Introduction to Computational Finance and Financial Econometrics *Time Series Concepts*

Eric Zivot Spring 2015

1 Stochastic Processes

- Stationary Processes
- Nonstationary Processes

2 Time series models

$$\{\ldots, Y_1, Y_2, \ldots, Y_t, Y_{t+1}, \ldots\} = \{Y_t\}_{t=-\infty}^{\infty}$$

sequence of random variables indexed by time

Observed time series of length T:

$$\{Y_1 = y_1, Y_2 = y_2, \dots, Y_T = y_T\} = \{y_t\}_{t=1}^T$$

$$p(x, y) = \Pr(X = x, Y = y) =$$
values in table
e.g., $p(0, 0) = \Pr(X = 0, Y = 0) = 1/8$

1 Stochastic Processes

- Stationary Processes
- Nonstationary Processes
- 2 Time series models

- Intuition: $\{Y_t\}$ is stationary if all aspects of its behavior are unchanged by shifts in time
- A stochastic process $\{Y_t\}_{t=1}^{\infty}$ is strictly stationary if, for any given finite integer r and for any set of subscripts t_1, t_2, \ldots, t_r the joint distribution of

$$(Y_{t_1}, Y_{t_2}, \ldots, Y_{t_r})$$

depends only on $t_1 - t, t_2 - t, \ldots, t_r - t$ but not on t.

- For example, the distribution of (Y_1, Y_5) is the same as the distribution of (Y_{12}, Y_{16}) .
- **②** For a strictly stationary process, Y_t has the same mean, variance (moments) for all t.
- **3** Any function/transformation $g(\cdot)$ of a strictly stationary process, $\{g(Y_t)\}$ is also strictly stationary. e.g., if $\{Y_t\}$ is strictly then $\{Y_t^2\}$ is strictly stationary.

- $E[Y_t] = \mu$ for all t
- $\operatorname{var}(Y_t) = \sigma^2$ for all t
- $\operatorname{cov}(Y_t, Y_{t-j}) = \gamma_j$ depends on j and not on t

Note 1: $cov(Y_t, Y_{t-j}) = \gamma_j$ is called the j-lag *autocovariance* and measures the direction of linear time dependence

Note 2: A stationary process is covariance stationary if $var(Y_t) < \infty$ and $cov(Y_t, Y_{t-j}) < \infty$

$$\operatorname{corr}(Y_t, Y_{t-j}) = \rho_j = \frac{\operatorname{cov}(Y_t, Y_{t-j})}{\sqrt{\operatorname{var}(Y_t)\operatorname{var}(Y_{t-j})}} = \frac{\gamma_j}{\sigma^2}$$

Note 1: $\operatorname{corr}(Y_t, Y_{t-j}) = \rho_j$ is called the j-lag *autocorrelation* and measures the direction and strength of linear time dependence

Note 2: By stationarity
$$\operatorname{var}(Y_t) = \operatorname{var}(Y_{t-j}) = \sigma^2$$
.

Autocorrelation Function (ACF): Plot of ρ_j against j

Example: Gaussian White Noise Process

$$Y_t \sim \text{iid } N(0, \sigma^2) \text{ or } Y_t \sim GWN(0, \sigma^2)$$

 $E[Y_t] = 0, \text{ var}(Y_t) = \sigma^2$

 Y_t independent of Y_s for $t \neq s$

$$\Rightarrow \operatorname{cov}(Y_t, Y_{t-s}) = 0 \text{ for } t \neq s$$

Note: "iid" = "independent and identically distributed".

Here, $\{Y_t\}$ represents random draws from the same $N(0, \sigma^2)$ distribution.

Example: Independent White Noise Process

$$Y_t \sim \text{iid} (0, \sigma^2) \text{ or } Y_t \sim IWN(0, \sigma^2)$$

$$E[Y_t] = 0, \text{ var}(Y_t) = \sigma^2$$

 Y_t independent of Y_s for $t \neq s$

Here, $\{Y_t\}$ represents random draws from the same distribution. However, we don't specify exactly what the distribution is - only that it has mean zero and variance σ^2 . For example, Y_t could be *iid* Student's t with variance equal to σ^2 . This is like GWN but with fatter tails (i.e., more extreme observations).

Example: Weak White Noise Process

$$Y_t \sim WN(0, \sigma^2)$$

 $E[Y_t] = 0, \text{ var}(Y_t) = \sigma^2$
 $\operatorname{cov}(Y_t, Y_s) = 0 \text{ for } t \neq s$

Here, $\{Y_t\}$ represents an uncorrelated stochastic process with mean zero and variance σ^2 . Recall, the uncorrelated assumption does not imply independence. Hence, Y_t and Y_s can exhibit non-linear dependence (e.g. Y_t^2 can be correlated with Y_s^2).

1 Stochastic Processes

- Stationary Processes
- Nonstationary Processes

2 Time series models

Definition: A nonstationary stochastic process is a stochastic process that is not covariance stationary.

Note: A non-stationary process violates one or more of the properties of covariance stationarity.

Example: Deterministically trending process

$$Y_t = \beta_0 + \beta_1 t + \varepsilon_t, \ \varepsilon_t \sim WN(0, \sigma_{\varepsilon}^2)$$

 $E[Y_t] = \beta_0 + \beta_1 t$ depends on t

Note: A simple detrending transformation yield a stationary process:

$$X_t = Y_t - \beta_0 - \beta_1 t = \varepsilon_t$$

Example: Random Walk

$$Y_t = Y_{t-1} + \varepsilon_t, \ \varepsilon_t \sim WN(0, \sigma_{\varepsilon}^2), \ Y_0 \text{ is fixed}$$

= $Y_0 + \sum_{j=1}^t \varepsilon_j \Rightarrow \operatorname{var}(Y_t) = \sigma_{\varepsilon}^2 \times t \text{ depends on } t$

Note: A simple detrending transformation yield a stationary process:

$$\Delta Y_t = Y_t - Y_{t-1} = \varepsilon_t$$

1 Stochastic Processes

2 Time series models

- Moving Average (MA) Processes
- Autoregressive (AR) Processes

- Definition: A time series model is a probability model to describe the behavior of a stochastic process $\{Y_t\}$.
- Note: Typically, a time series model is a simple probability model that describes the time dependence in the stochastic process $\{Y_t\}$.

1 Stochastic Processes

2 Time series models

• Moving Average (MA) Processes

• Autoregressive (AR) Processes

Moving Average (MA) Processes

Idea: Create a stochastic process that only exhibits one period linear time dependence.

MA(1) Model:

$$Y_t = \mu + \varepsilon_t + \theta \varepsilon_{t-1}, \quad -\infty < \theta < \infty$$

$$\varepsilon_t \sim iid \ N(0,\sigma_\varepsilon^2)$$
 (i.e., $\varepsilon_t \sim GWN(0,\sigma_\varepsilon^2))$

 θ determines the magnitude of time dependence

Properties:

$$E[Y_t] = \mu + E[\varepsilon_t] + \theta E[\varepsilon_{t-1}]$$
$$= \mu + 0 + 0 = \mu$$

Moving Average (MA) Processes cont.

$$\begin{aligned} \operatorname{var}(Y_t) &= \sigma^2 = E[(Y_t - \mu)^2] \\ &= E[(\varepsilon_t + \theta \varepsilon_{t-1})^2] \\ &= E[\varepsilon_t^2] + 2\theta E[\varepsilon_t \varepsilon_{t-1}] + \theta^2 E[\varepsilon_{t-1}^2] \\ &= \sigma_{\varepsilon}^2 + 0 + \theta^2 \sigma_{\varepsilon}^2 = \sigma_{\varepsilon}^2 (1 + \theta^2) \\ \operatorname{cov}(Y_t, Y_{t-1}) &= \gamma_1 = E[(\varepsilon_t + \theta \varepsilon_{t-1})(\varepsilon_{t-1} + \theta \varepsilon_{t-2})] \\ &= E[\varepsilon_t \varepsilon_{t-1}] + \theta E[\varepsilon_t \varepsilon_{t-2}] \\ &+ \theta E[\varepsilon_{t-1}^2] + \theta^2 E[\varepsilon_{t-1} \varepsilon_{t-2}] \\ &= 0 + 0 + \theta \sigma_{\varepsilon}^2 + 0 = \theta \sigma_{\varepsilon}^2 \end{aligned}$$

Furthermore,

$$cov(Y_t, Y_{t-2}) = \gamma_2 = E[(\varepsilon_t + \theta \varepsilon_{t-1})(\varepsilon_{t-2} + \theta \varepsilon_{t-3})]$$
$$= E[\varepsilon_t \varepsilon_{t-2}] + \theta E[\varepsilon_t \varepsilon_{t-3}]$$
$$+ \theta E[\varepsilon_{t-1} \varepsilon_{t-2}] + \theta^2 E[\varepsilon_{t-1} \varepsilon_{t-3}]$$
$$= 0 + 0 + 0 + 0 = 0$$

Similar calculation show that:

$$\operatorname{cov}(Y_t, Y_{t-j}) = \gamma_j = 0 \text{ for } j > 1$$

Moving Average (MA) Processes cont.

Autocorrelations:

$$\rho_1 = \frac{\gamma_1}{\sigma^2} = \frac{\theta \sigma_{\varepsilon}^2}{\sigma_{\varepsilon}^2 (1+\theta^2)} = \frac{\theta}{(1+\theta^2)}$$
$$\rho_j = \frac{\gamma_j}{\sigma^2} = 0 \text{ for } j > 1$$

Note:

$$\rho_1 = 0 \text{ if } \theta = 0$$
$$\rho_1 > 0 \text{ if } \theta > 0$$
$$\rho_1 < 0 \text{ if } \theta < 0$$

Result: MA(1) is covariance stationary for any value of θ .

Example

Example: MA(1) model for overlapping returns

Let r_t denote the 1-month cc return and assume that:

$$r_t \sim \text{iid } N(\mu_r, \sigma_r^2)$$

Consider creating a monthly time series of 2–month cc returns using:

$$r_t(2) = r_t + r_{t-1}$$

These 2–month returns observed monthly overlap by 1 month:

$$r_t(2) = r_t + r_{t-1}$$

$$r_{t-1}(2) = r_{t-1} + r_{t-2}$$

$$r_{t-2}(2) = r_{t-2} + r_{t-3}$$

Claim: The stochastic process $\{r_t(2)\}$ follows a MA(1) process.

•

1 Stochastic Processes

2 Time series models

- Moving Average (MA) Processes
- Autoregressive (AR) Processes

Idea: Create a stochastic process that exhibits multi-period geometrically decaying linear time dependence.

AR(1) Model (mean-adjusted form):

$$Y_t - \mu = \phi(Y_{t-1} - \mu) + \varepsilon_t, \quad -1 < \phi < 1$$
$$\varepsilon_t \sim \text{iid } N(0, \sigma_{\varepsilon}^2)$$

Result: AR(1) model is covariance stationary provided $-1 < \phi < 1$.

Autoregressive (AR) Processes cont.

Properties:

$$E[Y_t] = \mu$$
$$\operatorname{var}(Y_t) = \sigma^2 = \sigma_{\varepsilon}^2 / (1 - \phi^2)$$
$$\operatorname{cov}(Y_t, Y_{t-1}) = \gamma_1 = \sigma^2 \phi$$
$$\operatorname{corr}(Y_t, Y_{t-1}) = \rho_1 = \gamma_1 / \sigma^2 = \phi$$
$$\operatorname{cov}(Y_t, Y_{t-j}) = \gamma_j = \sigma^2 \phi^j$$
$$\operatorname{corr}(Y_t, Y_{t-j}) = \rho_j = \gamma_j / \sigma^2 = \phi^j$$

Note: Since $|\phi| < 1$,

$$\lim_{j \to \infty} \rho_j = \phi^j = 0$$

AR(1) Model (regression model form)

$$\begin{aligned} Y_t - \mu &= \phi(Y_{t-1} - \mu) + \varepsilon_t \Rightarrow \\ Y_t &= \mu - \phi\mu + \phi Y_{t-1} + \varepsilon_t \\ &= c + \phi Y_{t-1} + \varepsilon_t \end{aligned}$$

where,

$$c = (1 - \phi)\mu \Rightarrow \mu = \frac{c}{1 - \phi}$$

Remarks:

• Regression model form is convenient for estimation by linear regression

The AR(1) model is a good description for the following time series:

- Interest rates on U.S. Treasury securities, dividend yields, unemployment
- Growth rate of macroeconomic variables
 - Real GDP, industrial production, productivity
 - Money, velocity, consumer prices
 - Real and nominal wages

faculty.washington.edu/ezivot/