Econ 424/CFRM 462 Portfolio Risk Budgeting

Eric Zivot

August 14, 2014

Portfolio Risk Budgeting

Idea: Additively decompose a measure of portfolio risk into contributions from the individual assets in the portfolio.

- Show which assets are most responsible for portfolio risk
- Help make decisions about rebalancing the portfolio to alter the risk
- Construct "risk parity" portfolios where assets have equal risk contributions

Example: 2 risky asset portfolio

$$
\begin{aligned}
R_{p} & =x_{1} R_{1}+x_{2} R_{2} \\
\sigma_{p}^{2} & =x_{1}^{2} \sigma_{1}^{2}+x_{2}^{2} \sigma_{2}^{2}+2 x_{1} x_{2} \sigma_{12} \\
\sigma_{p} & =\left(x_{1}^{2} \sigma_{1}^{2}+x_{2}^{2} \sigma_{2}^{2}+2 x_{1} x_{2} \sigma_{12}\right)^{1 / 2}
\end{aligned}
$$

Case 1: $\sigma_{12}=0$

$$
\begin{aligned}
\sigma_{p}^{2} & =x_{1}^{2} \sigma_{1}^{2}+x_{2}^{2} \sigma_{2}^{2}=\text { additive decomposition } \\
x_{1}^{2} \sigma_{1}^{2} & =\text { portfolio variance contribution of asset } 1 \\
x_{2}^{2} \sigma_{2}^{2} & =\text { portfolio variance contribution of asset } 2 \\
\frac{x_{1}^{2} \sigma_{1}^{2}}{\sigma_{p}^{2}} & =\text { percent variance contribution of asset } 1 \\
\frac{x_{2}^{2} \sigma_{2}^{2}}{\sigma_{p}^{2}} & =\text { percent variance contribution of asset } 2
\end{aligned}
$$

In a risk piave portfolio the go var carwinutas (equal)

Note

$$
\sigma_{p}=\sqrt{x_{1}^{2} \sigma_{1}^{2}+x_{2}^{2} \sigma_{2}^{2}} \neq x_{1} \sigma_{1}+x_{2} \sigma_{2}
$$

To get an additive decomposition we use

$$
\begin{aligned}
\frac{x_{1}^{2} \sigma_{1}^{2}}{\sigma_{p}}+\frac{x_{2}^{2} \sigma_{2}^{2}}{\sigma_{p}} & =\frac{\sigma_{p}^{2}}{\sigma_{p}}=\sigma_{p} \\
\frac{x_{1}^{2} \sigma_{1}^{2}}{\sigma_{p}} & =\text { portfolio sd contribution of asset } 1 \\
\frac{x_{2}^{2} \sigma_{2}^{2}}{\sigma_{p}} & =\text { portfolio sd contribution of asset } 2
\end{aligned}
$$

Notice that percent sd contributions are the same as percent variance contributions.

Case 2: $\sigma_{12} \neq 0$

$$
\begin{aligned}
\sigma_{p}^{2} & =x_{1}^{2} \sigma_{1}^{2}+x_{2}^{2} \sigma_{2}^{2}+2 x_{1} x_{2} \sigma_{12} \\
& =\left(x_{1}^{2} \sigma_{1}^{2}+x_{1} x_{2} \sigma_{12}\right)+\left(x_{2}^{2} \sigma_{2}^{2}+x_{1} x_{2} \sigma_{12}\right)
\end{aligned}
$$

Here we can split the covariance contribution $2 x_{1} x_{2} \sigma_{12}$ to portfolio variance evenly between the two assets and define

$$
\begin{aligned}
& x_{1}^{2} \sigma_{1}^{2}+x_{1} x_{2} \sigma_{12}=\text { variance contribution of asset } 1 \\
& x_{2}^{2} \sigma_{2}^{2}+x_{1} x_{2} \sigma_{12}=\text { variance contribution of asset } 2
\end{aligned}
$$

We can also define an additive decomposition for σ_{p}

$$
\begin{aligned}
\sigma_{p} & =\frac{x_{1}^{2} \sigma_{1}^{2}+x_{1} x_{2} \sigma_{12}}{\sigma_{p}}+\frac{x_{2}^{2} \sigma_{2}^{2}+x_{1} x_{2} \sigma_{12}}{\sigma_{p}} \\
\frac{x_{1}^{2} \sigma_{1}^{2}+x_{1} x_{2} \sigma_{12}}{\sigma_{p}} & =\text { sd contribution of asset } 1 \\
\frac{x_{2}^{2} \sigma_{2}^{2}+x_{1} x_{2} \sigma_{12}}{\sigma_{p}} & =\text { sd contribution of asset } 2
\end{aligned}
$$

Euler's Theorem and Risk Decompositions

- When we used σ_{p}^{2} or σ_{p} to measure portfolio risk, we were able to easily derive sensible risk decompositions.
- If we measure portfolio risk by value-at-risk or some other risk measure it is not so obvious how to define individual asset risk contributions.
- For portfolio risk measures that are homogenous functions of degree one in the portfolio weights, Euler's theorem provides a general method for additively decomposing risk into asset specific contributions.

Homogenous functions and Euler's theorem

First we define a homogenous function of degree one.

Definition 1 homogenous function of degree one

Let $f\left(x_{1}, \ldots, x_{n}\right)$ be a continuous and differentiable function of the variables $x_{1}, \ldots, x_{n} . f$ is homogeneous of degree one if for any constant c, $f\left(c \cdot x_{1}, \ldots, c \cdot x_{n}\right)=c \cdot f\left(x_{1}, \ldots, x_{n}\right)$.

Note: In matrix notation we have $f\left(x_{1}, \ldots, x_{n}\right)=f(\mathbf{x})$ where
$\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)^{\prime}$. Then f is homogeneous of degree one if $f(c \cdot \mathbf{x})=c \cdot f(\mathbf{x})$

Examples

Let $f\left(x_{1}, x_{2}\right)=x_{1}+x_{2}$. Then

$$
f\left(c \cdot x_{1}, c \cdot x_{2}\right)=c \cdot x_{1}+c \cdot x_{2}=c \cdot\left(x_{1}+x_{2}\right)=c \cdot f\left(x_{1}, x_{2}\right)
$$

Let $f\left(x_{1}, x_{2}\right)=x_{1}^{2}+x_{2}^{2}$. Then

$$
f\left(c \cdot x_{1}, c \cdot x_{2}\right)=c^{2} x_{1}^{2}+x_{2}^{2} c^{2}=c^{2}\left(x_{1}^{2}+x_{2}^{2}\right) \neq c \cdot f\left(x_{1}, x_{2}\right)
$$

Let $f\left(x_{1}, x_{2}\right)=\sqrt{x_{1}^{2}+x_{2}^{2}}$ Then

$$
f\left(c \cdot x_{1}, c \cdot x_{2}\right)=\sqrt{c^{2} x_{1}^{2}+c^{2} x_{2}^{2}}=c \sqrt{\left(x_{1}^{2}+x_{2}^{2}\right)}=c \cdot f\left(x_{1}, x_{2}\right)
$$

Repeat examples using matrix notation

Define $\mathbf{x}=\left(x_{1}, x_{2}\right)^{\prime}$ and $\mathbf{1}=(1,1)^{\prime}$.

Let $f\left(x_{1}, x_{2}\right)=x_{1}+x_{2}=\mathbf{x}^{\prime} \mathbf{1}=\mathbf{f}(\mathbf{x})$. Then

$$
f(c \cdot \mathbf{x})=(c \cdot \mathbf{x})^{\prime} \mathbf{1}=c \cdot\left(\mathbf{x}^{\prime} 1\right)=c \cdot f(\mathbf{x})
$$

Let $f\left(x_{1}, x_{2}\right)=x_{1}^{2}+x_{2}^{2}=\mathbf{x}^{\prime} \mathbf{x}=f(\mathbf{x})$. Then

$$
f(c \cdot \mathbf{x})=(c \cdot \mathbf{x})^{\prime}(c \cdot \mathbf{x})=c^{2} \cdot \mathbf{x}^{\prime} \mathbf{x} \neq c \cdot f(\mathbf{x})
$$

Let $f\left(x_{1}, x_{2}\right)=\sqrt{x_{1}^{2}+x_{2}^{2}}=\left(\mathbf{x}^{\prime} \mathbf{x}\right)^{1 / 2}=f(\mathbf{x})$. Then

$$
f(c \cdot \mathbf{x})=\left((c \cdot \mathbf{x})^{\prime}(c \cdot \mathbf{x})\right)^{1 / 2}=c \cdot\left(\mathbf{x}^{\prime} \mathbf{x}\right)^{1 / 2}=c \cdot f(\mathbf{x})
$$

Consider a portfolio of n assets $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)^{\prime}$

$$
\begin{aligned}
\mathbf{R} & =\left(R_{1}, \ldots, R_{n}\right)^{\prime} \\
\mathbf{x} & =\left(x_{1}, \ldots, x_{n}\right)^{\prime} \\
E[\mathbf{R}] & =\boldsymbol{\mu}, \operatorname{cov}(\mathbf{R})=\mathbf{\Sigma}
\end{aligned}
$$

Define

$$
\begin{aligned}
R_{p} & =R_{p}(\mathbf{x})=\mathbf{x}^{\prime} \mathbf{R} \\
\mu_{p} & =\mu_{p}(\mathbf{x})=\mathbf{x}^{\prime} \boldsymbol{\mu} \\
\sigma_{p}^{2} & =\sigma_{p}^{2}(\mathbf{x})=\mathbf{x}^{\prime} \Sigma \mathbf{x}, \sigma_{p}=\sigma_{p}(\mathbf{x})=\left(\mathbf{x}^{\prime} \boldsymbol{\Sigma} \mathbf{x}\right)^{1 / 2}
\end{aligned}
$$

Result: Portfolio return $R_{p}(\mathbf{x})$, expected return $\mu_{p}(\mathbf{x})$ and standard deviation $\sigma_{p}(\mathbf{x})$ are homogenous functions of degree one in the portfolio weight vector \mathbf{x}.

The key result is for volatility $\sigma_{p}(\mathbf{x})=\left(\mathbf{x}^{\prime} \Sigma \mathrm{x}\right)^{1 / 2}$:

$$
\begin{aligned}
\sigma_{p}(c \cdot \mathbf{x}) & =\left((c \cdot \mathbf{x})^{\prime} \Sigma(c \cdot \mathbf{x})\right)^{1 / 2} \\
& =c \cdot\left(\mathbf{x}^{\prime} \mathbf{\Sigma} \mathbf{x}\right)^{1 / 2} \\
& =c \cdot \sigma_{p}(\mathbf{x})
\end{aligned}
$$

Theorem 2 Euler's theorem

Let $f\left(x_{1}, \ldots, x_{n}\right)=f(\mathbf{x})$ be a continuous, differentiable and homogenous of degree one function of the variables $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)^{\prime}$. Then

$$
\begin{aligned}
f(\mathbf{x}) & =x_{1} \cdot \frac{\partial f(\mathbf{x})}{\partial x_{1}}+x_{2} \cdot \frac{\partial f(\mathbf{x})}{\partial x_{2}}+\cdots+x_{n} \cdot \frac{\partial f(\mathbf{x})}{\partial x_{n}} \\
& =\mathbf{x}^{\prime} \frac{\partial f(\mathbf{x})}{\partial \mathbf{x}}
\end{aligned}
$$

where

$$
\frac{\partial f(\mathbf{x})}{\partial \mathbf{x}}=\left(\begin{array}{c}
\frac{\partial f(\mathbf{x})}{\partial x_{1}} \\
\vdots \\
(n \times 1)
\end{array}\right)
$$

Verifying Euler's theorem

The function $f\left(x_{1}, x_{2}\right)=x_{1}+x_{2}=f(\mathbf{x})=\mathbf{x}^{\prime} \mathbf{1}$ is homogenous of degree one, and

$$
\begin{aligned}
& \frac{\partial f(\mathbf{x})}{\partial x_{1}}=\frac{\partial f(\mathbf{x})}{\partial x_{2}}=1 \\
& \frac{\partial f(\mathbf{x})}{\partial \mathbf{x}}=\binom{\frac{\partial f(\mathbf{x})}{\partial x_{1}}}{\frac{\partial f(\mathbf{x})}{\partial x_{2}}}=\binom{1}{1}=\mathbf{1}
\end{aligned}
$$

By Euler's theorem,

$$
\begin{aligned}
f(x) & =x_{1} \cdot 1+x_{2} \cdot 1=x_{1}+x_{2} \\
& =\mathbf{x}^{\prime} \mathbf{1}
\end{aligned}
$$

The function $f\left(x_{1}, x_{2}\right)=\left(x_{1}^{2}+x_{2}^{2}\right)^{1 / 2}=f(\mathbf{x})=\left(\mathbf{x}^{\prime} \mathbf{x}\right)^{1 / 2}$ is homogenous of degree one, and

$$
\begin{aligned}
& \frac{\partial f(\mathbf{x})}{\partial x_{1}}=\frac{1}{2}\left(x_{1}^{2}+x_{2}^{2}\right)^{-1 / 2} 2 x_{1}=x_{1}\left(x_{1}^{2}+x_{2}^{2}\right)^{-1 / 2} \\
& \frac{\partial f(\mathbf{x})}{\partial x_{2}}=\frac{1}{2}\left(x_{1}^{2}+x_{2}^{2}\right)^{-1 / 2} 2 x_{2}=x_{2}\left(x_{1}^{2}+x_{2}^{2}\right)^{-1 / 2}
\end{aligned}
$$

By Euler's theorem

$$
\begin{aligned}
f(x) & =x_{1} \cdot x_{1}\left(x_{1}^{2}+x_{1}^{2}\right)^{-1 / 2}+x_{2} \cdot x_{2}\left(x_{1}^{2}+x_{2}^{2}\right)^{-1 / 2} \\
& =\left(x_{1}^{2}+x_{2}^{2}\right)\left(x_{1}^{2}+x_{2}^{2}\right)^{-1 / 2} \\
& =\left(x_{1}^{2}+x_{2}^{2}\right)^{1 / 2}
\end{aligned}
$$

Using matrix algebra we have

$$
\frac{\partial f(\mathbf{x})}{\partial \mathbf{x}}=\frac{\partial\left(\mathbf{x}^{\prime} \mathbf{x}\right)^{1 / 2}}{\partial \mathbf{x}}=\frac{1}{2}\left(\mathbf{x}^{\prime} \mathbf{x}\right)^{-1 / 2} \frac{\partial \mathbf{x}^{\prime} \mathbf{x}}{\partial \mathbf{x}}=\frac{1}{2}\left(\mathbf{x}^{\prime} \mathbf{x}\right)^{-1 / 2} 2 \mathbf{x}=\left(\mathbf{x}^{\prime} \mathbf{x}\right)^{-1 / 2} \cdot \mathbf{x}
$$

so by Euler's theorem

$$
f(\mathrm{x})=\mathrm{x}^{\prime} \frac{\partial f(\mathrm{x})}{\partial \mathrm{x}}=\mathrm{x}^{\prime}\left(\mathrm{x}^{\prime} \mathbf{x}\right)^{-1 / 2} \cdot \mathbf{x}=\left(\mathrm{x}^{\prime} \mathbf{x}\right)^{-1 / 2} \mathrm{x}^{\prime} \mathrm{x}=\left(\mathrm{x}^{\prime} \mathrm{x}\right)^{1 / 2}
$$

Risk decomposition using Euler's theorem

Let $\mathrm{RM}_{p} \mathbf{(x)}$ denote a portfolio risk measure that is a homogenous function of degree one in the portfolio weight vector \mathbf{x}. For example,

$$
\mathrm{RM}_{p}(\mathbf{x})=\sigma_{p}(\mathbf{x})=\left(\mathbf{x}^{\prime} \boldsymbol{\Sigma} \mathbf{x}\right)^{1 / 2}
$$

Euler's theorem gives the additive risk decomposition

$$
\begin{aligned}
\mathrm{RM}_{p}(\mathbf{x}) & =x_{1} \frac{\partial \mathrm{RM}_{p}(\mathbf{x})}{\partial x_{1}}+x_{2} \frac{\partial \mathrm{RM}_{p}(\mathbf{x})}{\partial x_{2}}+\cdots+x_{n} \frac{\partial \mathrm{RM}_{p}(\mathbf{x})}{\partial x_{n}} \\
& =\sum_{i=1}^{n} x_{i} \frac{\partial \mathrm{RM}_{p}(\mathbf{x})}{\partial x_{i}} \\
& =\mathbf{x}^{\prime} \frac{\partial \mathrm{RM}_{p}(\mathbf{x})}{\partial \mathbf{x}}
\end{aligned}
$$

Here, $\frac{\partial \mathrm{RM}_{p}(\mathrm{x})}{\partial x_{i}}$ are called marginal contributions to risk (MCRs):

$$
\mathrm{MCR}_{i}^{R M}=\frac{\partial \mathrm{RM}_{p}(\mathrm{x})}{\partial x_{i}}=\text { marginal contribution to risk of asset } \mathrm{i},
$$

The contributions to risk (CRs) are defined as the weighted marginal contributons:

$$
\mathrm{CR}_{i}^{R M}=x_{i} \cdot \mathrm{MCR}_{i}^{R M}=\text { contribution to risk of asset } \mathrm{i},
$$

Then

$$
\begin{aligned}
& \operatorname{RM}_{p}(\mathrm{x})=x_{1} \cdot \mathrm{MCR}_{1}^{R M}+x_{2} \cdot \mathrm{MCR}_{2}^{R M}+\cdots+x_{n} \cdot \mathrm{MCR}_{n}^{R M} \\
& R M_{\rho}(x)=\underbrace{R M}_{1}+\frac{\mathrm{CR}_{2}^{R M}}{R m}+\cdots+\frac{\mathrm{CR}_{n}^{R M}}{R M} \\
& \mathcal{R M}=P C_{v}^{R m}+P C_{2}^{R m}+\cdots P C_{n}^{R m}
\end{aligned}
$$

this is a "I Madge"
to the port folio
If we divide the contributions to risky $\mathrm{RM}_{p}(\mathrm{x})$ we get the percent contributons to risk (PCRs)

$$
1=\frac{\mathrm{CR}_{1}^{R M}}{\mathrm{RM}_{p}(\mathrm{x})}+\cdots+\frac{\mathrm{CR}_{n}^{R M}}{\mathrm{RM}_{p}(\mathrm{x})}=\mathrm{PCR}_{1}^{R M}+\cdots+\mathrm{PCR}_{n}^{R M}
$$

where

$$
\mathrm{PCR}_{i}^{R M}=\frac{\mathrm{CR}_{i}^{R M}}{\mathrm{RM}_{p}(\mathrm{x})}=\text { percent contribution of asset } \mathrm{i}
$$

The asset with the highest PCR?: is the "riskiest" asset in the partotolis \longrightarrow Hot spot in The puttolij The cassel with the lowest $\mathrm{PCl} i_{i}^{R m}$ is M "sabusl" upset in one poutboliu
It's possible for $C \nabla_{i}^{i_{m}^{2}}<0$ nut $P C_{i}^{k^{m}}<0$

$$
\mathrm{RM}_{p}(\mathbf{x})=\sigma_{p}(\mathbf{x})=\left(\mathbf{x}^{\prime} \boldsymbol{\Sigma} \mathbf{x}\right)^{1 / 2}
$$

Because $\sigma_{p}(\mathbf{x})$ is homogenous of degree 1 in \mathbf{x}, by Euler's theorem

$$
\sigma_{p}(\mathbf{x})=x_{1} \frac{\partial \sigma_{p}(\mathbf{x})}{\partial x_{1}}+x_{2} \frac{\partial \sigma_{p}(\mathbf{x})}{\partial x_{2}}+\cdots+x_{n} \frac{\partial \sigma_{p}(\mathbf{x})}{\partial x_{n}}=\mathbf{x}^{\prime} \frac{\partial \sigma_{p}(\mathbf{x})}{\partial \mathbf{x}}
$$

Now

$$
\begin{aligned}
=\frac{\partial \sigma_{p}(\mathbf{x})}{\partial \mathbf{x}} & =\frac{\partial\left(\mathbf{x}^{\prime} \boldsymbol{\Sigma} \mathbf{x}\right)^{1 / 2}}{\partial \mathbf{x}}=\frac{1}{2}\left(\mathbf{x}^{\prime} \boldsymbol{\Sigma} \mathbf{x}\right)^{-1 / 2} 2 \boldsymbol{\Sigma} \mathbf{x} \\
& =\frac{\Sigma \mathbf{x}}{\left(\mathbf{x}^{\prime} \boldsymbol{\Sigma}\right)^{1 / 2}}=\frac{\boldsymbol{\Sigma} \mathbf{x}}{\sigma_{p}(\mathbf{x})} \\
& \Rightarrow \frac{\partial \sigma_{p}(\mathbf{x})}{\partial x_{i}}=\mathrm{MCR}_{i}^{\sigma}=\text { ith row of } \frac{\boldsymbol{\Sigma} \mathbf{x}}{\sigma_{p}(\mathbf{x})}
\end{aligned}
$$

Remark: In R, the PerformanceAnalytics function $\operatorname{StdDev}()$ performs this decomposition

Example: 2 asset portfolio

$$
\begin{aligned}
\sigma_{p}(\mathbf{x}) & =\left(\mathbf{x}^{\prime} \mathbf{\Sigma} \mathbf{x}\right)^{1 / 2}=\left(x_{1}^{2} \sigma_{1}^{2}+x_{2}^{2} \sigma_{2}^{2}+2 x_{1} x_{2} \sigma_{12}\right)^{1 / 2} \\
\mathbf{\Sigma} \mathbf{x} & =\left(\begin{array}{cc}
\sigma_{1}^{2} & \sigma_{12} \\
\sigma_{12} & \sigma_{2}^{2}
\end{array}\right)\binom{x_{1}}{x_{2}}=\binom{x_{1} \sigma_{1}^{2}+x_{2} \sigma_{12}}{x_{2} \sigma_{2}^{2}+x_{1} \sigma_{12}} \\
\frac{\mathbf{\Sigma} \mathbf{x}}{\sigma_{p}(\mathbf{x})} & =\binom{\left(x_{1} \sigma_{1}^{2}+x_{2} \sigma_{12}\right) / \sigma_{p}(\mathbf{x})}{\left(x_{2} \sigma_{2}^{2}+x_{1} \sigma_{12}\right) / \sigma_{p}(\mathbf{x})}
\end{aligned}
$$

so that

$$
\begin{aligned}
\mathrm{MCR}_{1}^{\sigma} & =\left(x_{1} \sigma_{1}^{2}+x_{2} \sigma_{12}\right) / \sigma_{p}(\mathbf{x}) \\
\mathrm{MCR}_{2}^{\sigma} & =\left(x_{2} \sigma_{2}^{2}+x_{1} \sigma_{12}\right) / \sigma_{p}(\mathbf{x})
\end{aligned}
$$

Then

$$
\begin{aligned}
\mathrm{MCR}_{1}^{\sigma} & =\left(x_{1} \sigma_{1}^{2}+x_{2} \sigma_{12}\right) / \sigma_{p}(\mathrm{x}) \\
\mathrm{MCR}_{2}^{\sigma} & =\left(x_{2} \sigma_{2}^{2}+x_{1} \sigma_{12}\right) / \sigma_{p}(\mathrm{x}) \\
\mathrm{CR}_{1}^{\sigma} & =x_{1} \times\left(x_{1} \sigma_{1}^{2}+x_{2} \sigma_{12}\right) / \sigma_{p}(\mathbf{x})=\left(x_{1}^{2} \sigma_{1}^{2}+x_{1} x_{2} \sigma_{12}\right) / \sigma_{p}(\mathbf{x}) \\
\mathrm{CR}_{2}^{\sigma} & =x_{2} \times\left(x_{2} \sigma_{2}^{2}+x_{1} \sigma_{2}\right) / \sigma_{p}(\mathbf{x})=\left(x_{2}^{2} \sigma_{2}^{2}+x_{1} x_{2} \sigma_{12}\right) / \sigma_{p}(\mathbf{x})
\end{aligned}
$$

and

$$
\begin{aligned}
\mathrm{PCR}_{1}^{\sigma} & =\mathrm{CR}_{1}^{\sigma} / \sigma_{p}(\mathrm{x})=\left(x_{1}^{2} \sigma_{1}^{2}+x_{1} x_{2} \sigma_{12}\right) / \sigma_{p}^{2}(\mathrm{x}) \\
\mathrm{PCR}_{2}^{\sigma} & =\mathrm{CR}_{2}^{\sigma} / \sigma_{p}(\mathrm{x})=\left(x_{2}^{2} \sigma_{2}^{2}+x_{1} x_{2} \sigma_{12}\right) / \sigma_{p}^{2}(\mathrm{x})
\end{aligned}
$$

Note: This is the decomposition we derived at the beginning of lecture.

How to Interpret and Use $\mathrm{MCR}_{i}^{\sigma}$

$$
\begin{aligned}
\mathrm{MCR}_{i}^{\sigma} & =\frac{\partial \sigma_{p}(\mathbf{x})}{\partial x_{i}} \approx \frac{\Delta \sigma_{p}}{\Delta x_{i}} \\
& \Rightarrow \Delta \sigma_{p} \approx \operatorname{MCR}_{i}^{\sigma} \cdot \Delta x_{i}
\end{aligned}
$$

However, in a portfolio of n assets

$$
x_{1}+x_{2}+\cdots+x_{n}=1
$$

so that increasing or decreasing x_{i} means that we have to decrease or increase our allocation to one or more other assets. Hence, the formula

$$
\Delta \sigma_{p} \approx \mathrm{MCR}_{i}^{\sigma} \cdot \Delta x_{i}
$$

ignores this re-allocation effect.

If the increase in allocation to asset i is offset by a decrease in allocation to asset j, then

$$
\Delta x_{j}=-\Delta x_{i}
$$

and the change in portfolio volatility is approximately

$$
\begin{aligned}
\Delta \sigma_{p} & \approx \mathrm{MCR}_{i}^{\sigma} \cdot \Delta x_{i}+\mathrm{MCR}_{j}^{\sigma} \cdot \Delta x_{j} \\
& =\mathrm{MCR}_{i}^{\sigma} \cdot \Delta x_{i}-\mathrm{MCR}_{j}^{\sigma} \cdot \Delta x_{i} \\
& =\left(\mathrm{MCR}_{i}^{\sigma}-\mathrm{MCR}_{j}^{\sigma}\right) \cdot \Delta x_{i}
\end{aligned}
$$

μ_{1}	μ_{2}	σ_{1}^{2}	σ_{2}^{2}	σ_{1}	σ_{2}	σ_{12}	ρ_{12}
0.175	0.055	0.067	0.013	0.258	0.115	-0.004875	-0.164

Table 1: Example data for two asset portfolio.

Consider two portfolios:

- equal weighted portfolio $x_{1}=x_{2}=0.5$
- long-short portfolio $x_{1}=1.5$ and $x_{2}=-0.5$.

IIStandalone" vulatily

	σ_{i}	x_{i}	$\mathrm{MCR}_{i}^{\sigma}$	CR_{i}^{σ}	$\mathrm{PCR}_{i}^{\sigma}$	
	$\sigma_{p}=0.1323$					
Asset 1	0.258	0.5	0.23310	0.11655	0.8807	
Asset 2	0.115	0.5	0.03158	0.01579	0.1193	
$\sigma_{p}=0.4005$						
Asset 1	0.258	1.5	0.25540	0.38310	0.95663	
Asset 2	0.115	-0.5	-0.03474	0.01737	0.04337	

Table 2: Risk decomposition using portfolio standard deviation.

Interpretation: For equally weighted portfolio, increasing x_{1} from 0.5 to 0.6 decreases x_{2} from 0.5 to 0.4 . Then

$$
\begin{aligned}
\Delta \sigma_{p} & \approx\left(\mathrm{MCR}_{1}^{\sigma}-\mathrm{MCR}_{2}^{\sigma}\right) \cdot \Delta x_{i} \\
& =(0.23310-0.03158)(0.1) \\
& =0.02015
\end{aligned}
$$

So σ_{p} increases from 13% to 15%

For the long-short portfolio, increasing x_{1} from 1.5 to 1.6 decreases x_{2} from -0.5 to -0.6. Then

$$
\begin{aligned}
\Delta \sigma_{p} & \approx\left(\mathrm{MCR}_{1}^{\sigma}-\mathrm{MCR}_{2}^{\sigma}\right) \cdot \Delta x_{i} \\
& =[0.25540-(-0.03474)](0.1) \\
& =0.02901
\end{aligned}
$$

So σ_{p} increases from 40% to 43%

Beta as a Measure of Asset Contribution to Portfolio Volatility

For a portfolio of n assets with return

$$
R_{p}(\mathbf{x})=x_{1} R_{1}+\cdots+x_{n} R_{n}=\mathbf{x}^{\prime} \mathbf{R}
$$

we derived the portfolio volatility decomposition

$$
\begin{aligned}
\sigma_{p}(\mathbf{x}) & =x_{1} \frac{\partial \sigma_{p}(\mathbf{x})}{\partial x_{1}}+x_{2} \frac{\partial \sigma_{p}(\mathbf{x})}{\partial x_{2}}+\cdots+x_{n} \frac{\partial \sigma_{p}(\mathbf{x})}{\partial x_{n}}=\mathbf{x}^{\prime} \frac{\partial \sigma_{p}(\mathbf{x})}{\partial \mathbf{x}} \\
\frac{\partial \sigma_{p}(\mathbf{x})}{\partial \mathbf{x}} & =\frac{\Sigma \mathbf{x}}{\sigma_{p}(\mathbf{x})}, \frac{\partial \sigma_{p}(\mathbf{x})}{\partial x_{i}}=\text { ith row of } \frac{\Sigma \mathbf{x}}{\sigma_{p}(\mathbf{x})}
\end{aligned}
$$

With a little bit of algebra we can derive an alternative expression for

$$
\mathrm{MCR}_{i}^{\sigma}=\frac{\partial \sigma_{p}(\mathbf{x})}{\partial x_{i}}=\text { ith row of } \frac{\boldsymbol{\Sigma} \mathbf{x}}{\sigma_{p}(\mathbf{x})}
$$

$$
\beta_{i}=\frac{p C R_{i}}{x_{i}}
$$

Definition: The beta/of asset i with respect to the portfolio is defined as

$$
\beta /_{i}=\frac{\operatorname{cov}\left(R_{i}, R_{p}(\mathrm{x})\right)}{\operatorname{var}\left(R_{p}(\mathrm{x})\right)}=\frac{\operatorname{cov}\left(R_{i}, R_{p}(\mathrm{x})\right)}{\sigma_{p}^{2}(\mathrm{x})}
$$

Result: β_{i} measures asset contribution to $\sigma_{p}(\mathbf{x})$:

- By construction, the beta of the portfolio is 1

$$
\beta_{p}=\frac{\operatorname{cov}\left(R_{p}(\mathbf{x}), R_{p}(\mathbf{x})\right)}{\operatorname{var}\left(R_{p}(\mathrm{x})\right)}=\frac{\operatorname{var}\left(R_{p}(\mathrm{x})\right)}{\operatorname{var}\left(R_{p}(\mathrm{x})\right)}=1
$$

- When $\beta_{i}=1$

Asset has save risk

$$
\mathrm{MCR}_{i}^{\sigma}=\sigma_{p}(\mathrm{x})
$$ as the

$$
\mathrm{CR}_{i}^{\sigma}=x_{i} \sigma_{p}(\mathrm{x})
$$

$$
\mathrm{PCR}_{i}^{\sigma}=x_{i}
$$

If we maras the allocate to asset i with $\mu_{i}=1$ and decrease ullocutm to asses j with $\mu=1$ the

$$
\begin{aligned}
\Delta \sigma_{p} & =\left(M \mathbb{R}-M C R_{j}\right) \Delta x_{i} \\
& =\left(\sigma_{p}-\sigma_{p}\right)-\Delta x_{i}=0
\end{aligned}
$$

Aesect los ristous
Mum the purttolio

- When $\beta_{i}>1$

$$
\begin{aligned}
\mathrm{MCR}_{i}^{\sigma} & >\sigma_{p}(\mathbf{x}) \\
\mathrm{CR}_{i}^{\sigma} & >x_{i} \sigma_{p}(\mathbf{x}) \\
\mathrm{PCR}_{i}^{\sigma} & >x_{i}
\end{aligned}
$$

- When $\beta_{i}<1$
pwthon,j

$$
\begin{aligned}
\mathrm{MCR}_{i}^{\sigma} & <\sigma_{p}(\mathbf{x}) \\
\mathrm{CR}_{i}^{\sigma} & <x_{i} \sigma_{p}(\mathbf{x}) \\
\mathrm{PCR}_{i}^{\sigma} & <x_{i}
\end{aligned}
$$

If $\beta_{i}>1$ then addis asbet i to powt bolio incueuses purt folis risk
If $\beta i \ll$ then addiy usset i to partoliv decruxs sisk!

	σ_{i}	x_{i}	$\mathrm{MCR}_{i}^{\sigma}$	CR_{i}^{σ}	$\mathrm{PCR}_{i}^{\sigma}$	$\beta_{i}=\mathrm{PCR}_{i}^{\sigma} / x_{i}$
$\sigma_{p}=0.1323$						
Asset 1	0.258	0.5	0.23310	0.11655	0.8807	1.761
Asset 2	0.115	0.5	0.03158	0.01579	0.1193	0.239

Table 3: Risk decomposition using portfolio standard deviation.

Example

- Asset 1 has $\beta_{1}=1.761 \Rightarrow$ Asset 1's percent contribution to risk $\left(\mathrm{PCR}_{i}^{\sigma}\right)$ is much greater than its allocation weight $\left(x_{i}\right)$
- Asset 2 has $\beta_{2}=0.239 \Rightarrow$ Asset 1 's percent contribution to risk $\left(\mathrm{PCR}_{i}^{\sigma}\right)$ is much less than its allocation weight $\left(x_{i}\right)$

Derivation of Result:

Now,

$$
\boldsymbol{\Sigma} \mathbf{x}=\left(\begin{array}{cccc}
\sigma_{1}^{2} & \sigma_{12} & \cdots & \sigma_{1 n} \\
\hline \sigma_{12} & \sigma_{2} & \cdots & \sigma_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
\sigma_{1 n} & \sigma_{n 2} & \cdots & \sigma_{n}^{2}
\end{array}\right)\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right)
$$

1strow of $\sum x$:

$$
=x_{1} \sigma_{1}^{2}+x_{2} \cdot \sigma_{12}+x_{3} \cdot \sigma_{13}+\cdots+x_{n} \cdot \sigma_{1 n}
$$

The first row of $\Sigma \mathbf{x}$ is

Now consider

$$
\begin{aligned}
& x_{1} \sigma_{1}^{2}+x_{2} \sigma_{12}+\cdots+x_{n} \sigma_{1 n}
\end{aligned} \quad=\operatorname{cov}\left(R_{1}, R_{p}\right)
$$

Next, note that

$$
\beta_{1}=\frac{\operatorname{cov}\left(R_{1}, R_{p}\right)}{\sigma_{p}^{2}(\mathrm{x})} \Rightarrow \operatorname{cov}\left(R_{1}, R_{p}\right)=\beta_{1} \sigma_{p}^{2}(\mathrm{x})
$$

An asset with $\beta>1$ is very conelnhed (pusitraly) with the o kn asserts in the pertrolis
Hence, the first row of $\Sigma \mathbf{x}$ is

$$
x_{1} \sigma_{1}^{2}+x_{2} \sigma_{12}+\cdots+x_{n} \sigma_{1 n}=\beta_{1} \sigma_{p}^{2}(\mathbf{x})
$$

and so

$$
\begin{aligned}
\mathrm{MCR}_{1}^{\sigma} & =\frac{\partial \sigma_{p}(\mathbf{x})}{\partial x_{1}}=\text { first row of } \frac{\boldsymbol{\Sigma} \mathbf{x}}{\sigma_{p}(\mathbf{x})} \\
& =\frac{\beta_{1} \sigma_{p}^{2}(\mathbf{x})}{\sigma_{p}(\mathbf{x})}=\beta_{1} \sigma_{p}(\mathbf{x})
\end{aligned}
$$

In a similar fashion, we have

$$
\begin{aligned}
\mathrm{MCR}_{i}^{\sigma} & =\frac{\partial \sigma_{p}(\mathbf{x})}{\partial x_{i}}=\text { i'th row of } \frac{\mathbf{\Sigma x}}{\sigma_{p}(\mathbf{x})} \\
& =\frac{\beta_{i} \sigma_{p}^{2}(\mathbf{x})}{\sigma_{p}(\mathbf{x})}=\beta_{i} \sigma_{p}(\mathbf{x}) \\
B_{i}=\operatorname{cov}\left(R_{j,} R_{\rho}\right) &
\end{aligned}
$$

MSLI Bursa

$x-\sigma-\rho$ Decomposition of Portfolio Volatility

Recall,

$$
\mathrm{MCR}_{i}^{\sigma}=\frac{\partial \sigma_{p}(\mathbf{x})}{\partial x_{i}}=\text { th row of } \frac{\Sigma \mathbf{x}}{\sigma_{p}(\mathbf{x})}=\frac{\operatorname{cov}\left(R_{i}, R_{p}(\mathbf{x})\right)}{\sigma_{p}(\mathbf{x})}
$$

Using

$$
\begin{aligned}
\rho_{i, p} & =\operatorname{corr}\left(R_{i}, R_{p}(\mathbf{x})\right)=\frac{\operatorname{cov}\left(R_{i}, R_{p}(\mathbf{x})\right)}{\sigma_{i} \sigma_{p}(\mathbf{x})} \\
& \Rightarrow \operatorname{cov}\left(R_{i}, R_{p}(\mathbf{x})\right)=\rho_{i, p} \sigma_{i} \sigma_{p}(\mathbf{x})
\end{aligned}
$$

gives

$$
\begin{gathered}
\operatorname{MCR}_{i}^{\sigma}=\frac{\rho_{i, p} \sigma_{i} \sigma_{p}(\mathrm{x})}{\sigma_{p}(\mathrm{x})}=\rho_{i, p} \sigma_{i} \\
\rho_{i}, \rho=\frac{M C R_{i}}{\sigma_{j}}
\end{gathered}
$$

Then

$$
\mathrm{CR}_{i}^{\sigma}=x_{i} \times \mathrm{MCR}_{i}^{\sigma}=x_{i} \times \sigma_{i} \times \rho_{i, p}
$$

$=$ allocation \times standalone risk \times correlation with portfolio
Remarks:

- $x_{i} \times \sigma_{i}=$ standalone contribution to risk (ignores correlation effects with other assets)

Table 4: Risk decomposition using portfolio standard deviation.

Remarks:

- For the equally weighted portfolio, both assets are positively correlated with the portfolio
- For the long-short portfolio, Asset 2 is negatively correlated with the portfolio

Beta as a Measure of Portfolio Risk

$$
\beta_{i}=\frac{\operatorname{cov}\left(R_{i}, R_{\rho}\right)}{\left.\operatorname{var} R_{\rho}\right)}
$$

Key points:

$$
M C R_{i}=\beta_{i} \sigma_{\rho}(t)
$$

- Asset specific risk can be diversified away by forming portfolios. What remains is "portfolio risk".
- Riskiness of an asset should be judged in a portfolio context - portfolio risk demands a risk premium; asset specific risk does not
- Beta measures the portfolio risk of an asset
- In a large diversified portfolio of all traded assets, portfolio risk is the same as "market risk"

Beta and Risk Return Tradeoff

$$
\begin{aligned}
R_{p} & =\text { return on any portfolio } \\
R_{i} & =\text { return on any asset } i \\
\beta_{i, p} & =\frac{\operatorname{cov}\left(R_{i}, R_{p}\right)}{\operatorname{var}\left(R_{p}\right)}=\frac{\sigma_{i, p}}{\sigma_{p}^{2}}
\end{aligned}
$$

Conjecture: If $\beta_{i, p}$ is the appropriate measure of the risk of an asset, then the asset's expected return, μ_{i}, should depend on $\beta_{i, p}$. That is

$$
E\left[R_{i}\right]=\mu_{i}=f\left(\beta_{i, p}\right)
$$

The Capital Asset Pricing Model (CAPM) formalizes this conjecture.

$$
E\left[\mu_{i}\right]=r_{f}+\beta_{i, m}\left(E\left[r_{m}\right]-r_{f}\right)
$$

