5-36 Data Objects

Data Objects 5-3

Chapter 5

Data Objects

Contents

5-35
Data Objects

5.1
Modes and Attributes
5-4
5.1.1
Modes
5-5
5.1.2
Attributes
5-7
5.2
Vectors
5-9
5.2.1
Creating Vectors
5-9
5.2.2
Attributes of a Vector
5-10
5.2.3
Subscripting Vectors
5-11
5.3
Matrices
5-14
5.3.1
Creating Matrices
5-14
5.3.2
Attributes of a Matrix
5-15
5.3.3
Subscripting Matrices
5-17
5.4
Data Frames
5-18
5.4.1
Creating Data Frames
5-18
5.4.2
Attributes of a Data Frame
5-19
5.4.3
Subscripting Data Frame
5-20
5.5
Lists
5-25
5.5.1
Creating Lists
5-25
5.5.2
Attributes of a List
5-26
5.5.3
Subscripting Lists
5-26
5.6
Dates
5-29
5.7
Factors and Ordered Factors
5-29
5.7.1
Creating Factors
5-31
5.7.2
Creating Ordered Factors
5-32
5.8
Class
5-33
5.9
The "is. " and "as. " Functions
5-35

Data Objects

S-PLUS supports many different types of data and data objects. Because functions accept specific types of data, it is important to learn the different types of data that are available. Once you learn these different data types, you will be able to use functions, understand the help files for the functions, as well as program your functions to handle only specific data types.

In this chapter we discuss

· Modes, Attributes, and Classes of Objects

· Creating Data Objects (emphasis on data structures)

· Subscripting

in the context of the main S-PLUS data structures

· Vectors

· Matrices

· Lists

· Data Frames

· Factors and Ordered Factors

Modes and Attributes

In S-PLUS, a data object is not simply a set of numbers. Each data object also contains information on the type of data that it contains. The two primary types of information are:

· Mode. The nature of the basic elements comprising the object, e.g. numeric, character, logical, or complex.

· Attributes. Characteristics of the object and descriptive information, e.g. the length of a vector, dimensions of a matrix, or names of vector elements.

Modes

Data objects in S-PLUS are a collection of values. The types or modes of these values are numeric, logical, complex or character. In addition, missing or non-existent data values are represented by special symbols, NA and NULL, respectively.

Numeric data are integers or real numbers. For example

> pi
[1] 3.141593

Logical data consist of two possible outcomes: T (TRUE) and F (FALSE). For example

> 3 < 4
[1] T

> 4 < 3
[1] F

Complex data have real and imaginary parts. For example,

> comp.obj <- 2+3i
Character data are surrounded by quotes. For example,

> cs2 <- "UK Industrial"
[1] "UK Industrial"
The mode function returns the mode of an object.

> mode(pi)
[1] "numeric"

Sometimes, functions will return NA if the argument to the function does not make sense. For example,

> log(-1)
[1] NA
Warning messages:
 NAs generated in: log(x)
You can assign an object to hold the missing value code.

> na.code <- NA

> na.code
[1] NA

Occasionally you will see S-PLUS return the NULL object. For Example

> names(9)
NULL

You use the NULL object to specify blank row or column labels for a matrix.

The NULL object is simply a placeholder; it is an empty object that has no mode (the mode is defined to be NULL) and contains no data.

There are also empty objects that have modes. S-PLUS prints these out as logical(0), numeric(0), complex(0), and character(0).

We will see specific examples of this object once we start manipulating objects and their attributes.

 Attributes

The attributes of an object provide information on its structure and content.

The mode and length are two implicit attributes of every object. We demonstrate this on state.name, a built-in character vector.

> state.name
 [1] "Alabama" "Alaska" . . .

> mode(state.name)
[1] "character"

> length(state.name)
[1] 50
Objects will have other optional attributes, with the attributes available depending upon the nature of the object.

· For example, we will see that a data frame has a names attribute giving the name of each variable in the data sheet, and a may have a row.names attribute giving the name of each observation.

· For most attributes there is a function with the same name as the attribute which returns the value of the attribute.

> tb.all
 date tbill3m tbill6m tbill1y tbill5y tbill10y tbill30y
 1 950103 5.78 6.37 6.76 7.88 7.85 7.92
 2 950104 5.70 6.29 6.70 7.81 7.84 7.84
 3 950105 5.72 6.32 6.72 7.86 NA 7.88
 4 950106 5.77 6.32 6.81 7.86 NA 7.85
...

> names(tb.all)
[1] "date" "tbill3m" "tbill6m" "tbill1y"
[5] "tbill5y" "tbill10y" "tbill30y"
The function attributes displays all of the attributes of an object.

> attributes(tb.all)
$names:
[1] "date" "tbill3m" "tbill6m" "tbill1y"
[5] "tbill5y" "tbill10y" "tbill30y"

$row.names:
 [1] "1" "2" "3" ...

$class:
[1] "data.frame"

Note that the attributes function does not list the implicit attributes of the data (that is, neither mode nor length is given).

 Vectors

In this section we will create vectors using four different functions. We also discuss the different attributes for vectors and learn how to subscript vectors.

5.1.1 Creating Vectors

The : and seq commands create a sequence of numbers.

> 1:10
[1] 1 2 3 4 5 6 7 8 9 10

> 7:(-3)
[1] 7 6 5 4 3 2 1 0 –1 –2 -3
> seq(1,5,by = 0.5)
[1] 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

The c command combines elements into a vector, or combines vectors.

> c(1,3,5,7,9)
[1] 1 3 5 7 9

> c(1:3,7:9)
[1] 1 2 3 7 8 9

> w <- c("Jan","Feb","Mar","Apr")

> w
[1] "Jan" "Feb" "Mar" "Apr"

> c(T,F,T,T,T,T,F)
[1] T F T T T F

> w <- c(2,5,4,9,3,3,12) < 6

> w
[1] T T T F T T F

The rep command replicates an element or vector.

> rep("a",3)
[1] "a" "a" "a"

> rep(c("a","b"),3)
[1] "a" "b" "a" "b" "a" "b"

> rep(c("a","b"),c(2,3))
[1] "a" "a" "b" "b" "b"
5.1.2 Attributes of a Vector

Every vector has a length and a mode.
> x <- 1:10
> length(x)
[1] 10

> mode(x)
[1] "numeric"
The elements of a vector may also be given names. This may clarify printouts and ease subscripting.

> int.rates <- c(3.4, 2.9, 5.5, 11.7, 4.4)

> int.rates
[1] 3.4 2.9 5.5 11.7 4.4

> names(int.rates)<-c("UK","EUR","US","MLY","JPN")

> int.rates
 UK EUR US MLY JPN
 3.4 2.9 5.5 11.7 4.4
Subscripting Vectors

The syntax for subscripting a vector is

 vec[subscript]
 where vec is a vector and subscript indicates what part of the vector to keep and what part to throw away.

There are five possible forms for subscript:

· Blank. All the values of vec are selected.

· Vector of Positive Integers. Select all elements of vec specified by subscript.

· Vector of Negative Integers. Select all elements of vec except those specified by subscript.

· Vector of Logical Values. Select all elements of vec corresponding to TRUE values in subscript.

In this case, the length of subscript should be the same as the length of vec.

· Vector of Character Strings. Select all elements of vec specified by subscript, based on the names attribute of vec.

Examples Subscripting vectors.

Blank

> int.rates[]
 UK EUR US MLY JPN
 3.4 2.9 5.5 11.7 4.4

Positive Integers

> int.rates[1:3]
 UK EUR US
 3.4 2.9 5.5

> int.rates[c(5,2,2)]
 JPN EUR EUR
 4.4 2.9 2.9

Negative Integers

> int.rates[-(2:3)]
 UK MLY JPN
 3.4 11.7 4.4

Logical Values

> int.rates[c(T,F,F,T,T)]
 UK MLY JPN
 3.4 11.7 4.4

> int.rates[int.rates>5]
 US MLY
 5.5 11.7
Character Strings

> int.rates[c("US","UK","JPN")]
 US UK JPN
 5.5 3.4 4.4

Subsetting one vector based on values of another
> x <-c(2,5,6,4,9,4)
> y <- c("a","b","b","c","a","c")

> x[y== "c"]
[1] 4 4

since y=="c" yields the logical vector F F F T F T.

> x[y != "c"]
[1] 2 5 6 9

The expression != is the comparison operator "not equal to". Thus, the expression y != "c" results in the logical vector T T T F T F.

Matrices

A matrix contains data of a single mode, and may be constructed by combining vectors or by wrapping a vector into a matrix.

5.1.3 Creating Matrices

Vectors may be bound into a matrix as columns with cbind.
> cbind(1:3,c(2,4,6))
 [,1] [,2]
[1,] 1 2
[2,] 2 4
[3,] 3 6

> mat1<-cbind(5:1,c(2,4,6,8,10))
> mat1
 [,1] [,2]
[1,] 5 2
[2,] 4 4
[3,] 3 6
[4,] 2 8
[5,] 1 10

> mat2<-cbind(mat1,seq(from= -5,by=3,length=5))

> mat2
 [,1] [,2] [,3]
[1,] 5 2 -5
[2,] 4 4 -2
[3,] 3 6 1
[4,] 2 8 4
[5,] 1 10 7

Vectors may be bound into a matrix as rows with rbind.
> rbind(1:3,c(2,4,6))
 [,1] [,2] [,3]
[1,] 1 2 3
[2,] 2 4 6

A single vector may be wrapped into a matrix by the matrix command. The nrow and ncol arguments specify the number of rows and columns. The default is to fill the matrix by column.

> matrix(1:9,nrow=3)
 [,1] [,2] [,3]
[1,] 1 4 7
[2,] 2 5 8
[3,] 3 6 9
Specifying byrow=T fills the matrix by row.

> matrix(1:9,nrow=3,byrow=T)
 [,1] [,2] [,3]
[1,] 1 2 3
[2,] 4 5 6
[3,] 7 8 9

> matrix(0,nrow=2,ncol=3)
 [,1] [,2] [,3]
[1,] 0 0 0
[2,] 0 0 0

5.1.4 Attributes of a Matrix

The length of a matrix is the number of elements in the matrix. The mode is the mode of the elements.

> my.mat<-rbind(1:3,c(2,4,6))

> my.mat
 [,1] [,2] [,3]
[1,] 1 2 3
[2,] 2 4 6

> length(my.mat)
[1] 6

> mode(my.mat)
[1] "numeric"

A matrix will also have a dim attribute giving its dimensions.

> dim(my.mat)
[1] 2 3

The rows and columns of a matrix may be given names. These are stored as a list (data object discussed in more detail later) called dimnames.

> dimnames(my.mat)
NULL

> my.rows<-c("A","B")

> my.cols <-c("T1","T2","T3")

> dimnames(my.mat) <- list(my.rows, NULL)

> my.mat
 [,1] [,2] [,3]
A 1 2 3
B 2 4 6

> dimnames(my.mat)<- list(my.rows, my.cols)
 T1 T2 T3
A 1 2 3
B 2 4 6

> dimnames(my.mat)
[[1]]:
[1] "A" "B"
[[2]]:
[1] "T1" "T2" "T3"

Note: The command above is returning the row and column names of my.mat in the form of a list, a data structure which we will discuss in a later section.

Subscripting Matrices

Each dimension of a matrix may be subscripted in the same manner as are vectors. If no subscript is present for a given dimension all values are returned.

Subscripting an element

> my.mat
 T1 T2 T3
A 1 2 3
B 2 4 6

> my.mat[1,2]
[1] 2

Subscripting a row

> my.mat[1,]
 T1 T2 T3
 1 2 3

Subscripting a column

> my.mat[,1]
 A B
 1 2
Logical subscripting

> my.mat[c(T,F),]
 T1 T2 T3
 1 2 3

Subscripting by dimension names

> my.mat["A","T3"]
[1] 3
Data Frames

Data frames are used to store vectors of different modes. Like a matrix, data frames expect all vectors (columns) to be the same length, but unlike matrices each column is permitted to be of a different mode.

Data frames are implemented as lists of vectors, where each vector is of the same length. Unlike lists however, data frames are easy to subscript by row.

The statistical modeling functions such as lm, glm, gam, loess, tree, and nls expect data to be stored in a data frame.

The import data dialog creates data frames to store the data imported.

5.1.5 Creating Data Frames

Use the data.frame function to combine vectors into a data.frame.

> x <- 1:10

> sect <- rep(c("A","B"),c(5,5))
> mysheet <- data.frame(x=x,sect=sect)

> mysheet
 x sect
 1 A
 2 A
 3 A
 4 A
 5 A
 6 B
 7 B
 8 B
 9 B
 10 B

 Attributes of a Data Frame

A data frame is stored as a list, with each column being one component of the list. Hence a data frame has mode "list" and a length which is the number of columns in the data frame/sheet.

> mode(mysheet)
[1] "list"

> length(mysheet)
[1] 2

> length(my.ds)
[1] 2

The names of the data frame are the column names.

> names(mysheet)
[1] "x" "sect"

The row.names of the data frame are the row labels.

> row.names(mysheet)
[1] "1" "2" "3" "4" "5" "6" "7" "8" "9" "10"

Note that data frames are given default row labels if none were specified when the data frame was created or imported.

Subscripting Data Frame

A data frame is can be subscripted like a matrix.

> mysheet
 x sect
 1 1 A
 2 2 A
 3 3 A
 4 4 A
 5 5 A
 6 6 B
 7 7 B
 8 8 B
 9 9 B
10 10 B

> mysheet[1,1]
[1] 1

> mysheet[4:7,]
 x sect
4 4 A
5 5 A
6 6 B
7 7 B

> ftse100data[1:10,"BAA"]
 [1] 535.5 527.5 528.0 531.0 530.0 528.5 526.0
 [8] 536.5 539.0 529.0

> ftse100data[100:110,c("BOOTS","TESCO")]
 BOOTS TESCO
100 763.5 135.50
101 744.5 131.33
102 750.5 133.50
103 761.5 136.17
104 782.0 139.83
105 791.5 143.67
106 774.5 144.33
107 787.5 143.00
108 809.0 144.00
109 814.5 144.50
110 813.0 142.50

With data frames there is another method for accessing portions of a given data frame. Use a single bracket to access columns of a data sheet. The returned object will be a data frame.

> mysheet[1]
 x
 1 1
 2 2
 3 3
 4 4
 5 5
 6 6
 7 7
 8 8
 9 9
10 10

> ftse100data[1:3]
 dates TELEWEST.COMMS. BRIT.SKY.BCAST.
 1 02/14/1997 121.50 656.50
 2 02/17/1997 119.00 650.00
 3 02/18/1997 119.00 633.50
...

Use a double bracket to access a single column from a data sheet. The returned object will be a vector.

> mysheet[[1]]
 [1] 1 2 3 4 5 6 7 8 9 10

A data sheet may also be subscripted using the $. This will return the variable as a vector.

> mysheet$x
 [1] 1 2 3 4 5 6 7 8 9 10

> mysheet$sect
 [1] A A A A A B B B B B

> ftse100data$BP.AMOCO
 [1] 687.5 690.5 686.5 684.0 684.5 683.5 674.5
 [8] 663.5 677.5 685.5 679.5 677.0 687.5 692.5
...

To add another column to a data sheet, use cbind or data.frame.

> mysheet <-
+ data.frame(mysheet,New=seq(1,4,length=10))

> mysheet
 x sect New
 1 1 A 1.000000
 2 2 A 1.333333
 3 3 A 1.666667
 4 4 A 2.000000
 5 5 A 2.333333
 6 6 B 2.666667
 7 7 B 3.000000
 8 8 B 3.333333
 9 9 B 3.666667
10 10 B 4.000000

> cbind(mysheet,Z=rnorm(10))
 x sect New col4 Z
 1 1 A 1.000000 0.0000000 -1.20961239
 2 2 A 1.333333 0.2876821 0.40097701
 3 3 A 1.666667 0.5108256 -0.04057241
 4 4 A 2.000000 0.6931472 -0.31623133
 5 5 A 2.333333 0.8472979 -0.55134896
 6 6 B 2.666667 0.9808293 1.92978809
 7 7 B 3.000000 1.0986123 -1.23914967
 8 8 B 3.333333 1.2039728 -0.01439421
 9 9 B 3.666667 1.2992830 -0.72470231
10 10 B 4.000000 1.3862944 -0.68527644

Alternatively, assign to a column which does not yet exist. (The right-hand side of the assignment must be a vector of the appropriate length.)

> mysheet$col4 <- log(mysheet$New)

> mysheet
 x sect New col4
 1 1 A 1.000000 0.0000000
 2 2 A 1.333333 0.2876821
 3 3 A 1.666667 0.5108256
 4 4 A 2.000000 0.6931472
 5 5 A 2.333333 0.8472979
 6 6 B 2.666667 0.9808293
 7 7 B 3.000000 1.0986123
 8 8 B 3.333333 1.2039728
 9 9 B 3.666667 1.2992830
10 10 B 4.000000 1.3862944
Another way to access columns of a data frame/sheet is with the attach function.

> attach(mysheet)

> x
[1] 1 2 3 4 5 6 7 8 9 10

> sect
[1] A A A A A A B B B B B

Attaching places the data sheet on the search path.

This allows us to use the names of the columns of the data sheet directly, without typing datasheetname$variable. It is a useful technique that we will use periodically in this manual.

There is a built-in data frame called fuel.frame which lists information on cars.

> names(fuel.frame)
[1] "Weight" "Disp." "Mileage" "Fuel" Type"

> Mileage
Error: Object "Mileage" not found
Dumped

> attach(fuel.frame)

> Mileage
Eagle Summit 4 Ford Escort 4 Ford Festiva 4
 33 33 33
Honda Civic 4 Mazda Protégé 4 Mercury Tracer 4
 33 33 37
…

> Mileage[10]
 Subaru Justy 3
 34

> Mileage["Nissan Van 4"]
 Nissan Van 4
 19

> Mileage[Type=="Van"]
Chevrolet Lumina APV V6 Dodge Grand Caravan V6
 18 18
Ford Aerostar V6 Mazda MPV V6 Mitsubishi Wagon 4
 18 19 20
Nissan Axxess 4 Nissan Van 4
 20 19

> detach("fuel.frame")

> Mileage
Error: Object "Mileage" not found
Dumped

> fuel.frame$Mileage[fuel.frame$Type=="Van"]
[1] 18 18 18 19 20 20 19

Lists

A list is an S-PLUS object that is composed of a collection of other S-PLUS objects. For example, a list might be composed of a data frame, a vector of parameter estimates, a vector of residuals and a user created function.

5.1.6 Creating Lists

A list can be created by using the function list. Names of the list components may be specified when constructing the list.

> my.list<-list(Vec=my.vec,Mat=my.mat)

> my.list
 $Vec:
 a b c d e
 1 3 5 7 9

$Mat:
 T1 T2 T3
A 1 2 3
B 2 4 6

Attributes of a List

A list has a length which is the number of components in the list, and a mode of "list".

> length(my.list)
[1] 2

> mode(my.list)
[1] "list"

The components of a list may also have names.

> names(my.list)
[1] "Vec" "Mat"

5.1.7 Subscripting Lists

There are two ways to subscript lists.

Use the $ operator with the name of the component.

> my.list$Vec
 a b c d e
 1 3 5 7 9

Use double square brackets [[]] with either the name of the component or the component number.

> my.list[["Vec"]]
 a b c d e
 1 3 5 7 9
> my.list[[1]]
 a b c d e
 1 3 5 7 9
If you use single brackets [] to subscript a list, the result is a list with the specified components.

> my.list[1]
$Vec:
 a b c d e
 1 3 5 7 9

mode(my.list[1])
[1] "list"

Using double brackets [[]] will return an object with mode of the extracted object.

> mode(my.list[[1]])
[1] "numeric"

Note: Data frames are implemented as lists, and so have a mode of "list".

> mode(mysheet)
[1] "list"

To add to an existing list

> my.list$New <- letters[1:10]
> my.list
$Vec:
 a b c d e
 1 3 5 7 9

$Mat:
 T1 T2 T3
A 1 2 3
B 2 4 6

$New:
 [1] "a" "b" "c" "d" "e" "f" "g" "h" "i" "j"

or

> my.list[[4]] <-matrix(1:8,nrow=2)

> my.list
$Vec:
 a b c d e
 1 3 5 7 9

$Mat:
 T1 T2 T3
A 1 2 3
B 2 4 6

$New:
 [1] "a" "b" "c" "d" "e" "f" "g" "h" "i" "j"

$"":
 [,1] [,2] [,3] [,4]
[1,] 1 3 5 7
[2,] 2 4 6 8

> names(my.list)[4]<-"Column 4"

Dates

Dates are a special kind of vector in S-PLUS. You can create vectors of dates using the function dates. This converts character strings (in various formats to dates objects). The default format is US-style dates in the format MM/DD/YY:

> mydates <- dates(c("5/25/92", "1/3/95", "12/2/01"))

> mydates

[1] 05/25/1992 01/03/1995 12/02/2001
Two-year dates in the range 00-29 are interpreted as years 20xx. For dates in other formats, the format (which specifies the format the dates are privided in) and out.format (for the format in which they should be displayed) arguments must be used. Examples:

> dates("931125", format = "ymd")

[1] 11/25/1993

> dates("931125", format = "ymd", out.format = "d/m/y")

[1] 25/11/93

> dates("14/2/99", format = "d/m/y", out.format = "d/m/y")

[1] 14/02/99
Dates which can’t be converted (because they are in the wrong format, or have illegal day or month values) return NA.

Regardless of the output format of the dates, all dates objects are stored internally as integers (number of days since Jan 1 1960). Some computations on dates are valid, for example subtraction (for the number of days between two dates) and comparison.

S-PLUS has built in time series objects which make use of dates. We will not be covering these in this course (preferring to use a simpler vector-based approach). For information on these objects, consult Chapter 6 of the S-PLUS 2000 Guide to Statistics Volume 2, or consult the on-line help files for its, cts and rts.

5.2 Factors and Ordered Factors

Many types of data are categorical rather than quantitative (e.g. market sector). Factors provide a way to represent such categorical vectors. Ordered Factors are used when the categories have some sort of natural ordering (e.g. Low, Medium, High).

· Factors may be thought of as character vectors with only certain character strings allowed.

· A factor is stored as a vector of integers corresponding to the possible categories. The names of the categories are stored as the levels attribute of the factor.

· Most of the advanced statistical modeling functions (such as lm, aov, glm, gam, loess, and nls) recognize that factors represent categorical variables and treat them appropriately.

· Ordered factors include information on the ordering of the categories. Ordered factors are treated differently than factors by the modeling functions.

Creating Factors

Use the factor function to create a factor.

Use the levels argument to specify the levels.

Use the labels argument if you want different labels for the levels.

> eyes<-
+ factor(c("Green","Green","Blue","Blue","Brown",
+ "Brown","Brown","Blue","Brown"))
> eyes
[1] Green Green Blue Blue Brown Brown Brown Blue [9] Brown

> levels(eyes)
$levels:

[1] "Blue" "Brown" "Green"

> eyes2<-
+ factor(c("Green","Green","Blue","Blue","Brown",
+ "Brown","Brown","Blue","Brown"),

+ levels=c("Blue","Brown","Green"),

+ labels=c("Blue Eyes","Brown Eyes","Green Eyes"))

> eyes2

[1] Green Eyes Green Eyes Blue Eyes Blue Eyes
[5] Brown Eyes Brown Eyes Brown Eyes Blue Eyes
[9] Brown Eyes
> levels(eyes2)

[1] "Blue Eyes" "Brown Eyes" "Green Eyes"

Use the codes function to transform a factor into a numeric vector. The numbers correspond to the levels of the factor (sorted alphabetically).

> codes(eyes)
[1] 3 3 1 1 2 2 2 1 2
Here is an example where integers are used for the initial classification:

> size<-factor(c(2,3,1,1,1,2,3,3),
 + levels=c(1,2,3),
 + labels=c("small", "medium", "large"))
> size
[1] medium large small small small medium large large

> levels(size)
[1] "small" "medium" "large"

5.2.1 Creating Ordered Factors

Use the ordered function to create ordered factors.

The ordering of the categories in the levels attribute specifies the ordering of the levels.

> intensity<-ordered(c("Hi","Med","Lo",

+ "Hi","Hi","Lo"),

+ levels=c("Lo","Med","Hi"))
> intensity

[1] Hi Med Lo Hi Hi Lo

 Lo < Med < Hi

> attributes(intensity)
$levels:
[1] "Lo" "Med" "Hi"

$class:
[1] "ordered" "factor"

> intensity[1] < intensity[2]
[1] F
Class

The class of an object is the inherent nature of the object.

More sophisticated types of objects have an explicit class attribute, and hence their class may be determined using class.
> class(ftse100data)
[1] "data.frame"

The term class used here is not quite the same as that used in Object Oriented languages such as C++. In S-PLUS, you can assign any object a class attribute.

> class(mysheet) <- "my.class"

> class(mysheet)
[1] "my.class"

> attributes(mysheet)
$names:
[1] "x" "sect" "New" "col4"

$row.names:
 [1] "1" "2" "3" "4" "5" "6" "7" "8" "9"
[10] "10"

$class:
[1] "my.class"
Objects without an explicit class attribute include vectors, lists, and matrices. The function data.class will infer the class of an object based on its others attributes. For vectors the mode of the object is returned.
> class(stack.x)
[1] NULL

> stack.x
 Air Flow Water Temp Acid Conc.
 [1,] 80 27 89

 . . .

> data.class(stack.x)
[1] "matrix"
> stack.loss
[1] 42 37 37 28 18 18 19 20 15 14 14 13 11 12 [15] 8 7 8 8 9 15 15

> class(stack.loss)
[1] NULL

> data.class(stack.loss)
[1] "numeric"

The "is. " and "as. " Functions

There are several S functions that will test to see whether an object is of a certain class or change or coerce the class of a given object.

Example Use as.data.frame to coerce a matrix to a data sheet.

> is.data.frame(my.mat)
[1] F
> data.class(my.mat)
[1] "matrix"

> my.ds2 <- as.data.frame(my.mat)

> my.ds2
 T1 T2 T3
A 1 2 3
B 2 4 6

> class(my.ds2)
[1] "data.frame"

> data.class(my.ds2)
[1] "data.sheet"

Example The built-in data set state.region is a factor.

> is.factor(state.region)
[1] T
> state.region
[1] 2 4 4 2 4 4 1 2 2 2 4 4 3 3 3 3 2 2 1 2 1 3 3
[24] 2 3 4 3 4 1 1 4 1 2 3 3 2 4 1 1 2 3 2 2 4 1 2
[47] 4 2 3 4

attr(, "levels"):
[1] "Northeast" "South" "North Central" "West"

> mode(state.region)
[1] "numeric"

> data.class(state.region)
[1] "factor"

> my.region<-as.character(state.region)

> my.region
 [1] "South" "West" "West" "South"
 [5] "West" "West" "Northeast" "South"
 [9] "South" "South" "West" "West"
...

> mode(my.region)
[1] "character"

Other functions of this nature include as.vector, is.vector, as.matrix, is.matrix, as.list and as.factor. See the help files for more details.

