7-2 Statistical Models

Chapter 4: Statistical Models 4-3

Chapter 7

Modelling and Simulation

Contents

7-37
Overview

7.1
Factor Modelling
7-4
7.1.1
A beta for Yahoo
7-4
7.2
Other regression-type analyses
7-10
7.3
Decomposing market risk with Principal Components Analysis
7-12
7.3.1
Decomposing FX market risk
7-12
7.4
Monte-Carlo Simulation
7-19
7.4.1
Correlated Monte-Carlo
7-20
7.5
Other analysis functions
7-22

Overview

S-PLUS has a huge array of modelling, analysis and simulation functions. It is not our goal in this course to cover all of them, but rather to concentrate on a couple of examples in order to convey the flavour of analysis in S-PLUS. Fortunately, the modelling functions in S-PLUS all follow a similar kind of interface, so techniques learned for one type of analysis are readily transferred to other kinds.

The general principle in S-PLUS is one of a model object. Each type of model is implemented by a function in the language (for example lm, for linear modelling). Each such function takes a number of arguments which specify the model and the options associated with it. Unlike other software packages, no textual output is produced; instead you assign the result of the modelling function to an object. This object contains all of the information related to the estimated model, for example parameter estimates, residuals, standard errors, etc. This object is typically a list with components corresponding to each piece of information. You can extract the required components of the list for display, or use various extractor functions (e.g. coef, summary, loadings) to gain access.

In this chapter we present a couple of examples in detail. Commands used in this chapter can be found in the script file chapter7.ssc. In the spirit of the philosophy that the best learning is doing, further types of analysis are covered in the Examples document, and we suggest you choose an example which suits your interest during the hands-on session.

Factor Modelling

We can use the Capital Asset Pricing Model (CAPM) to assess the risk of a certain stock compared to the risk of the market. The basic model is

Yt = (+ (Xt + (t
where Y is the return to the stock and X is the return to the index. The parameter (measures the excess return of the stock over the market; in efficient markets this will be near zero. The parameter (measures how the stock responds to changes in the index; a beta greater than one indicates larger changes than the index (a high-risk but possibly high-return investment); a beta lower than 1 indicates a safe investment relative to the market.

The parameters of the CAPM may be estimated using Ordinary Least Squares (OLS). There are a number of ways to do this in S-PLUS, but the simplest is to use the function lm (for linear modelling). (Using lm also has the advantage that it generalises to other kinds of linear models such as multi-factor models.)

7.1.1 A beta for Yahoo

For this example, we will use the data set yhoo.sdd. It contains monthly values for the Yahoo (a successful Internet start-up) stock price and the S&P500 index, from September 1997 to May 1999. Before we begin, we need to calculate returns log(Vt/Vt-1), where V is the stock price or index value. It’s useful to define a utility function rets to calculate this for us:

rets <- function(x) {

c(NA, diff(log(x)))

}
(The definition for this function can be found in the file utils.ssc.) The function log is a vector function, and diff takes pairwise differences of a vector, so this function returns a vector as its result. Note that this function is careful to return a result vector as long as its argument (by prepending the missing value code NA), since there are one less returns differences than values. This means we can add vectors calculated with this function to an exising data frame:

> yhoo$yahoo.ret <- rets(yhoo$yahoo)

> yhoo$spx.ret <- rets(yhoo$spx)

The resulting data frame yhoo is shown below.

[image: image1.png]yahaoiret | spuret

T I | |

12/05/1567 5394 92391 017 001
19/05/1997 5138 98051 005 003
26/0/1997 s0.25 94522 0.0z 001
03/10/1997 s5.25 o65.03) 0.9 0.02

nAnnaa Al aeaaR EX o

To calculate summary statistics from the data frame, use the function summary.
> summary(yhoo)

 Date yahoo spx

 Min.:13760 Min.: 43.84 Min.: 914.6

 1st Qu.:13920 1st Qu.: 65.25 1st Qu.: 983.8

 Median:14070 Median:114.80 Median:1099.0

 Mean:14070 Mean:128.00 Mean:1102.0

 3rd Qu.:14220 3rd Qu.:172.90 3rd Qu.:1188.0

 Max.:14380 Max.:354.20 Max.:1357.0

 yahoo.ret spx.ret

 Min.:-0.82770 Min.:-0.053240

 1st Qu.:-0.03651 1st Qu.:-0.012860

 Median: 0.03201 Median: 0.004829

 Mean: 0.01413 Mean: 0.004143

 3rd Qu.: 0.09503 3rd Qu.: 0.023540

 Max.: 0.37180 Max.: 0.070620

 NA's: 1.00000 NA's: 1.000000

Other summary statistics including skewness and kurtosis estimates are available from the menuDescribe function. (This is the function which gets called when you use the Statistics ► Data Summaries ► Summary Statistics menu; see its help page for more details.)
> menuDescribe(yhoo[, -1], skew = T, kurt = T)

*** Summary Statistics for data in: yhoo[, -1] ***

 yahoo spx yahoo.ret spx.ret

 Min: 43.843750 914.6199951 -0.82771281 -0.053235158

 1st Qu.: 65.250000 983.7899780 -0.03650522 -0.012861565

 Mean: 128.048104 1102.3630337 0.01413262 0.004143400

 Median: 114.750000 1099.1600342 0.03201150 0.004828569

 3rd Qu.: 172.875000 1188.0300293 0.09502645 0.023535586

 Max: 354.250000 1356.8499756 0.37175455 0.070618979

 Total N: 89.000000 89.0000000 89.00000000 89.000000000

 NA's : 0.000000 0.0000000 1.00000000 1.000000000

Std Dev.: 72.295109 125.4432391 0.15196867 0.024153271

Skewness: 1.211152 0.3237742 2.89439019 0.159410067

Kurtosis: 1.484533 -0.9231119 14.79518849 -0.107360232
Tip: Remember, the output from summary and menuDescribe is not simply text, it is an object whose value is being printed automatically. You can assign and extract from this object as with any other. For example, the value of menuDescribe is just a matrix (with descriptive row and column names), which allows us to extract just the kurtosis statistic for the Yahoo returns:

> sumstats <- menuDescribe(yhoo[, -1], skew = T,

+ kurt = T, print.p = F)

> data.class(sumstats)

[1] "matrix"

> sumstats["Kurtosis:", "yahoo.ret"]

[1] 14.79519

As well as calculating summary statistics, plotting the data is always a good idea to check for integrity. The following sequence of statements creates four plots: a time series plot of Yahoo prices, a time series plot of S&P500 values, a scatterplot of the index and equity returns, and a histogram of the Yahoo returns, all on a single page.

> par(mfrow = c(2, 2))

> plot(yhoo$Date, yhoo$spx, type = "l")

> plot(yhoo$Date, yhoo$yahoo, type = "l")

> plot(yhoo$spx.ret, yhoo$yahoo.ret)

> hist(yhoo$yahoo.ret)

> par(mfrow = c(1, 1))

[image: image2.wmf]yhoo$Date

yhoo$spx

900

1000

1100

1200

1300

09/05/1997

03/05/1998

09/05/1998

03/05/1999

yhoo$Date

yhoo$yahoo

50

100

200

300

09/05/1997

03/05/1998

09/05/1998

03/05/1999

yhoo$spx.ret

yhoo$yahoo.ret

-0.04

-0.02

0.0

0.02

0.04

0.06

-0.8

-0.4

0.0

0.4

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0

10

20

30

40

50

yhoo$yahoo.ret

Notice the two large negative Yahoo returns in the scatterplot and the histogram; these are likely to be highly influential in our analysis.

Satisfied that the data are in good shape, we now estimate alpha and beta under the CAPM using the function lm:

> yahoo.capm <- lm(yahoo.ret ~ spx.ret, data=yhoo,
+ na.action=na.omit)

The first argument is a model formula. The tilde (~) separates the dependent variable on the left hand side from the independent (explanatory, exogenous) variable on the right hand side. The intercept term (alpha) is implicit.

The second argument is names a data frame, in which the variables mentioned in the model formula is to be found.

The third argument instructs S-PLUS to ignore the missing values (NAs) in the data. By default, S-PLUS will signal an error if any missing values are found in any of the variables in the model formula. Tip: this feature can be disabled by executing options(na.action=na.omit) at the start of the session.

The result of the lm function has been assigned to the object yahoo.capm. To display the parameter estimates, print out the object.

> yahoo.capm
Call:

lm(formula = yahoo.ret ~ spx.ret, data = yhoo, na.action =

na.omit)

Coefficients:

 (Intercept) spx.ret

 0.002740568 2.749444

Degrees of freedom: 88 total; 86 residual

Dropped 1 cases due to missing values

Residual standard error: 0.1374835
Therefore the estimate of alpha is 0.00274, and the beta value is 2.749. Again, these values can be extracted direct from the object. A utility function coef is provided for the purpose of extracting coefficient estimates from model objects as a named vector:

> alphabeta <- coef(yahoo.capm)

> alphabeta

 (Intercept) spx.ret

 0.002740568 2.749444

A more detailed description of the model fit, including standard errors and t-values for the estimates, may be obtained using summary:

> summary(yahoo.capm)

Call: lm(formula = yahoo.ret ~ spx.ret, data = yhoo, na.action = na.omit)

Residuals:

 Min 1Q Median 3Q Max

 -0.8098 -0.04144 0.002368 0.06295 0.2683

Coefficients:

 Value Std. Error t value Pr(>|t|)

(Intercept) 0.0027 0.0149 0.1843 0.8542

 spx.ret 2.7494 0.6103 4.5054 0.0000

Residual standard error: 0.1375 on 86 degrees of freedom

Multiple R-Squared: 0.191

F-statistic: 20.3 on 1 and 86 degrees of freedom, the p-value is 0.00002074

1 observations deleted due to missing values

Correlation of Coefficients:

 (Intercept)

spx.ret -0.17

We can see from this that the value of alpha is not significantly different from zero.

Finally, diagnostic plots based on the model can be produced using the plot function:

> par(mfrow = c(3, 2))

> plot(yahoo.capm)

> par(mfrow = c(1, 1))

[image: image3.wmf]Fitted : spx.ret

Residuals

-0.1

0.0

0.1

0.2

-0.8

-0.4

0.0

70

48

75

fits

sqrt(abs(Residuals))

-0.1

0.0

0.1

0.2

0.0

0.4

0.8

70

48

75

Fitted : spx.ret

yahoo.ret

-0.1

0.0

0.1

0.2

-0.8

-0.2

0.2

Quantiles of Standard Normal

Residuals

-2

-1

0

1

2

-0.8

-0.4

0.0

70

48

75

Fitted Values

0.0

0.2

0.4

0.6

0.8

1.0

-0.8

-0.4

0.0

Residuals

0.0

0.2

0.4

0.6

0.8

1.0

-0.8

-0.4

0.0

f-value

yahoo.ret

Index

Cook's Distance

0

20

40

60

80

0.0

0.1

0.2

0.3

70

75

48

The main plots of interest are the top-left (residuals against fitted values, a visual test of heteroskedascticity), the middle right (QQ plot of residuals, a visual test of Normality) and the bottom left (Cook’s distance, a test of influential points). The Cook’s Distance plot in particular suggests that points 48 and 75 are extremely influential, in the sense that if they were removed the estimates of alpha and/or beta would change significantly. It’s an interesting exercise to recalculate alpha and beta with these points deleted, or using one of S-PLUS’s robust regression methods such as lmRobMM.

Other regression-type analyses

S-PLUS provides a wide array of statistical modeling techniques, including the following regression methods.

Table 4.1 Regression Methods in S-PLUS
Function
Explanation

aov
ANOVA

gam
Generalized additive models

glm
Generalized linear models

gls
Generalized least squares

gnls
Generalized non-linear least squares

lm
Linear models

lme
Linear mixed effects

loess
Local regression models

nlme
Non-linear mixed effects

nls
Non-linear models

lmRobMM
Robust MM regression

ms
Minimum sums

tree
Tree-based models

These techniques share a common framework and a common approach to modeling. Other modeling functions such as the suite of built-in survival analysis techniques utilize the same approach.

These functions all accept a formula as an argument. The general form of the formula is Response ~ Predictor (exception: the ms function has no left-hand side in the formula; see the Help file for details).

In addition to a formula, you may also specify a data argument. The data argument should be a data frame or data sheet which contains the variables listed in the formula. With this argument, you then do not need to use the attach function.

Example

> lmRobMM(yahoo.ret ~ spx.ret, data = yhoo)

Table 4.2 A Summary of Formula Syntax

Expression
Meaning

A ~ B
A is modeled by B

A + B
Include both A and B in the model

A - B
Include all of A except what is in B in the model

A:B
The interaction between A and B

A*B
A + B + A:B

B%in%A
B is nested within A

A/B
A + B%in%A

A^m
All terms in A crossed to order m

I
As Is operator: protects the original meaning of the S-PLUS syntax. For example A/B has a special meaning when used in a modeling formula (see above). Use I(A/B) for "A divided by B"

The book Statistical Models in S, edited by Chambers and Hastie, is a good reference for an explanation of the syntax above.

Decomposing market risk with Principal Components Analysis

All real data are correlated to some degree, and when managing portfolios of assets it’s important to take this correlation into account when estimating risk. Principal Components Analysis is a technique that decomposes the covariance of a number of variables into independent linear combinations, ranked from most variable (i.e. most risky) to least risky. It often turns out that for a large portfolio, just a few principal components can explain a large amount of the variation. Put another way, a small number of variables transformed by principal components can nearly replicate the covariance structure of a large number of variables. This fact can often be useful when dealing with large, nearly singular covariance matrices (eigen-squashing).

7.1.2 Decomposing FX market risk

In this example, we will use the data set fxdata.sdd. The data frame fxrets contains daily returns of USD exchange rates for AUD, BEF, CAD, CHF, DEM, GBP, FFR, ITL, JPY and ESB, as shown below.

[image: image10.png]-0.0019)
.00
0.0007]
~0.0008]
0.0030)
-0.0003]
-0.0026]
0.0003]

o01211 [11/12/195)

01212 | 12/12/1950)
501213 | 13/12/1990)
501214 | 14/12/1990)
01217 | 17/12/1990)
501218 | 18/12/1990)
501219 | 15/12/1990)
501220 | 20/12/1990)
501221 | 21/12/1990) -0.0003
901224 | 24/12/1990) 0.0002

Volatilities for each of the currency returns may be obtained by calculating (250 * stdev(X) for each currency X. This is easily done using the function apply:

> apply(fxrets[, -1], 2, function(x) sqrt(250 * var(x)))
 AUD BEF CAD CHF DEM

 0.07759859 0.1202415 0.04633698 0.1335485 0.1192981

 GBP FFR ITL JPY ESB

 0.1119268 0.1169809 0.1346044 0.09803653 0.1237668

Here, function(x) sqrt(250 * var(x)) is an anonymous function which is used to calculate a volatility from every column (2) of the data frame with the first column removed.

The correlation matrix is easily calculated from the returns with the function cor:

> cur.C <- cor(fxrets[, -1])

> round(cur.C, digits = 3)
 AUD BEF CAD CHF DEM GBP FFR ITL JPY ESB

AUD 1.000 0.032 0.215 0.012 0.021 0.083 0.026 0.092 -0.048 0.023

BEF 0.032 1.000 0.034 0.788 0.885 0.742 0.887 0.687 0.463 0.788

CAD 0.215 0.034 1.000 0.027 0.018 0.076 0.009 0.027 -0.038 0.044

CHF 0.012 0.788 0.027 1.000 0.843 0.722 0.801 0.599 0.479 0.701

DEM 0.021 0.885 0.018 0.843 1.000 0.805 0.920 0.701 0.506 0.780

GBP 0.083 0.742 0.076 0.722 0.805 1.000 0.788 0.690 0.435 0.720

FFR 0.026 0.887 0.009 0.801 0.920 0.788 1.000 0.750 0.482 0.821

ITL 0.092 0.687 0.027 0.599 0.701 0.690 0.750 1.000 0.378 0.714

JPY -0.048 0.463 -0.038 0.479 0.506 0.435 0.482 0.378 1.000 0.401

ESB 0.023 0.788 0.044 0.701 0.780 0.720 0.821 0.714 0.401 1.000

Tip: cor (and its companion function var which calculates the covariance matrix) will fail with an error message if there are any missing values in the input matrix unless the optional argument na.method=”omit” is given. This will delete any row where there is a missing value in any column before computing the correlation or covariance matrix. An alternative is to use na.method=”available” which will use (for example) every day’s returns when DEM and GBP were both available to estimate the DEM/GBP correlation. This can provide for a more efficient estimate of covariance when there is a large amount of missing values in some variables, but in rare instances can lead to a singular correlation matrix.

By looking at the correlation matrix, we can pick out highly correlated currencies (e.g. FFR/DEM). A visual form of the correlation matrix, a pairwise scatterplot matrix provides an eyeball method for picking out such relationships.

> pairs(fxrets[, -1])
[image: image4.emf]AUD

-0.02

0.02

-0.03

0.0

0.03

-0.03

0.0

0.03

-0.10

0.0

-0.04

0.02

-0.03

0.01

-0.02

BEF

CAD

-0.010

-0.03

0.02

CHF

DEM

-0.03

0.02

-0.03

0.02

GBP

FFR

-0.04

0.02

-0.10

0.0

ITL

JPY

-0.02

-0.03

0.0

-0.04

0.04

-0.010

0.010

-0.03

0.0

0.03

-0.04

0.0

-0.02

0.02

ESB

AUD

-0.020.02 -0.030.00.03 -0.030.00.03 -0.10 0.0 -0.040.02

-0.03

0.01

-0.02

BEF

CAD

-0.010

-0.03

0.02

CHF

DEM

-0.03

0.02

-0.03

0.02

GBP

FFR

-0.04

0.02

-0.10

0.0

ITL

JPY

-0.02

-0.03 0.0

-0.04

0.04

-0.010 0.010 -0.030.00.03 -0.040.0 -0.020.02

ESB

Each panel in the scatterplot matrix is a pairwise scatterplot between two curreny returns (look along the row/column to the diagonal to find which ones). Hightly-correlated currencies will have a tightly-banded linear scatterplot, whereas relatively uncorrelated currencies have a diffuse scatterplot. This plot also highlights an unusually large negative return in the ITL series: a possible data error?

The principal components of a matrix or data frame are computed with the function princomp.

> fxrets.pc <- princomp(fxrets[, -1])

> fxrets.pc

Standard deviations:

 Comp. 1 Comp. 2 Comp. 3 Comp. 4 Comp. 5

 0.01867868 0.005861479 0.005130799 0.004889036 0.004063436

 Comp. 6 Comp. 7 Comp. 8 Comp. 9 Comp. 10

 0.003777809 0.003580075 0.002824577 0.002528328 0.001977114

The number of variables is 10 and the number of observations is 1084

Component names:

"sdev" "loadings" "correlations" "scores" "center" "scale"

"n.obs" "call" "factor.sdev" "coef"

Call:

princomp(x = fxrets[, -1])

The function returns a list (of class ”princomp”) which contains the loadings (linear functions of the variables), scores (the principal components, i.e. the transformed variables) and the standard deviation (risk) of each of the principal components. (There are other elements as well; see the documentation of princomp.object for details.) There are 10 variables here, and therefore 10 principal components. princomp ranks the principal components by their variability, from most variable (i.e. most variation explained) to least. Since the principal components are independent by construction, the sum of their variances must equal the variation of the original data. The summary function shows the cumulative proportion of variation explained by each principal component, and the function screeplot shows a graphical display of this.

> summary(fxrets.pc)

Importance of components:

 Comp. 1 Comp. 2 Comp. 3

 Standard deviation 0.01867868 0.005861479 0.005130799

Proportion of Variance 0.70432544 0.069357846 0.053143627

 Cumulative Proportion 0.70432544 0.773683281 0.826826908

 Comp. 4 Comp. 5 Comp. 6

 Standard deviation 0.004889036 0.004063436 0.003777809

Proportion of Variance 0.048253366 0.033332507 0.028811186

 Cumulative Proportion 0.875080274 0.908412780 0.937223966

 Comp. 7 Comp. 8 Comp. 9

 Standard deviation 0.003580075 0.002824577 0.002528328

Proportion of Variance 0.025874107 0.016106005 0.012904697

 Cumulative Proportion 0.963098073 0.979204078 0.992108775

 Comp. 10

 Standard deviation 0.001977114

Proportion of Variance 0.007891225

 Cumulative Proportion 1.000000000

> screeplot(fxrets.pc)

[image: image5.wmf]Comp. 1

Comp. 2

Comp. 3

Comp. 4

Comp. 5

Comp. 6

Comp. 7

Comp. 8

Comp. 9

Comp. 10

0.0

0.0001

0.0002

0.0003

fxrets.pc

Variances

0.704

0.774

0.827

0.875

0.908

0.937

0.963

0.979

0.992

1

From this plot we see that the first PC explains over 70% of the variation in the original data, and that just five principal components can be used to explain over 90% of the variation. We can see the linear combination that makes up each principal component with the function loadings:

> loadings(fxrets.pc)

 Comp. 1 Comp. 2 Comp. 3 Comp. 4 Comp. 5

AUD 0.326 0.129 -0.885 0.190

BEF 0.375 0.171 0.220

CAD -0.165

CHF 0.396 -0.388 0.319 -0.140 -0.464

DEM 0.382 -0.146 0.136

GBP 0.327 -0.148 -0.198

FFR 0.376 0.103

ITL 0.374 0.649 -0.457 0.123 -0.387

JPY 0.181 -0.503 -0.780 -0.264 0.180

ESB 0.368 0.180 0.238 0.681

 Comp. 6 Comp. 7 Comp. 8 Comp. 9 Comp. 10

AUD 0.151 0.185

BEF 0.190 -0.508 -0.248 -0.647

CAD -0.929 0.289

CHF 0.308 0.493

DEM -0.314 0.453 0.706

GBP -0.884 -0.190

FFR -0.310 0.143 0.496 -0.687

ITL 0.236

JPY

ESB 0.541

From this we see that the first principal component is a near-uniformly weighted average of all the currencies, except AUD and CAD. (Small loadings are by default printed as blanks, to aid interpretability.) The smallest component of variation (PC 10) is essentially the difference between DEM and FFR (which track each other closely in practice). A graphic form of the loadings can be produced with the function plot applied to the loadings object:

> plot(loadings(fxrets.pc), nbars = 10, var = 1:5)

[image: image6.wmf]CHF

DEM

FFR

BEF

ITL

ESB

GBP

JPY

AUD

CAD

0.0

0.2

0.4

Comp. 1

ITL

JPY

CHF

AUD

ESB

DEM

BEF

GBP

CAD

FFR

-0.4

0.2

Comp. 2

JPY

ITL

CHF

BEF

DEM

AUD

FFR

ESB

CAD

GBP

-0.8

0.0

Comp. 3

AUD

JPY

ESB

CAD

GBP

CHF

ITL

FFR

BEF

DEM

-0.8

0.0

Comp. 4

ESB

CHF

ITL

BEF

GBP

AUD

JPY

FFR

CAD

DEM

-0.4

0.2

Comp. 5

Here we have used the var argument to just plot the first five principal components, and the bars argument to show the loadings for all variables. See the documentation for plot.loadings for further options.

Another way to visualise such relationships is with once of S-PLUS’s many clustering methods. For example, we could use hierarchical clustering (function hclust) with 1-correlation as the distance measure. The output of hlclust can be printed as a tree with plclust.

> fxdist <- 1 - cur.C

> fxclust <- hclust(fxdist)

> plclust(fxclust, labels = dimnames(cur.C)[[1]],

ylab = "1-correlation", hang = -1)

[image: image7.wmf]AUD

BEF

CAD

CHF

DEM

GBP

FFR

ITL

JPY

ESB

0.0

0.2

0.4

0.6

0.8

1.0

1-correlation

Branches lower down on the tree link currencies (or clusters of currencies) which are correlated to a higher degree. The first cluster (highest correlation) is DEM/FRF, and AUD and CAD form a separate cluster (with an internal correlation of about 0.2).

Monte-Carlo Simulation

S-PLUS provides facilities for simulating from a huge variety of univariate distributions, see Table A-6 in Appendix A for a complete list. Like all software-generated random numbers, the “random” numbers generated by S-PLUS in fact come from a pseudo-random sequence based on a random seed. Appendix B gives details of setting the random seed, to allow you to reproduce simulations (e.g. for testing).

The random number generation functions all have the form rdist where dist is a short code for a distribution. For example, rnorm generates realisations from a Normal distribution (N(0,1) by default).

> Z <- rnorm(10)

> Z
 [1] -0.55741519 0.82282613 -1.72415607 -0.34738434

 [5] 1.43421574 0.11200219 1.53670669 -0.12429159

 [9] 0.48870118 -0.03387218

> Z2 <- rnorm(10000, mean = 0.98, sd = 1.27)
> hist(Z2)

[image: image8.wmf]-4

-2

0

2

4

6

0

500

1000

1500

Z2

7.1.3 Correlated Monte-Carlo

The function rmvnorm can be used to generate correlated realisations (from a multivariate Normal distribution). This is a useful basis for simulating correlated series with a given covariance matrix.

> fxmeans <- apply(fxrets[, -1], 2, mean)

> fxmeans

 AUD BEF CAD CHF

 -0.00005068649 0.00005194758 -0.0001784708 0.00007334327

 DEM GBP FFR ITL

 0.00004552604 -0.0001806722 9.62149e-006 -0.0003952772

 JPY ESB

 0.0003588495 -0.0002885336

> fxcov <- var(fxrets[, -1])

> sim100 <- rmvnorm(100, mean = fxmeans, cov = fxcov)

Given the simulated correlated returns, we can then convert them to a price series for plotting. Since the t’th return is Rt=log(Pt/Pt-1), it’s easy to show that the price series can be back-transformed as Pt=P0*exp((tRt), where P0 is the initial price. This can neatly (and efficiently) be coded in S-PLUS using the function cumsum which returns the N partial sums of a vector of length N. Here we plot the 10 simulated price paths, scaled to begin at 1:

> sim100.price <- apply(sim100, 2, function(x)

+ exp(cumsum(c(0, x))))
> tsplot(sim100.price, lty = 1, col = 2:6)

[image: image9.wmf]0

20

40

60

80

100

0.95

1.00

1.05

1.10

1.15

7.2 Other analysis functions

We have only scratched the surface here of the analysis functions available in S-PLUS. Some others which have application in financial analysis are listed below. Some of these are covered in the Examples documents, and all have on-line documentation which you are encouraged to consult.

 Table 4.3 Other analysis functions in S-PLUS
Function
Explanation

ar
Autoregressive models

arima.mle
AR/MA/ARIMA models

arima.sim
Simulate ARIMA models

arima.fracdiff
Fractionally differenced ARIMA

acf
Serial autocorrelation

filter
Time series filtering

factanal
Factor analysis

garch1
mgarch1
ARCH/GARCH/PGARCH/EGARCH/TGARCH models (univariate and multivariate)

bootstrap
Bootstrap simulation

solveQP2
large-scale quadratic programming

spectrum
spectrum of a time series

Notes:

1. Requires optional GARCH module

2. Requires optional NUOPT module

_1004293010.bin

_1004300009.bin

_1004302595.bin

_1004303902.bin

_1004300536.bin

_1004299358.bin

_1004288172.bin

