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Stochastic (Random) Pro

{oN Yo, Y Y, b = {2
sequence of random variables indexed by time

Observed time series of length T

M=y Yo=v,....Yr =yr} = {u}in

p(z,y) = Pr(X = z,Y = y) = values in table

e.g., p(0,0) =Pr(X =0,Y =0)= 1/8
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Stationary Processes

o Intuition: {Y;} is stationary if all aspects of its behavior are
unchanged by shifts in time

e A stochastic process {Y;}{2, is strictly stationary if, for any given
finite integer r and for any set of subscripts t1,to, ..., %, the joint
distribution of

(Y;ﬁlyy;fm" . 7}/tr)

depends only on ¢ — t,to — t,...,t, — t but not on t.
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Remarks

@ For example, the distribution of (Y7,Y5) is the same as the
distribution of (Ylg, Y16).

@ For a strictly stationary process, Y; has the same mean, variance
(moments) for all ¢.

@ Any function/transformation g(-) of a strictly stationary process,
{g(Y;)} is also strictly stationary. e.g., if {Y;} is strictly then {Y;?}
is strictly stationary.
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e E[Y] = p forall ¢
o var(Y;) = o2 for all ¢

e cov(Y;, Y;_j) = v, depends on j and not on ¢

Note 1: cov(Y:, Yi—j) = v is called the j-lag autocovariance and
measures the direction of linear time dependence

Note 2: A stationary process is covariance stationary if var(Y;) < oo
and cov(Yy, Yi—;) < o0
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Autocorrelations

Y Y_. .
corr(Ys, Yi_;) = p; = cov(Ye,Yij)

\/var(}/})var(Yt,j) o

Note 1: corr(Y;, Y;—;) = p; is called the j-lag autocorrelation and
measures the direction and strength of linear time dependence

Note 2: By stationarity var(Y;) = var(Y;—;) = o2

Autocorrelation Function (ACF): Plot of p; against j
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Example

Example: Gaussian White Noise Process
Y; ~iid N(0,0?) or Y; ~ GWN(0,0?)
E[Y;] =0, var(Y;) = o*
Y; independent of Y for ¢t # s
= cov(Yy,Yi—s) =0 for t # s
Note: “iid” = “independent and identically distributed”.

Here, {Y;} represents random draws from the same N (0, 0?)
distribution.
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Example

Example: Independent White Noise Process
Y; ~iid (0,0%) or Y; ~ IWN(0,0?)
E[Y;] =0, var(Y;) = o*

Y; independent of Y for ¢t # s

Here, {Y;} represents random draws from the same distribution.
However, we don’t specify exactly what the distribution is - only that
it has mean zero and variance 2. For example, Y; could be 7id
Student’s t with variance equal to o2. This is like GWN but with
fatter tails (i.e., more extreme observations).
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Example

Example: Weak White Noise Process
Y; ~ WN(0,0%)
EY}) =0, var(Vs) =0
cov(Yy, Ys) =0fort #s

Here, {Y;} represents an uncorrelated stochastic process with mean
zero and variance o2. Recall, the uncorrelated assumption does not
imply independence. Hence, Y; and Y; can exhibit non-linear
dependence (e.g. Y;? can be correlated with Y2).
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Nonstationary Proc

Definition: A nonstationary stochastic process is a stochastic process
that is not covariance stationary.

Note: A non-stationary process violates one or more of the properties
of covariance stationarity.

Example: Deterministically trending process
Y, = Bo+ Bit + &1, e ~ WN(0,02)
E[Y:] = Bo + pit depends on ¢
Note: A simple detrending transformation yield a stationary process:

Xe =Y, —Bo—Pit =¢¢
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Exmaple

Example: Random Walk

Y; =Y 1 +et, er ~ WN(0,02), Yy is fixed

t
=Yy + Zaj = var(Y;) = 02 x t depends on t
j=1

Note: A simple detrending transformation yield a stationary process:

AY; =Y -Yi1=¢
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Time series models

Definition: A time series model is a probability model to describe the
behavior of a stochastic process {Y;}.

Note: Typically, a time series model is a simple probability model that
describes the time dependence in the stochastic process {Y;}.
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Moving Ave

Idea: Create a stochastic process that only exhibits one period linear
time dependence.

MA(1) Model:
Yi=p+e+0es 1, —00<l<o0
et ~iid N(0,02) (ie., e, ~ GWN(0,02))

0 determines the magnitude of time dependence

Properties:

E[Y;g] =u-+ E[Et] + 9E[6t_1]

=pu+0+0=npn
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Moving Aver

var(¥y) = o = E[(Y; — )]
= E[(e¢ + 01-1)%]
= E[e?] + 20E[e4e4 1] + 6°Ele? 4]
=024+ 0+6%2 =02(1+ 6%
cov(Yy,Yio1) =71 = E[(er + 0e1—1)(e1—1 + O=4—2)]
= Eleiei—1] + 0F[erer—9]
+0FE[e2 1] + 0°Eley_164_9)]

=0+0+600240=002
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Moving Average (MA) Processes cont.

Furthermore,
cov(Y;,Yi2) = v2 = E[(e¢ + Oe4—1)(e1—2 + Oy _3)]
= Eleet—2] + 0E[ere4—3]
+0F[gi-161—2) + 0*Elei_124_3)
=0+0+0+0=0
Similar calculation show that:

cov(Yy,Yi—j) =~;=0for j > 1
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Autocorrelations:

! o 0
L= 02 = 521462 (1+62)
pj:%:()forj>1
Note:
p1=0if0=0
p1>0if 0 >0
p1<0if 6 <0

Result: MA(1) is covariance stationary for any value of 6.
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Example

Example: MA(1) model for overlapping returns

Let r; denote the 1—month cc return and assume that:

¢ ~ iid N (g, 02)

Consider creating a monthly time series of 2—month cc returns using:
7¢(2) = 1¢ + 11

These 2—month returns observed monthly overlap by 1 month:

re(2) =1 4+ re—q
rt-1(2) = re—1 + 12

rt—2(2) = ri_g + 113

Claim: The stochastic process {r:(2)} follows a MA(1) process.
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Autoregressive (AR) Proces:

Idea: Create a stochastic process that exhibits multi-period
geometrically decaying linear time dependence.

AR(1) Model (mean-adjusted form):
Yi—p=90Yi1—p)+e, —1<op<1
e¢ ~ iid N(0,02)

Result: AR(1) model is covariance stationary provided —1 < ¢ < 1.
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Properties:

var() = 0 = o2/(1 — )
cov(Vy, Y1) =71 = 029
cort(Yi, Yir1) = p1 = m/o% = ¢
cov(Ys, Yij) =5 = 0°¢)
corr(Yy, Vi) = pj = 3 /0° = ¢/
Note: Since |¢| < 1,

Jj—00
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AR(1) Model (regression model form)

Vi—p=0Yi—1 —p) te =
Yi=pu—opu+ oY1 +¢¢
=c+ oY 1+e

where,

c=(1-u=p=1—

-

Remarks:

@ Regression model form is convenient for estimation by linear
regression

Eric Zivot (Copyright © 2015) Time Series Concepts


http://faculty.washington.edu/ezivot/

The AR(1) model and Economic and Financial Time

Series

The AR(1) model is a good description for the following time series:

o Interest rates on U.S. Treasury securities, dividend yields,
unemployment
o Growth rate of macroeconomic variables

e Real GDP, industrial production, productivity
e Money, velocity, consumer prices
e Real and nominal wages
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