9-22 Functions and Operators

Functions and Operators 9-5

Chapter 9

Functions and Operators

Contents

9-39
Functions and Operators

9.1
Introduction
9-3
9.2
Calling an S-PLUS Function
9-4
9.3
Arithmetic Operators
9-6
9.3.1
Examples
9-8
9.4
Logical Operators
9-10
9.4.1
Examples
9-12
9.5
Operator Precedence
9-13
9.6
Basic operations and common functions
9-14
9.7
Object Orientation: Classes and Methods
9-19
9.7.1
Listing Methods
9-22

Functions and Operators

9.1 Introduction

In programming languages such as C++ and Fortran, routines and programs are written to perform calculations and execute other tasks. The S-PLUS programming language uses functions to perform the synonymous C++ and Fortran activities. We have used many functions in this manual, for tasks ranging from importing data to creating graphs and conducting statistical analyses. In S-PLUS, even simple operators, for example "+"and "-" (arithmetic addition and subtraction) are functions.

In this chapter, we will present some basic arithmetic and logical operations and give examples of some important mathematical and statistical functions.

Calling an S-PLUS Function

Almost all S-PLUS functions have both required and optional arguments.

· Arguments are enclosed in parentheses and separated by commas.

· The help file explains which arguments are required and which are optional.

· Use the args function as a shortcut to remind yourself of the arguments to a function.

· Arguments with an "=" sign have default values and are optional.

Example The mean function takes three arguments: x, trim, and na.rm. The first argument, x, is a required argument; trim and na.rm are optional arguments.

> ?mean
> args(mean)
function(x, trim = 0, na.rm = F)
NULL
In order to invoke a function, you must supply parentheses, even if no arguments are required.

If you just type the name of the function, S-PLUS will print out the definition of the function.

> mean
function(x, trim= 0, na.rm = F)
{

if(na.rm) {

wnas <- which.na(x)

if(length(wnas))

x <- x[- wnas]

}

if(mode(x) == "complex") {

if(trim > 0)

stop("trimming not allowed for
complex data")

return(sum(x)/length(x))

}

x <- as.double(x)

if(trim > 0) {

if(trim >= 0.5)

return(median(x, na.rm = F))

if(!na.rm && length(which.na(x)))

return(NA)

n <- length(x)

i1 <- floor(trim * n) + 1

i2 <- n - i1 + 1

x <- sort(x, unique(c(i1, i2)))[i1:i2]

}

sum(x)/length(x)
Arguments may be supplied by position, by name, or both.

When arguments are supplied by position, the arguments must be entered in exactly the same order as in the function definition. (The ages vector was created in Chapter 5. Use another vector if you skipped that section).

> ages
 [1] 23 24 27 24 23 25 23 22 26 20

> mean(ages)
[1] 23.7
> mean(ages,0.1)
[1] 23.75
When arguments are supplied by name, they may be entered in any order.

· Supply the name, followed by an equal sign, and then the argument value (any valid S-PLUS expression).

· The argument name may be abbreviated to the first few characters, as long as the abbreviation uniquely identifies the argument.

> mean(trim=0.1,x=ages)
[1] 23.75
> mean(tr=0.1,x=ages)
[1] 23.75

 Arithmetic Operators

Table 6.1 displays the built-in arithmetic operators in S-PLUS.

Except for the Unary Minus operator, all operators need two operands, one to the left and one to the right.

· The operands may be single numbers, vectors, or matrices, as long as the operation makes sense.

For example, you can:

· Add two numbers.

· Multiply two vectors element by element.

· Subtract one matrix from another one of the same dimension.

· Add a number to each element of a vector.

· Add a vector to each column of a matrix.

One of the most powerful features of S-PLUS is vector arithmetic.

· Arithmetic is performed element-by-element.

· If the length of one object is less than the length of the other, the shorter one is cyclically replicated to be the same length as the longer one.

Note: S-PLUS informs you that it has performed cyclical replication only when the length of the longer vector is not a multiple of the length of the shorter one.

Matrices are stored column-by-column, and therefore cyclically repeated column-by-column.

Table 6.1 Arithmetic Operators in S-PLUS

Operator
Description
Example

+
Addition
> 3 + 4
[1] 7

-
Subtraction
> 3 - 4
[1] -1

*
Multiplication
> 3 * 4
[1] 12

/
Division
> 3 / 4
[1] 0.75

^
Exponentiation
> 3 ^ 4
[1] 81

-
Unary Minus
> -3 + 4
[1] 1

%/%
Integer Divide
> 7 %/% 2
[1] 3

%%
Modulo
> 7 %% 2
[1] 1

%*%
Matrix
Multiplication
> pow.mat%*% matrix(1:3)
 [,1]
vec1 34
vec2 102

%o%
Outer Product
> (1:3) %o% (4:5)
 [,1] [,2]
[1,] 4 5
[2,] 8 10
[3,] 12 15

:
Sequence
> 1:3
[1] 1 2 3

Examples

Basic Arithmetic

> 25/3
[1] 8.33333

> 25%/%3
[1] 8

> 25%%3
[1] 1
Recall that 25 = 3*8 + 1

Vector Arithmetic

> vec1<-2^(1:3)

> vec1
[1] 2 4 8

> vec2<-3^(1:3)

> vec2
[1] 3 9 27
> vec1 + vec2
[1] 5 13 35

> vec3 <- (1:4)^2
[1] 1 4 9 16
Coordinate (position)-wise multiplication

> vec1 * vec2
[1] 6 36 216

> pow.mat<-rbind(vec1,vec2)

> pow.mat
 [,1] [,2] [,3]
vec1 2 4 8
vec2 3 9 27

Coordinate (position)-wise multiplication

> pow.mat * pow.mat
 [,1] [,2] [,3]
vec1 4 16 64
vec2 9 81 729

Matrix algebra

> t(pow.mat) %*% pow.mat
 [,1] [,2] [,3]
[1,] 13 35 97
[2,] 35 97 275
[3,] 97 275 793

> rep(1,2) %*% pow.mat/2
 [,1] [,2] [,3]
[1,] 2.5 6.5 17.5

Inner Product (also called dot product) of two vectors
> c(1,2,3,4,5)%*%c(-3,0,2,10,-5)
 [,1]
[1,] 18

This is computing 1(-3)+2(0)+3(2)+4(10)+5(-5)
Cyclical Replication

> vec1
[1] 2 4 8
> vec1 + 100
[1] 102 104 108

> vec1 + (100:105)
[1] 102 105 110 105 108 113

> vec1 + c(100,101)
[1] 102 105 198
Warning messages:
Length of longer object is not a
multiple of the length of the
shorter object in: vec1 + c(100,101)

9.2 Logical Operators

Table 6.2 displays the built-in logical operators in S-PLUS.

The first six operators listed are usually called comparison operators.

Except for the Unary Not operator, all operators need two operands, one to the left and one to the right.

· The operands may be single numbers, vectors, or matrices, as long as the operation makes sense.

Just like arithmetic operators, logical operators work element-by-element.

Just like arithmetic operators, logical operators cyclically replicate shorter objects to be the same length as longer objects.

The combination of logical operators with subscripting provides a very powerful method for extracting pertinent data for specific analyses.

There are four functions related to logical operators:

· any Logical sum. Tests to see if any elements are TRUE.

· all Logical product. Tests to see if all elements are TRUE.

· all.equal Tests whether two objects are identical.

· objdiff Displays differences between two objects.

Table 6.2 Logical Operators in S-PLUS
Operator
Description
Example

==
Equals
> vec1
 [1] 2 4 8

> vec1 == 4
[1] F T F

!=
Not Equals
> vec1 != 4
[1] T F T

<
Less Than
> vec1 < 4
[1] T F F

<=
Less Than or Equal
> vec1 <= 4
[1] T T F

>
Greater Than
> vec1 > 4
[1] F F T

>=
Greater Than or Equal
> vec1 >= 4
[1] F T T

&
Elementwise And
> vec2
[1] 3 9 27

> vec1 <= 4 &
+ vec2 < 9
[1] T F F

|
Elementwise Or
> vec1 <= 4 |
+ vec2 < 9
[1] T T F

&&
Control And
> (mode(vec1) ==
+ "numeric") &&
+ (min(vec1) > 0)
[1] T

||
Control Or
> is.data.frame(X) || is.data.sheet(X)

!
Unary Not
> (! (vec1 <= 4 |
+ vec2 < 9))
[1] F F T

Examples

Create a logical vector for values in vector.
> x<-c(2,5,6,4,9,5)

> x==5
[1] F T F F F F T

> x!=5
[1] T F T T T F

> x > 7 | x < 5
[1] T F F T T F
Find the indices where the TRUE's occur.

> x
[1] 2 5 6 4 9 5

Vectorized 1

> (1:length(x))[x==5]
[1] 2 6
Vectorized 2

> seq(along=x)
[1] 1 2 3 4 5 6
> seq(along=x)[x==5]
[1] 2 6

Remove missing values (NA's).

> z <- c(2,5,NA,9,NA,7)

> is.na(z)
[1] F F T F T F

> z[!is.na(z)]
 [1] 2 5 9 7
Operator Precedence

Table 6.3 displays the precedence of mathematical and logical operators in S‑PLUS. Operators at the top of the table have precedence over lower operators. Operators with the same precedence are evaluated from left to right.

Table 6.3 Operator Precedence in S-PLUS

Operator
Explanation

{
Expression delimiter
(Curly Brace)

(
Expression delimiter
(parenthesis)

$
List and data frame extraction

[[[
Subscripts

^
Exponentiation

-
Unary minus

:
Sequence

%*% %/% %%
Matrix multiplication, Integer Division, Modulo

* /
Multiplication and division

+ -
Addition and subtraction

< > <= >= == !=
Logical comparisons

!
Unary not

& && | ||
Logical operators

<<-
Global assignment

<- _ ->
Assignment

 Basic operations and common functions

First, assign the variables x and y to vectors of data.

> x <- c(2,5,6, 4,9,5)
> y <- c(1,5,8,14,2,7)

Sort the entries of x in ascending order.

> sort(x)
[1] 2 4 5 5 6 9

Find the indices of x corresponding to the entries of x in ascending order.

> order(x)
[1] 1 4 2 5 3 6

> y[order(x)]
[1] 1 14 5 7 8 2
The above command is producing

y[1], y[4], y[2], y[5], y[3], y[6]
To see an example of why the order function might be useful, consider the following three commands:

> cbind(x,y)

> cbind(sort(x),y)

> cbind(sort(x),y[order(x)])
What is the difference between the second and third cbind commands?

Find the sum of the entries in a vector.

> sum(x)
[1] 31

Find the cumulative (partial) sums of the entries of a vector.

> cumsum(x)
[1] 2 7 13 17 26 31
In other words, if x= a b c d, then cumsum(x) produces the vector
a a+b a+b+c a+b+c+d.

Find the range of the values in x (minimum and maximum).

> range(x)
[1] 2 9

Vectorized conditional

> set.seed(0) #To set the seed of the random number generator.

> d<-rnorm(10)

> d
[1] 0.0086292430 -0.0382391091 -1.0168024543
[4] -0.1324462528 -0.3603491998 -0.0337469778
[7] -1.8831606111 0.3368386818 -0.0003541437
[10] 1.2066770747
> ifelse(d > 0,sqrt(d),-99)
[1] 0.09289372 -99.00000000 -99.00000000
[4] -99.00000000 -99.00000000 -99.00000000
[7] -99.00000000 0.58037805 -99.00000000
[10] 1.09848854

> ifelse(d > .5 | d < -.5, 1 , 0)
[1] 0 0 1 0 0 0 1 0 0 1

> z
[1] 2 5 NA 9 NA 7

> ifelse(is.na(z), 0, z)
[1] 2 5 0 9 0 7
Some statistical functions

> x
[1] 2 5 6 4 5 9

> mean(x)
[1] 5.166667
> var(x)
[1] 5.366667

> y
[1] 1 5 8 14 2 7

> cor(x,y)
[1] -0.1314149
> t.test(x,mu=5,alternative="greater")
One-sample t-Test

data: x
t = 0.1762, df = 5, p-value = 0.4335
alternative hypothesis: true mean is greater
than 5
95 percent confidence interval:
 3.260933 NA
sample estimates:
 mean of x
 5.166667

> quantile(fuel.frame$Weight)
 0% 25% 50% 75% 100%
 1845 2571.25 2885 3231.25 3855

The normal distribution is an important distribution:

> pnorm(1.645) #Find P(z (1.645) under N(0,1)
[1] 0.9500151

> qnorm(0.95) #Find q such that P(z (q)= .95
[1] 1.644854 #under N(0,1)
> qnorm(.95, 10, 2) #Here, use N(10,2)
[1] 13.28971
See Appendix A, page 8 for a discussion of the other distributions available.

Find the maximum of each column of a matrix.

> apply(stack.x, 2, max)
Air Flow Water Temp Acid Conc.
 80 27 93

Compute the column means of matrix.

> apply(stack.x, 2, mean)
 Air Flow Water Temp Acid Conc.
 60.42857 21.09524 86.28571
Compute the trimmed column means of a matrix.

> apply(stack.x, 2, mean, trim=0.1)
 Air Flow Water Temp Acid Conc.
 59.35294 20.82353 86.76471
Find the mean of each element of a list.

> halibut #first, take a look at the data
$cpue:
1935: 132 143 160 171 145 155 178 179 177 221 195 208 202 195 211 194 (((
 (
$biomass:
1935: 171.1892 179.7142 182.7705 190.0100 199.1243 208.1839 214.2837 (((
> summary(halibut)
 Length Class Mode
 cpue 55 numeric
biomass 55 numeric
Return a list.

> lapply(halibut, mean)
$cpue:
1] 201.9273
$biomass:
1] 236.4963
Return simplified output.

> sapply(halibut, mean)
 cpue biomass
 201.9273 236.4963
Apply a function to different groups of data based on a grouping variable.

> attach(fuel.frame)

> tapply(Mileage, Type, mean)
Compact Large Medium Small Sporty Van
24.13333 20.33333 21.76923 31 26 18.85714

> detach("fuel.frame")

The paste command is useful for labeling purposes.

> paste("variable", 1:5, sep=" ")
[1] "variable 1" "variable 2" "variable 3" "variable 4" "variable 5"

Object Orientation: Classes and Methods

The 1992 version of S introduced a new object-oriented structure for working with model objects. It uses:

· Classes describing the type of object under consideration.

· Methods indicating what to do with the object.

Methods are sets of functions whose behavior will depend upon the type of object under consideration.

· The most commonly used methods are print, plot, and summary.

· Many other methods exist, such as predict, fitted, resid, and coef for model objects.

Methods are implemented using a naming convention. Knowledge of this convention allows the user to find the specific method for a given class of object.

· A generic function gives the name for the overall method, e.g. summary.

· Functions named as methodname.classname give the methods for specific classes of objects, e.g. summary.lm and summary.data.frame.
· A default function gives the actions to perform for objects with no specific method, e.g. summary.default.

Reasons to know about classes and methods:

· The help files for specific methods are more useful than those for the generic methods, e.g. look at help for summary.lm rather than for summary. Similarly, args(summary.lm) is more informative than args(summary).

· Users may easily create their own classes and methods using this naming convention.

Example Summary methods.

The generic summary function:

> summary
function(object, ...)
UseMethod("summary")

summary for a data frame:

> summary.data.frame
function(object, maxsum = 7, ...)
{

nv <- length(object)

nm <- names(object)

z <- vector("list", nv)

nr <- numeric(nv)

....

summary for a linear model:

> summary.lm
function(object, correlation = T)
{

....

}

Default summary method:

> summary.default
function(object, ..., digits = max(options()$digits - 3, 3))
{

if(length(levels(object)))

return(summary.factor(object, ...))
....

}

Examples
Obtain the summary statistics for ages.
> class(ages)
NULL

> summary(ages)
Min. 1st Qu. Median Mean 3rd Qu. Max.
 20 23 23.5 23.7 24.75 27

Obtain the summary statistics for tennis (recall that we read in this data in Chapter 5 using read.table).
> class(tennis)
[1] "data.frame"

> summary(tennis)
First.Name Age Sex Rank
 Steffi:1 Min.:20.00 F:5 Min.:1
 Sergi:1 1st Qu.:23.00 M:5 1st Qu.:2
 Pete:1 Median:23.50 Median:3
 Mary:1 Mean:23.70 Mean:3
 Jana:1 3rd Qu.:24.75 3rd Qu.:4
 Goran:1 Max.:27.00 Max.:5
 (Other):4

 Slams Won Lost
 Min.:0.0 Min.:43.00 Min.: 6.0
 1st Qu.:0.0 1st Qu.:48.75 1st Qu.:11.0
 Median:1.0 Median:56.50 Median:14.0
 Mean:0.8 Mean:57.60 Mean:14.8
 3rd Qu.:1.0 3rd Qu.:64.50 3rd Qu.:17.5
 Max.:2.0 Max.:74.00 Max.:26.0

 Earnings Citizen
 Min.: 768600 Croatia:1
 1st Qu.:1501000 Czech Republic:1
 Median:1986000 France:1
 Mean:2029000 Germany:2
 3rd Qu.:2723000 Spain:3
 Max.:3608000 US:2
> summary.data.frame(tennis)
 First.Name Age Sex Rank
 Steffi:1 Min.:20.00 F:5 Min.:1
 Sergi:1 1st Qu.:23.00 M:5 1st Qu.:2
 Pete:1 Median:23.50 Median:3
 Mary:1 Mean:23.70 Mean:3
 Jana:1 3rd Qu.:24.75 3rd Qu.:4
 Goran:1 Max.:27.00 Max.:5
 (Other):4

9.2.1 Listing Methods

The easiest way to determine whether a method exists for a particular class is to simply type the name of the specific method function and see if a function is found.

The methods function may be used to list all the specific methods for a particular generic method, or all the methods for a particular class:

> methods(summary)
 SHOME\splus_Functio SHOME\splus_Functio
 "summary.aov" "summary.aovlist"
 SHOME\splus_Functio SHOME\splus_Functio
 "summary.coxph" "summary.cts"
....

> methods(class=factor)
 SHOME\stat_Functio SHOME\stat_Functio
 "Math.factor" "Ops.factor"
 SHOME\stat_Functio SHOME\splus_Functio
 "Summary.factor" "[.factor"

....

