβ0= αHH−1β0= (aH)(βH−10)0= a∗β∗0

Hence the factorization Π = αβ0 only identifies the space spanned by the
cointegrating relations. To obtain unique values of α and β0 requires further
restrictions on the model.



Example: A bivariate cointegrated VAR(1) model

Consider the bivariate VAR(1) model for Y = (1 2)
0

Y = Π1Y−1 + ²
The VECM is

∆Y = ΠY−1 + ε

Π = Π1−I2
Assuming Y is cointegrated there exists a 2 × 1 vector β = (1 2)

0 such
that

β0Y = 11 + 22 ∼ (0)

Using the normalization 1 = 1 and 2 = − the cointegrating relation

becomes

β0Y = 1 − 2

This normalization suggests the stochastic long-run equilibrium relation

1 = 2 + 

Since Y is cointegrated with one cointegrating vector, (Π) = 1 so that

Π = αβ0 =
Ã
1
2

!³
1 −

´
=

Ã
1 −1
2 −2

!


The elements in the vector α are interpreted as speed of adjustment coeffi-

cients. The cointegrated VECM for ∆Y may be rewritten as

∆Y = αβ0Y−1 + ε

Writing the VECM equation by equation gives

∆1 = 1(1−1 − 2−1) + 1

∆2 = 2(1−1 − 2−1) + 2



Stability of the VECM

• The stability conditions for the bivariate VECM are related to the stability

conditions for the disequilibrium error β0Y.

It is straightforward to show that β0Y follows an AR(1) process

β0Y = (1+ β0α)β0Y−1 + β0ε
or

 = −1 +   = β0Y

 = 1 + β0α = 1 + (1 − 2)

 = β0ε = 1 − 2

The AR(1) model for  is stable as long as

|| = |1 + (1 − 2)|  1

For example, suppose  = 1. Then the stability condition is

|| = |1 + (1 − 2)|  1

which is satisfied if

1 − 2  0 and 1 − 2  −2



Johansen’s Methodology for Modeling Cointegration

The basic steps in Johansen’s methodology are:

• Specify and estimate a VAR() model for Y

• Construct likelihood ratio tests for the rank of Π to determine the number

of cointegrating vectors.

• If necessary, impose normalization and identifying restrictions on the coin-
tegrating vectors.

• Given the normalized cointegrating vectors estimate the resulting cointe-
grated VECM by maximum likelihood.

Likelihood Ratio Tests for the Number of Cointegrating Vectors

The unrestricted cointegrated VECM is denoted (). The (1) model ()

can be formulated as the condition that the rank of Π is less than or equal to

. This creates a nested set of models

(0) ⊂ · · · ⊂ () ⊂ · · · ⊂ ()

(0) = non-cointegrated VAR

() = stationary VAR(p)

This nested formulation is convenient for developing a sequential procedure to

test for the number  of cointegrating relationships.



Remarks:

• Since the rank of the long-run impact matrix Π gives the number of coin-

tegrating relationships in Y, Johansen formulates likelihood ratio (LR)

statistics for the number of cointegrating relationships as LR statistics for

determining the rank of Π

• These LR tests are based on the estimated eigenvalues ̂1  ̂2  · · · 
̂ of the matrix Π. These eigenvalues also happen to equal the squared

canonical correlations between ∆Y and Y−1 corrected for lagged ∆Y

and D and so lie between 0 and 1. Recall, the rank of Π is equal to the

number of non-zero eigenvalues of Π.

Johansen’s Trace Statistic

Johansen’s LR statistic tests the nested hypotheses

0() :  = 0 vs. 1(0) :   0

The LR statistic, called the trace statistic, is given by

(0) = −
X

=0+1

ln(1− ̂)

• If (Π) = 0 then ̂0+1     ̂ should all be close to zero and

(0) should be small since ln(1− ̂) ≈ 0 for   0.

• In contrast, if (Π)  0 then some of ̂0+1     ̂ will be nonzero

(but less than 1) and (0) should be large since ln(1− ̂)  0

for some   0.



• The asymptotic null distribution of (0) is not chi-square but

instead is a multivariate version of the Dickey-Fuller unit root distribu-

tion which depends on the dimension − 0 and the specification of the

deterministic terms. Critical values for this distribution are tabulated in

Osterwald-Lenum (1992) for − 0 = 1     10.

Sequential Procedure for Determining the Number of Cointegrating Vec-

tors

1. First test 0(0 = 0) against 1(0  0). If this null is not rejected

then it is concluded that there are no cointegrating vectors among the 

variables in Y.

2. If 0(0 = 0) is rejected then it is concluded that there is at least one

cointegrating vector and proceed to test 0(0 = 1) against 1(0 

1). If this null is not rejected then it is concluded that there is only one

cointegrating vector.

3. If the 0(0 = 1) is rejected then it is concluded that there is at least

two cointegrating vectors.



4. The sequential procedure is continued until the null is not rejected.

Johansen’s Maximum Eigenvalue Statistic

Johansen also derives a LR statistic for the hypotheses

0(0) :  = 0 vs. 1(0) : 0 = 0 + 1

The LR statistic, called the maximum eigenvalue statistic, is given by

max(0) = − ln(1− ̂0+1)

As with the trace statistic, the asymptotic null distribution of max(0) is

not chi-square but instead is a complicated function of Brownian motion, which

depends on the dimension  − 0 and the specification of the deterministic

terms. Critical values for this distribution are tabulated in Osterwald-Lenum

(1992) for − 0 = 1     10.



Specification of Deterministic Terms

Following Johansen (1995), the deterministic terms in are restricted to the form

ΦD = μ = μ0 + μ1

If the deterministic terms are unrestricted then the time series inY may exhibit

quadratic trends and there may be a linear trend term in the cointegrating

relationships. Restricted versions of the trend parameters μ0 and μ1 limit the

trending nature of the series in Y. The trend behavior of Y can be classified

into five cases:

1. Model 2(): μ = 0 (no constant):

∆Y = αβ0Y−1
+Γ1∆Y−1 + · · ·+ Γ−1∆Y−+1 + ε

and all the series in Y are (1) without drift and the cointegrating rela-

tions β0Y have mean zero.

2. Model ∗1(): μ = μ0 = αρ0 (restricted constant):

∆Y = α(β0Y−1 + ρ0)

+Γ1∆Y−1 + · · ·+ Γ−1∆Y−+1 + ε

the series inY are (1) without drift and the cointegrating relations β
0Y

have non-zero means ρ0.



3. Model 1(): μ = μ0 (unrestricted constant):

∆Y = μ0 +αβ0Y−1
+Γ1∆Y−1 + · · ·+ Γ−1∆Y−+1 + ε

the series inY are (1) with drift vector μ0 and the cointegrating relations

β0Y may have a non-zero mean.

4. Model ∗(): μ = μ0 +αρ1 (restricted trend). The restricted VECM

is

∆Y = μ0 +α(β0Y−1 + ρ1)

+Γ1∆Y−1 + · · ·+ Γ−1∆Y−+1 + ε

the series inY are (1) with drift vector μ0 and the cointegrating relations

β0Y have a linear trend term ρ1.

5. Model (): μ = μ0 + μ1 (unrestricted constant and trend). The

unrestricted VECM is

∆Y = μ0 + μ1+αβ0Y−1
+Γ1∆Y−1 + · · ·+ Γ−1∆Y−+1 + ε

the series in Y are (1) with a linear trend (quadratic trend in levels) and

the cointegrating relations β0Y have a linear trend.



Maximum Likelihood Estimation of the Cointegrated VECM

If it is found that (Π) = , 0    , then the cointegrated VECM

∆Y = ΦD +αβ0Y−1 + Γ1∆Y−1
+ · · ·+ Γ−1∆Y−+1 + ε

becomes a reduced rank multivariate regression. Johansen derived the maxi-

mum likelihood estimation of the parametes under the reduced rank restriction

(Π) =  (see Hamilton for details).

Johansen shows that

• β̂ = (v̂1     v̂)where v̂ are the eigenvectors associated with the

eigenvalues ̂,

• The MLEs of the remaining parameters are obtained by least squares esti-
mation of

∆Y = ΦD +αβ̂
0
Y−1 + Γ1∆Y−1

+ · · ·+ Γ−1∆Y−+1 + ε



Normalized Estimates of α and β

• The factorization
Π̂= α̂β̂

0


is not unique

• The columns of β̂ may be interpreted as linear combinations of the

underlying cointegrating relations.

• For interpretations, it is often convenient to normalize or identify the coin-
tegrating vectors by choosing a specific coordinate system in which to

express the variables.

Johansen’s normalized MLE

• An arbitrary normalization, suggested by Johansen, is to solve for the trian-
gular representation of the cointegrated system (default method in Eviews).

The resulting normalized cointegrating vector is denoted β̂. The nor-

malization of the MLE for β to β̂ will affect the MLE of α but not

the MLEs of the other parameters in the VECM.

• Let β̂ denote the MLE of the normalized cointegrating matrix β.

Johansen (1995) showed that

 ((β̂)− (β))

is asymptotically (mixed) normally distributed

• β̂ is super consistent



Testing Linear Restrictions on β

The Johansen MLE procedure only produces an estimate of the basis for the

space of cointegrating vectors. It is often of interest to test if some hypothesized

cointegrating vector lies in the space spanned by the estimated basis:

0 : β
(×)

0 =
Ã
β00
φ0

!
β00 = ×  matrix of hypothesized cv’s

φ0 = ( − )×  matrix of remaining unspecified cv’s

Result: Johansen (1995) showed that a likelihood ratio statistic can be com-

puted, which is asymptotically distributed as a 2 with ( − ) degrees of

freedom.


