 4-2 Introduction to the Command Line

Introduction to the Command Line 4-3

Chapter 4

Introduction to the Command Line

Contents

4-34
Introduction to the Command Line

4.1
Getting Help in S-PLUS
4-3
4.2
Recalling and Editing Past Commands
4-5
4.3
Basic Syntax
4-7
4.3.1
Assignment Operators
4-8
4.3.2
Legal Names
4-9
4.3.3
Spaces
4-9
4.3.4
Storing and Overwriting Objects
4-10
4.3.5
Removing Objects
4-11
4.3.6
Finding Objects
4-12
4.3.7
Choosing Names and Masking
4-14
4.3.8
Multiple Commands on a Single Line
4-15
4.3.9
Quitting S-PLUS
4-16

4 Introduction to the Command Line

From now on, the material focuses on using S-PLUS at the command line. Because the GUI has been programmed to resemble the underlying S language, this material will be beneficial for those who plan on using only the GUI, for those who plan on using only the command line, and for those who plan on using both the GUI and the command line. Many commands that are introduced will help you to more effectively use the GUI as well as learn the S language for creating functions specific to your data analysis needs.

This material assumes no previous experience with the S language. We present topics and helpful details that will benefit the beginning user as well as the experienced S‑PLUS user.

If the Commands Window is not open, you can open it by clicking on the button [image: image1.bmp] in the main toolbar.

4.1 Getting Help in S-PLUS

The S language contains about 4000 functions; we will obviously only cover a fraction of these in this course! Each of the functions are documented in the on-line help system. To start the S-PLUS help system, do one of the following:

· Select an option from the Help menu.

· In the S-PLUS command window, type help() at the S-PLUS prompt:

> help()
There are many ways to bring up help files in S-PLUS:

· Look at the set of topics listed in the contents, click with the mouse on the one you're interested in, and get to the help file you want under that topic.

· Type ?name, or help(name), where name is the name of the function or data set you are interested in.

Example Getting help at the command line for the mean function.

> ?mean

or

> help(mean)
brings up the help file for the S‑PLUS function that computes the mean.

To get help on special symbols or operators like ^ or &, enclose them in quotes.

Example Get help on the exponentiation operator, type:

> ?"^"

or

> help("^")
You may iconify the help window(s) if you feel your screen is too cluttered.

The S-PLUS 2000 manuals are available on-line. To access these:

Click on Help on the Menu, choose On-line Manuals, then choose the manual of interest.

4.2 Recalling and Editing Past Commands

The S-PLUS command line provides a utility to recall past commands and edit them.

Once you are satisfied with the new line you have created by recalling and editing, simply hit the ENTER key to execute that line.

In Windows, here are the most useful keystrokes for recalling past commands.

Table 1.1 Key strokes to Recall Past Commands (Windows)

Keystroke
Action

Up arrow (()
Recall previous line

Down arrow (()
Go to next line

PAGEUP
Recall 10th line back

PAGEDOWN
Go forward 10 lines

F8
Search for selected text

· If you type a string on the command line or select a text string from the command line, and then press F8, S-PLUS searches for the last typed line containing the selected string.

· All of the above key strokes may be executed repeatedly.

Here are the most useful key strokes for editing past commands:

Table 1.2 Key strokes to Edit Past Commands (Windows)

Keystroke
Action

Left arrow (()
Move one character to the left

Right arrow (()
Move one character to the right

DELETE
Erase right of cursor

BACKSPACE
Erase left of cursor

HOME
Beginning of line

END
End of line

ESC
Clear command line and search buffer

4.3 Basic Syntax

S-PLUS is an interactive software program.

To use S-PLUS, you normally type expressions in the S language at the prompt. For example

> 3*4
[1] 12

> 3+(5/2)
[1] 5.5

The default S-PLUS prompt is the greater-than sign (>).

The S-PLUS continuation prompt is the plus sign (+). This appears if the previous line(s) is (are) not syntactically complete.

Example

> 3*
+ 4
[1] 12

If you make a mistake while typing, you can either:

· Use the BACKSPACE key and type over your mistake

· You can also type ESC to interrupt S-PLUS if you have already hit the ENTER key and S-PLUS is now executing your command.

A command line that begins with a pound sign (#) is not evaluated; in other words, you can use # to include comments in your commands history file.

> # The next line is an example of a
> # mathematical function.

> sin(pi)
[1] 1.224606e-016
Assignment Operators

Everything you type at the command line is an S expression. S-PLUS evaluates that expression and prints the result out on your screen unless you tell S‑PLUS to save the result of that expression by using the assignment operator.

The assignment operator is the left arrow (<-)

Type this (on English keyboards) by first holding down the shift key and pressing the comma key (i.e., SHIFT + ,), and then typing the minus sign (-).

For example, to store the result of 3*4 in an object called solution, type:

> solution <- 3*4

>
The above expression is read as: "'solution' gets three times four." Or "'solution' is assigned three times four."

The result of the expression to the right of the assignment operator is stored in the object named solution.

Note that S-PLUS does not print out the result when you assign it to a name.

To see the value of the an object, simply type the name of the object at the S‑PLUS prompt:

> solution
 [1] 12
Every time S-PLUS evaluates an expression, it stores the result of that expression internally in an object called .Last.value.

If you type an expression and forget to assign the result to a name, you can still save it by immediately assigning a name to the object .Last.value:

> 3 * 4
 [1] 12

> solution2 <- .Last.value

> solution2
 [1] 12

4.3.1 Legal Names

The name of an S-PLUS object can be any combination of letters, numbers and periods (.), but a name cannot start with a number. The period has no special significance; it is simply used to make long object names easier to read. (The underscore is used in other languages such as C and Visual Basic for this purpose, but you cannot use the underscore in S‑PLUS names.) No other symbols are allowed.

Examples of legal names include my.data, my.data2, MyData, and .my5data.

There is no (practical) limit to the number of characters in an object name.

S-PLUS is case sensitive: Solution is different from solution.

Column names in data window must conform to the conventions of legal object names, so all the above restrictions apply.

4.3.2 Spaces

S-PLUS ignores extra spaces between object names and operators.

Example The expression

> solution <- 3*4

is the same as

> solution<-3*4
There are two cases where spaces are important. You cannot put spaces between the < and - when using the two-character assignment operator (<-).

Example

> solution
[1] 12

> solution < -4
[1] F

> solution
[1] 12

The second command above is not an assignment, it is a logical operation in which the value stored in solution is compared to –4. The result of testing whether 12 is less than –4 is false, so S-PLUS returns the Boolean value F.

When you create a character string, spaces within the string are recorded exactly as you type them.

Example The following two characters strings are considered different.

> cs1 <- "Shell,UK"
> cs2 <- "Shell, UK"

4.3.3 Storing and Overwriting Objects

Objects that you create with the assignment operator are permanent; that is, they are written on your hard disk.

· Even when you quit S-PLUS, they will still be there the next time you start S-PLUS.

· The place where S-PLUS stores objects that you create is called the working directory.

· The working directory is the first directory on your search list.

· If you reassign an object name to a new expression, the previous contents of the object are overwritten.

Example
> my.power <- 2^3
> my.power
[1] 8

> my.power <- 3^4

> my.power
[1] 81

If you make any changes to existing objects, you have the option of making these changes permanent before you exit, or keeping the original version of the object as found at the beginning of session.

A dialog box will appear before exiting. It lists the objects that were changed during your S-PLUS session. Highlighted objects will be changed, and these changes are permanent. Deselect those objects you do not wish to change, then click the OK button.

[image: image2.png]
4.3.4 Removing Objects

To remove an object from your working directory, use the function rm.

> solution2
[1] 12
> solution3
[1] 12
> rm(solution2, solution3)
> solution2
Error: Object "solution2" not found

> solution3
Error: Object "solution3" not found
To recover deleted objects, use the function undo.
> undo("solution3")
[1] T

> solution3
[1] 12

To retrieve the data from its initial state (i.e., the value it had at start-up of the current S-PLUS session), use the option initial=T.

> undo("my.power",initial=T)
[1] T

> my.power
[1] 8

4.3.5 Finding Objects

Use the function objects() to see the names of the objects you (or S‑PLUS) have created:

> objects()
[1] ".Last.value" "last.dump"
[3] "last.warning" "solution"
S-PLUS created the objects .Last.value, last.dump, and last.warning.

When you type the name of a data object or function, S-PLUS looks through a sequence of directories called the search list to find that object.

Example Use the function search() to see the current search list:

> search()
 [1] "c:\\Program Files\\sp2000\\users\\goodman_Data"
 [2] "c:\\Program Files\\sp2000\\splus_Functio"
 [3] "c:\\Program Files\\sp2000\\stat_Functio"
 [4] "c:\\Program Files\\sp2000\\s_Functio"
 [5] "c:\\Program Files\\sp2000\\s_Dataset"
 [6] "c:\\Program Files\\sp2000\\stat_Dataset"
 [7] "c:\\Program Files\\sp2000\\splus_Dataset"
 [8] "c:\\Program Files\\sp2000\\library\\trellis_Data"
 [9] "c:\\Program Files\\sp2000\\library\\cluster_Data"
[10] "c:\\Program Files\\sp2000\\library\\sapi_Data"
[11] "c:\\Program Files\\sp2000\\library\\sgui_Data"
[12] "c:\\Program Files\\sp2000\\library\\editdata_Data"
[13] "c:\\Program Files\\sp2000\\library\\menu_Data"

In Windows, the back slash (\) has a special meaning in a character string, so S-PLUS types two back slashes to denote a backslash.

· The first directory on the search list is called the working directory.

· Objects you create during your S-PLUS session are always stored in the working directory.

· In the above example, directories 2-12 were installed with S-PLUS and hold objects that come with S-PLUS.

To see the names of objects stored in other directories on the search list, give the number of the directory as an argument to the objects function:

Example To see the names of the objects in directory 6 of the search list, type:

> objects(6)
 [1] "Lubricant" "Puromycin"
 [3] "air" "car.all"
 [5] "car.test.frame" "catalyst"
 ...
Example Use the find function to find the directory (or directories) that hold objects with a particular name.

> find("mean")
[1] "c:\\Program Files\\sp2000\\splus_Functio"
> find("letters")
[1] "c:\\Program Files\\sp2000\\s_Dataset"
· Put the name of the object in quotes.

· To see which number the directory is on the search list, use the argument numeric=T in the call to find:

> find("mean", numeric=T)
 c:\\Program Files\\sp2000\\splus_Functio
 2

> find("letters", numeric=T)
 c:\\Program Files\\sp2000\\s_Dataset
 5

> letters
 [1] "a" "b" "c" "d" "e" "f" "g"
 [8] "h" "i" "j" "k" "l" "m" "n"
[15] "o" "p" "q" "r" "s" "t" "u"
[22] "v" "w" "x" "y" "z"

4.3.6 Choosing Names and Masking

It is usually a good idea to avoid using built-in names when creating objects. When you create an object with the same name as a built-in object, you are masking an S‑PLUS object.

· Built-in names that are commonly masked by users are C, c, s, t, diff, and mean.

· Some names are reserved words and can’t be assigned, such as T, F, NA, for, while, return
· To determine if the name you have chosen is already in use (either because it is built-in or because you have already created an object by that name), simply type the name at the S-PLUS prompt.

Example Determine whether an object named mongoose already exists.:

> mongoose
Error: Object "mongoose" not found

Now check to see whether an object named pi already exists.

> pi
[1] 3.141593

If you assign something to a built-in name, S-PLUS will find your version first because the working directory is the first directory on the search list.

> letters
 [1] "a" "b" "c" "d" "e" "f" "g" "h" "i"
[10] "j" "k" "l" "m" "n" "o" "p" "q" "r"
[19] "s" "t" "u" "v" "w" "x" "y" "z"

> letters <- "seattle"

> letters
[1] "seattle"

There are two ways to determine if you have masked a built-in object:

· Use the find function. If more than one directory is listed, you have masked the object

> find("letters")
[1] "c:\\Program Files\\sp2000\\users\\goodman_Data"
[2] "c:\\Program Files\\sp2000\\s_Dataset"

· Use the masked function:

> masked()
[1] ".Random.seed" "letters"

If you have masked a built-in object, either remove the masking object or rename it and remove the version with the masking name.

> my.letters <- letters
> rm(letters)

4.3.7 Multiple Commands on a Single Line

You may type several commands on a single line by separating them with a semi-colon (;).

Example

> a <- 2; b <- 3; d <- a + b

> a
 [1] 2

> d
[1] 5

4.3.8 Quitting S-PLUS

Type q() to quit S-PLUS.

Everything you have created during your S-PLUS session is saved on your hard disk and will be accessible the next time you start up S-PLUS.

