A-10 Appendix A: Example Session
Chapter 10: Appedix A 2

Appendix B

Random Numbers

Contents

B-3Appendix B: Random Numbers

B.1
Generating Random Numbers
B-3
B.2
Setting the seed
B-4

 Random Numbers

B.1 Generating Random Numbers

S-PLUS includes many functions that will generate random numbers for several probability distributions. See Table A.6 in Appendix A for a complete listing of the available distributions. To obtain a random sample from any of these distributions, preface the S function name by "r".

Example Obtain a vector of 6 random numbers taken from a binomial distribution with sample size 10 and probability p=0.5.

> rbinom(6,10,.5)
[1] 3 3 3 1 1 3 1 4 2 4
The function sample re-samples from a vector of data.

Example

> sample(20)
[1] 19 6 8 11 12 20 7 1 14 17 3
[12] 4 13 2 10 16 5 15 18 9

> x<-c(seq(1,21,by=2))

> x
 [1] 1 3 5 7 9 11 13 15 17 19 21
> sample(x)
 [1] 15 17 19 11 21 3 13 9 7 1 5
> sample(x,replace=T)
[1] 13 9 3 17 19 3 17 13 19 1 3

> sample(x,5)
[1] 15 5 3 17 21

> sample(x,5,replace=T)
[1] 15 7 5 1 3

B.2 Setting the seed

In S-PLUS, random number generation is adapted from an algorithm by G. Marsaglia, et al. Random Number Package: "Super-Duper" (1973). The starting values for the various random number generators are stored in the S-PLUS object .Random.seed.

Example

> .Random.seed
 [1] 57 50 59 42 56 2 19 61 54 37 37 2

> rnorm(10)
[1] 0.65975357 2.18871493 -0.71753757
[4] 0.26500963 .63140592 -2.00089230
[7].22156186 -0.04099845 2.06304734
[10] .49782948

> .Random.seed
[1] 33 0 4 50 52 2 10 31 25 36 5 0

> rbinom(10,15,.25)
[1] 1 5 5 1 2 0 6 3 4 5

>.Random.seed
[1] 41 59 14 22 38 3 33 22 44 50 31 3

The standard initial values for the underlying generator algorithm are stored in .Random.seed which is located in the system’s data directory (for example, "c:\\splus2000\\s_Dataset"). The first time you call a function that generates a random number, it is this vector that is accessed. After this initial call, .Random.seed is updated and maintained in your working directory.

When you quit a session that involved a call to a random number generator, you are given the option of saving the change to .Random.seed. If you decide not to save the changes, then .Random.seed reverts to the values that it had an the beginning of this session.

If you are running some simulations and you wish the results to be reproducible, then you should copy the random seed before you begin.

Example

> random.orig <- .Random.seed

> z<- rnorm(100,0,1)

> #Run some more simulations

> #End your experiments.

> #Now reset the random seed to its original
> #state

> .Random.seed <- random.orig

> z.again <-rnorm(100,0,1)
z.again will be identical to z above.

Another way to put your random number results in a reproducible state is to use the set.seed function.

Example

> set.seed(10)

> rnorm(5)
[1] 0.2022220 0.5673874 -0.2168126 0.2940439 -1.3832150

> rnorm(5)
[1] 0.6890478 0.2698659 -0.8669360 -1.9583219
[5] 0.2858080

> set.seed(10)

> rnorm(5)
[1] 0.2022220 0.5673874 -0.2168126 0.2940439
[5] -1.3832150

set.seed takes an integer argument from 0 to 1023, or a previous value of .Random.seed.

> set.seed(.Random.seed)

