
You can’t see this text!

Introduction to Computational Finance and
Financial Econometrics
Time Series Concepts

Eric Zivot
Spring 2015

Eric Zivot (Copyright © 2015) Time Series Concepts 1 / 28

http://faculty.washington.edu/ezivot/


Outline

1 Stochastic Processes
Stationary Processes
Nonstationary Processes

2 Time series models

Eric Zivot (Copyright © 2015) Time Series Concepts 2 / 28

http://faculty.washington.edu/ezivot/


Stochastic (Random) Process

{. . . , Y1, Y2, . . . , Yt, Yt+1, . . .} = {Yt}∞t=−∞

sequence of random variables indexed by time

Observed time series of length T :

{Y1 = y1, Y2 = y2, . . . , YT = yT } = {yt}Tt=1

p(x, y) = Pr(X = x, Y = y) = values in table

e.g., p(0, 0) = Pr(X = 0, Y = 0) = 1/8
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Stationary Processes

Intuition: {Yt} is stationary if all aspects of its behavior are
unchanged by shifts in time
A stochastic process {Yt}∞t=1 is strictly stationary if, for any given
finite integer r and for any set of subscripts t1, t2, . . . , tr the joint
distribution of

(Yt1 , Yt2 , . . . , Ytr )

depends only on t1 − t, t2 − t, . . . , tr − t but not on t.
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Remarks

1 For example, the distribution of (Y1, Y5) is the same as the
distribution of (Y12, Y16).

2 For a strictly stationary process, Yt has the same mean, variance
(moments) for all t.

3 Any function/transformation g(·) of a strictly stationary process,
{g(Yt)} is also strictly stationary. e.g., if {Yt} is strictly then {Y 2

t }
is strictly stationary.
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Covariance (weakly) Stationary Processes {Yt}

E[Yt] = µ for all t
var(Yt) = σ2 for all t
cov(Yt, Yt−j) = γj depends on j and not on t

Note 1: cov(Yt, Yt−j) = γj is called the j-lag autocovariance and
measures the direction of linear time dependence

Note 2: A stationary process is covariance stationary if var(Yt) <∞
and cov(Yt, Yt−j) <∞
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Autocorrelations

corr(Yt, Yt−j) = ρj = cov(Yt, Yt−j)√
var(Yt)var(Yt−j)

= γj

σ2

Note 1: corr(Yt, Yt−j) = ρj is called the j-lag autocorrelation and
measures the direction and strength of linear time dependence

Note 2: By stationarity var(Yt) = var(Yt−j) = σ2.

Autocorrelation Function (ACF): Plot of ρj against j
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Example

Example: Gaussian White Noise Process

Yt ∼ iid N(0, σ2) or Yt ∼ GWN(0, σ2)

E[Yt] = 0, var(Yt) = σ2

Yt independent of Ys for t 6= s

⇒ cov(Yt, Yt−s) = 0 for t 6= s

Note: “iid” = “independent and identically distributed”.

Here, {Yt} represents random draws from the same N(0, σ2)
distribution.
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Example

Example: Independent White Noise Process

Yt ∼ iid (0, σ2) or Yt ∼ IWN(0, σ2)

E[Yt] = 0, var(Yt) = σ2

Yt independent of Ys for t 6= s

Here, {Yt} represents random draws from the same distribution.
However, we don’t specify exactly what the distribution is - only that
it has mean zero and variance σ2. For example, Yt could be iid
Student’s t with variance equal to σ2. This is like GWN but with
fatter tails (i.e., more extreme observations).
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Example

Example: Weak White Noise Process

Yt ∼WN(0, σ2)

E[Yt] = 0, var(Yt) = σ2

cov(Yt, Ys) = 0 for t 6= s

Here, {Yt} represents an uncorrelated stochastic process with mean
zero and variance σ2. Recall, the uncorrelated assumption does not
imply independence. Hence, Yt and Ys can exhibit non-linear
dependence (e.g. Y 2

t can be correlated with Y 2
s ).
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Nonstationary Processes

Definition: A nonstationary stochastic process is a stochastic process
that is not covariance stationary.

Note: A non-stationary process violates one or more of the properties
of covariance stationarity.

Example: Deterministically trending process

Yt = β0 + β1t+ εt, εt ∼WN(0, σ2
ε)

E[Yt] = β0 + β1t depends on t

Note: A simple detrending transformation yield a stationary process:

Xt = Yt − β0 − β1t = εt
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Exmaple

Example: Random Walk

Yt = Yt−1 + εt, εt ∼WN(0, σ2
ε), Y0 is fixed

= Y0 +
t∑

j=1
εj ⇒ var(Yt) = σ2

ε × t depends on t

Note: A simple detrending transformation yield a stationary process:

∆Yt = Yt − Yt−1 = εt
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Time series models

Definition: A time series model is a probability model to describe the
behavior of a stochastic process {Yt}.

Note: Typically, a time series model is a simple probability model that
describes the time dependence in the stochastic process {Yt}.
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Moving Average (MA) Processes

Idea: Create a stochastic process that only exhibits one period linear
time dependence.

MA(1) Model:

Yt = µ+ εt + θεt−1, −∞ < θ <∞

εt ∼ iid N(0, σ2
ε) (i.e., εt ∼ GWN(0, σ2

ε))

θ determines the magnitude of time dependence

Properties:

E[Yt] = µ+ E[εt] + θE[εt−1]

= µ+ 0 + 0 = µ
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Moving Average (MA) Processes cont.

var(Yt) = σ2 = E[(Yt − µ)2]

= E[(εt + θεt−1)2]

= E[ε2
t ] + 2θE[εtεt−1] + θ2E[ε2

t−1]

= σ2
ε + 0 + θ2σ2

ε = σ2
ε(1 + θ2)

cov(Yt, Yt−1) = γ1 = E[(εt + θεt−1)(εt−1 + θεt−2)]

= E[εtεt−1] + θE[εtεt−2]

+ θE[ε2
t−1] + θ2E[εt−1εt−2]

= 0 + 0 + θσ2
ε + 0 = θσ2

ε
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Moving Average (MA) Processes cont.

Furthermore,

cov(Yt, Yt−2) = γ2 = E[(εt + θεt−1)(εt−2 + θεt−3)]

= E[εtεt−2] + θE[εtεt−3]

+ θE[εt−1εt−2] + θ2E[εt−1εt−3]

= 0 + 0 + 0 + 0 = 0

Similar calculation show that:

cov(Yt, Yt−j) = γj = 0 for j > 1
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Moving Average (MA) Processes cont.

Autocorrelations:

ρ1 = γ1
σ2 = θσ2

ε

σ2
ε(1 + θ2) = θ

(1 + θ2)

ρj = γj

σ2 = 0 for j > 1

Note:

ρ1 = 0 if θ = 0

ρ1 > 0 if θ > 0

ρ1 < 0 if θ < 0

Result: MA(1) is covariance stationary for any value of θ.
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Example
Example: MA(1) model for overlapping returns

Let rt denote the 1−month cc return and assume that:
rt ∼ iid N(µr, σ

2
r )

Consider creating a monthly time series of 2−month cc returns using:
rt(2) = rt + rt−1

These 2−month returns observed monthly overlap by 1 month:
rt(2) = rt + rt−1

rt−1(2) = rt−1 + rt−2

rt−2(2) = rt−2 + rt−3

...
Claim: The stochastic process {rt(2)} follows a MA(1) process.
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Autoregressive (AR) Processes

Idea: Create a stochastic process that exhibits multi-period
geometrically decaying linear time dependence.

AR(1) Model (mean-adjusted form):

Yt − µ = φ(Yt−1 − µ) + εt, − 1 < φ < 1

εt ∼ iid N(0, σ2
ε)

Result: AR(1) model is covariance stationary provided −1 < φ < 1.
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Autoregressive (AR) Processes cont.
Properties:

E[Yt] = µ

var(Yt) = σ2 = σ2
ε/(1− φ2)

cov(Yt, Yt−1) = γ1 = σ2φ

corr(Yt, Yt−1) = ρ1 = γ1/σ
2 = φ

cov(Yt, Yt−j) = γj = σ2φj

corr(Yt, Yt−j) = ρj = γj/σ
2 = φj

Note: Since |φ| < 1,

lim
j→∞

ρj = φj = 0
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AR(1) Model (regression model form)

Yt − µ = φ(Yt−1 − µ) + εt ⇒

Yt = µ− φµ+ φYt−1 + εt

= c+ φYt−1 + εt

where,

c = (1− φ)µ⇒ µ = c

1− φ

Remarks:
Regression model form is convenient for estimation by linear
regression
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The AR(1) model and Economic and Financial Time
Series

The AR(1) model is a good description for the following time series:
Interest rates on U.S. Treasury securities, dividend yields,
unemployment
Growth rate of macroeconomic variables

Real GDP, industrial production, productivity
Money, velocity, consumer prices
Real and nominal wages
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