W
 UNIVERSITY of WASHINGTON

Introduction to Computational Finance and Financial Econometrics Return Calculations

Eric Zivot

Spring 2015

Outline

(1) The time value of money

- Future value
- Multiple compounding periods
- Effective annual rate
(2) Asset return calculations
- Multi-period returns
- Portfolio returns
- Adjusting for dividends
- Adjusting for inflation
- Annualizing returns
- Average returns
- Multi-period returns
- Portfolio returns
- Adjusting for inflation

Outline

(1) The time value of money

- Future value
- Multiple compounding periods
- Effective annual rate
(2) Asset return calculations
- Multi-period returns
- Portfolio returns
- Adjusting for dividends
- Adjusting for inflation
- Annualizing returns
- Average returns
- Multi-period returns
- Portfolio returns
- Adjusting for inflation

Future value

- $\$ V$ invested for n years at simple interest rate R per year
- Compounding of interest occurs at end of year

$$
F V_{n}=\$ V \cdot(1+R)^{n}
$$

where $F V_{n}$ is future value after n years

Example

Consider putting $\$ 1000$ in an interest checking account that pays a simple annual percentage rate of 3%. The future value after $n=1,5$ and 10 years is, respectively,

$$
\begin{aligned}
F V_{1} & =\$ 1000 \cdot(1.03)^{1}=\$ 1030 \\
F V_{5} & =\$ 1000 \cdot(1.03)^{5}=\$ 1159.27 \\
F V_{10} & =\$ 1000 \cdot(1.03)^{10}=\$ 1343.92
\end{aligned}
$$

Future value

FV function is a relationship between four variables: $F V_{n}, V, R, n$. Given three variables, you can solve for the fourth:

- Present value:

$$
V=\frac{F V_{n}}{(1+R)^{n}}
$$

$$
F V_{1}=V(1+R)^{n}
$$

$$
R=\left(\frac{F V_{n}}{V}\right)^{1 / n}-1
$$

$$
=\left(\frac{F V_{1}}{V}\right)^{\frac{1}{n}}-1=R
$$

- Investment horizon:

$$
F V_{n}=V(1+1 R)^{n}
$$

$$
\begin{aligned}
& n=\frac{\ln \left(F V_{n} / V\right)}{\ln (1+R)} . \quad n \frac{F V_{1}}{V}=(1+R)^{n} \\
& \Rightarrow \ln (F V / V) e n \ln (1+R)
\end{aligned}
$$

Outline

(1) The time value of money

- Future value
- Multiple compounding periods
- Effective annual rate
(2) Asset return calculations
- Multi-period returns
- Portfolio returns
- Adjusting for dividends
- Adjusting for inflation
- Annualizing returns
- Average returns
- Multi-period returns
- Portfolio returns
- Adjusting for inflation

Multiple compounding periods

- Compounding occurs m times per year

$$
\begin{aligned}
F V_{n}^{m} & =\$ V \cdot\left(1+\frac{R}{m}\right)^{m \cdot n} \\
\frac{R}{m} & =\text { periodic interest rate }
\end{aligned}
$$

- Continuous compounding

$$
\begin{aligned}
F V_{n}^{\infty} & =\lim _{m \rightarrow \infty} \$ V \cdot\left(1+\frac{R}{m}\right)^{m \cdot n}=\$ V e^{R \cdot n} \\
e^{1} & =2.71828
\end{aligned}
$$

Example

If the simple annual percentage rate is 10% then the value of $\$ 1000$ at the end of one year $(n=1)$ for different values of m is given in the table below.

Compounding Frequency	Value of $\$ 1000$ at end of 1 year $(R=10 \%)$
Annually $(m=1)$	1100.00
Quarterly $(m=4)$	1103.81
Weekly $(m=52)$	1105.06
Daily $(m=365)$	1105.16
Continuously $(m=\infty)$	1105.17

Outline

(1) The time value of money

- Future value
- Multiple compounding periods
- Effective annual rate
(2) Asset return calculations
- Multi-period returns
- Portfolio returns
- Adjusting for dividends
- Adjusting for inflation
- Annualizing returns
- Average returns
- Multi-period returns
- Portfolio returns
- Adjusting for inflation

Effective annual rate

Annual rate R_{A} that equates $F V_{n}^{m}$ with $F V_{n}$; i.e.,

$$
\$ V\left(1+\frac{R}{m}\right)^{m \cdot n}=\$ V\left(1+R_{A}\right)^{n}
$$

Solving for R_{A}

$$
\left(1+\frac{R}{m}\right)^{m}=1+R_{A} \Rightarrow R_{A}=\left(1+\frac{R}{m}\right)^{m}-1
$$

Continuous compounding

$$
\begin{aligned}
\$ V e^{R \cdot n} & =\$ V\left(1+R_{A}\right)^{n} \\
& \Rightarrow e^{R}=\left(1+R_{A}\right) \\
& \Rightarrow R_{A}=e^{R}-1
\end{aligned}
$$

Example

Compute effective annual rate with semi-annual compounding
The effective annual rate associated with an investment with a simple annual rate $R=10 \%$ and semi-annual compounding ($m=2$) is determined by solving

$$
\begin{aligned}
\left(1+R_{A}\right) & =\left(1+\frac{0.10}{2}\right)^{2} \\
& \Rightarrow R_{A}=\left(1+\frac{0.10}{2}\right)^{2}-1=0.1025
\end{aligned}
$$

Effective annual rate

Compounding Frequency	Value of $\$ 1000$ at end of 1 year $(R=10 \%)$	R_{A}
Annually $(m=1)$	1100.00	10%
Quarterly $(m=4)$	1103.81	10.38%
Weekly $(m=52)$	1105.06	10.51%
Daily $(m=365)$	1105.16	10.52%
Continuously $(m=\infty)$	1105.17	10.52%

Outline

(1) The time value of money

(2) Asset return calculations

- Simple returns
- Multi-period returns
- Portfolio returns
- Adjusting for dividends
- Adjusting for inflation
- Annualizing returns
- Average returns
- Continuously compounded (cc) returns
- Multi-period returns
- Portfolio returns
- Adjusting for inflation

Outline

(1) The time value of money

(2) Asset return calculations

- Simple returns
- Multi-period returns
- Portfolio returns
- Adjusting for dividends
- Adjusting for inflation
- Annualizing returns
- Average returns
- Continuously compounded (cc) returns
- Multi-period returns
- Portfolio returns
- Adjusting for inflation

Simple returns

- $P_{t}=$ price at the end of month t on an asset that pays no dividends
- $P_{t-1}=$ price at the end of month $t-1$

$$
R_{t}=\frac{P_{t}-P_{t-1}}{P_{t-1}}=\% \Delta P_{t}=\text { net return over month } t
$$

$1+R_{t}=\frac{P_{t}}{P_{t-1}}=$ gross return over month t.

Example

One month investment in Microsoft stock
Buy stock at end of month $t-1$ at $P_{t-1}=\$ 85$ and sell stock at end of next month for $P_{t}=\$ 90$. Assuming that Microsoft does not pay a dividend between months $t-1$ and t, the one-month simple net and gross returns are

$$
\begin{aligned}
R_{t} & =\frac{\$ 90-\$ 85}{\$ 85}=\frac{\$ 90}{\$ 85}-1=1.0588-1=0.0588 \\
1+R_{t} & =1.0588
\end{aligned}
$$

The one month investment in Microsoft yielded a 5.88% per month return.

Multi-period returns

$$
\begin{aligned}
& \text { Simple two-month return } \\
& =\frac{P_{t}}{P_{t-2}}-1 .
\end{aligned}
$$

Relationship to one month returns

$$
\begin{aligned}
& R_{t}(2)=\frac{P_{t}}{P_{t-2}}-1=\frac{P_{t}}{P_{t-1}} \cdot \frac{P_{t-1}}{P_{t-2}}-1 \\
& =\left(1+R_{t}\right) \cdot\left(1+R_{t-1}\right)-1 \text {. } \\
& \frac{P_{t-1}}{P_{t-2}}=1+P_{t-1} \\
& =1+R_{t-1}+R_{t}+R_{t} \cdot R_{t-1}-1 \\
& \begin{array}{l}
\text { provided } \\
P_{t}=R_{t-1} \\
\text { cluseto } 0
\end{array} \\
& =R_{t-1}+R_{t}+R_{t} \cdot R_{t-1} \approx R_{t}+R_{t 1}
\end{aligned}
$$

Multi-period returns

Here
$1+R_{t}=$ one-month gross return over month t,
$1+R_{t-1}=$ one-month gross return over month $t-1$,

$$
\Longrightarrow 1+R_{t}(2)=\left(1+R_{t}\right) \cdot\left(1+R_{t-1}\right) .
$$

two-month gross return $=$ the product of two one-month gross returns
Note: two-month returns are not additive:

$$
\begin{aligned}
R_{t}(2) & =R_{t}+R_{t-1}+R_{t} \cdot R_{t-1} \\
& \approx R_{t}+R_{t-1} \text { if } R_{t} \text { and } R_{t-1} \text { are small }
\end{aligned}
$$

Example

Two-month return on Microsoft

Suppose that the price of Microsoft in month $t-2$ is $\$ 80$ and no dividend is paid between months $t-2$ and t. The two-month net return is

$$
R_{t}(2)=\frac{\$ 90-\$ 80}{\$ 80}=\frac{\$ 90}{\$ 80}-1=1.1250-1=0.1250
$$

or 12.50% per two months. The two one-month returns are

$$
\begin{gathered}
R_{t-1}=\frac{\$ 85-\$ 80}{\$ 80}=1.0625-1=0.0625 \\
R_{t}=\frac{\$ 90-85}{\$ 85}=1.0588-1=0.0588
\end{gathered}
$$

and the geometric average of the two one-month gross returns is

$$
1+R_{t}(2)=1.0625 \times 1.0588=1.1250
$$

Multi-period returns

Simple k-month Return

$$
\begin{aligned}
R_{t}(k) & =\frac{P_{t}-P_{t-k}}{P_{t-k}}=\frac{P_{t}}{P_{t-k}}-1 \\
1+R_{t}(k) & =\left(1+R_{t}\right) \cdot\left(1+R_{t-1}\right) \cdots \cdots\left(1+R_{t-k+1}\right) \\
& =\prod_{j=0}^{k-1}\left(1+R_{t-j}\right)
\end{aligned}
$$

Note

$$
R_{t}(k) \neq \sum_{j=0}^{k-1} R_{t-j}
$$

Portfolio returns

- Invest $\$ V$ in two assets: A and B for 1 period
- $x_{A}=$ share of $\$ V$ invested in $\mathrm{A} ; \$ V \times x_{A}=\$$ amount
- $x_{B}=$ share of $\$ V$ invested in $\mathrm{B} ; \$ V \times x_{B}=\$$ amount
- Assume $x_{A}+x_{B}=1$
- Portfolio is defined by investment shares x_{A} and x_{B}

Portfolio returns

At the end of the period, the investments in A and B grow to

$$
\begin{aligned}
\$ V\left(1+R_{p, t}\right) & =\$ V\left[x_{A}\left(1+R_{A, t}\right)+x_{B}\left(1+R_{B, t}\right)\right] \\
& =\$ V\left[x_{A}+x_{B}+x_{A} R_{A, t}+x_{B} R_{B, t}\right] \\
& =\$ V\left[1+x_{A} R_{A, t}+x_{B} R_{B, t}\right] \\
& \Rightarrow R_{p, t}=x_{A} R_{A, t}+x_{B} R_{B, t}
\end{aligned}
$$

The simple portfolio return is a share weighted average of the simple returns on the individual assets.

Example

Portfolio of Microsoft and Starbucks stock

Purchase ten shares of each stock at the end of month $t-1$ at prices

$$
P_{m s f t, t-1}=\$ 85, P_{s b u x, t-1}=\$ 30
$$

The initial value of the portfolio is

$$
V_{t-1}=10 \times \$ 85+10 \times 30=\$ 1,150
$$

The portfolio shares are

$$
x_{m s f t}=850 / 1150=0.7391, x_{s b u x}=300 / 1150=0.2609
$$

The end of month t prices are $P_{m s f t, t}=\$ 90$ and $P_{s b u x, t}=\$ 28$.

Example cont.

Assuming Microsoft and Starbucks do not pay a dividend between periods $t-1$ and t, the one-period returns are

$$
\begin{aligned}
& R_{m s f t, t}=\frac{\$ 90-\$ 85}{\$ 85}=0.0588 \\
& R_{s b u x, t}=\frac{\$ 28-\$ 30}{\$ 30}=-0.0667
\end{aligned}
$$

The return on the portfolio is

$$
R_{p, t}=(0.7391)(0.0588)+(0.2609)(-0.0667)=0.02609
$$

and the value at the end of month t is

$$
V_{t}=\$ 1,150 \times(1.02609)=\$ 1,180
$$

Portfolio returns

In general, for a portfolio of n assets with investment shares x_{i} such that $x_{1}+\cdots+x_{n}=1$

$$
\begin{aligned}
1+R_{p, t} & =\sum_{i=1}^{n} x_{i}\left(1+R_{i, t}\right) \\
R_{p, t} & =\sum_{i=1}^{n} x_{i} R_{i, t} \\
& =x_{1} R_{1 t}+\cdots+x_{n} R_{n t}
\end{aligned}
$$

Adjusting for dividends

$D_{t}=$ dividend payment between months $t-1$ and t

$$
\begin{aligned}
R_{t}^{t o t a l} & =\frac{P_{t}+D_{t}-P_{t-1}}{P_{t-1}}=\frac{P_{t}-P_{t-1}}{P_{t-1}}+\frac{D_{t}}{P_{t-1}} \\
& =\text { capital gain return }+ \text { dividend yield (gross) }
\end{aligned}
$$

$$
1+R_{t}^{\text {total }}=\frac{P_{t}+D_{t}}{P_{t-1}}
$$

Example

Total return on Microsoft stock
Buy stock in month $t-1$ at $P_{t-1}=\$ 85$ and sell the stock the next month for $P_{t}=\$ 90$. Assume Microsoft pays a $\$ 1$ dividend between months $t-1$ and t. The capital gain, dividend yield and total return are then

$$
\begin{aligned}
R_{t}^{\text {total }} & =\frac{\$ 90+\$ 1-\$ 85}{\$ 85}=\frac{\$ 90-\$ 85}{\$ 85}+\frac{\$ 1}{\$ 85} \\
& =0.0588+0.0118 \\
& =0.0707
\end{aligned}
$$

The one-month investment in Microsoft yields a 7.07% per month total return. The capital gain component is 5.88%, and the dividend yield component is 1.18%.

Adjusting for inflation

The computation of real returns on an asset is a two step process:

- Deflate the nominal price P_{t} of the asset by an index of the general price level $C P I_{t}$
- Compute returns in the usual way using the deflated prices

$$
\begin{aligned}
P_{t}^{\text {Real }} & =\frac{P_{t}}{C P I_{t}} \\
R_{t}^{\text {Real }} & =\frac{P_{t}^{\text {Real }}-P_{t-1}^{\text {Real }}}{P_{t-1}^{\text {Real }}}=\frac{\frac{P_{t}}{C P I_{t}}-\frac{P_{t-1}}{C P I_{t-1}}}{\frac{P_{t-1}}{C P I_{t-1}}} \\
& =\frac{P_{t}}{P_{t-1}} \cdot \frac{C P I_{t-1}}{C P I_{t}}-1
\end{aligned}
$$

Adjusting for inflation cont.

Alternatively, define inflation as

$$
\pi_{t}=\% \Delta C P I_{t}=\frac{C P I_{t}-C P I_{t-1}}{C P I_{t-1}}
$$

Then

$$
R_{t}^{\text {Real }}=\frac{1+R_{t}}{1+\pi_{t}}-1
$$

Example

Compute real return on Microsoft stock

Suppose the CPI in months $t-1$ and t is 1 and 1.01 , respectively, representing a 1% monthly growth rate in the overall price level. The real prices of Microsoft stock are

$$
P_{t-1}^{\text {Real }}=\frac{\$ 85}{1}=\$ 85, P_{t}^{\text {Real }}=\frac{\$ 90}{1.01}=\$ 89.1089
$$

The real monthly return is

$$
R_{t}^{\text {Real }}=\frac{\$ 89.10891-\$ 85}{\$ 85}=0.0483
$$

Example cont.

The nominal return and inflation over the month are

$$
R_{t}=\frac{\$ 90-\$ 85}{\$ 85}=0.0588, \pi_{t}=\frac{1.01-1}{1}=0.01
$$

Then the real return is

$$
R_{t}^{\text {Real }}=\frac{1.0588}{1.01}-1=0.0483
$$

Notice that simple real return is almost, but not quite, equal to the simple nominal return minus the inflation rate

$$
R_{t}^{\text {Real }} \approx R_{t}-\pi_{t}=0.0588-0.01=0.0488
$$

Annualizing returns

Returns are often converted to an annual return to establish a standard for comparison.

Example: Assume same monthly return R_{m} for 12 months:

Compound annual gross return $(\mathrm{CAGR})=1+R_{A}=1+R_{t}(12)=(1+$ Compound annual net return $=R_{A}=\left(1+R_{m}\right)^{12}-1$

Note: We don't use $R_{A}=12 R_{m}$ because this ignores compounding.

Example

Annualized return on Microsoft
Suppose the one-month return, R_{t}, on Microsoft stock is 5.88%. If we assume that we can get this return for 12 months then the compounded annualized return is

$$
R_{A}=(1.0588)^{12}-1=1.9850-1=0.9850
$$

or 98.50% per year. Pretty good!

Example

Annualized return on Microsoft
Suppose the one-month return, R_{t}, on Microsoft stock is 5.88%. If we assume that we can get this return for 12 months then the compounded annualized return is

$$
R_{A}=(1.0588)^{12}-1=1.9850-1=0.9850
$$

or 98.50% per year. Pretty good!

Average returns

For investments over a given horizon, it is often of interest to compute a measure of average return over the horizon.

Consider a sequence of monthly investments over the year with monthly returns

$$
R_{1}, R_{2}, \ldots, R_{12}
$$

The annual return is

$$
R_{A}=R(12)=\left(1+R_{1}\right)\left(1+R_{2}\right) \cdots\left(1+R_{12}\right)-1
$$

Q: What is the average monthly return?

Average returns

Two possibilites:
(1) Arithmetic average (can be misleading)

$$
\bar{R}=\frac{1}{12}\left(R_{1}+\cdots+R_{12}\right)
$$

(2) Geometric average (better measure of average return)

$$
\begin{aligned}
(1+\bar{R})^{12} & =\left(1+R_{A}\right)=\left(1+R_{1}\right)\left(1+R_{2}\right) \cdots\left(1+R_{12}\right) \\
& \Rightarrow \bar{R}=\left(1+R_{A}\right)^{1 / 12}-1 \\
& =\left[\left(1+R_{1}\right)\left(1+R_{2}\right) \cdots\left(1+R_{12}\right)\right]^{1 / 12}-1
\end{aligned}
$$

Example

Consider a two period invesment with returns

$$
R_{1}=0.5, \quad R_{2}=-0.5
$$

$\$ 1$ invested over two periods grows to

$$
F V=\$ 1 \times\left(1+R_{1}\right)\left(1+R_{2}\right)=(1.5)(0.5)=0.75
$$

for a 2-period return of

$$
R(2)=0.75-1=-0.25
$$

Hence, the 2-period investment loses 25%

Example cont.

The arithmetic average return is

$$
\bar{R}=\frac{1}{2}(0.5+-0.5)=0
$$

This is misleading becuase the actual invesment lost money over the 2 period horizon. The compound 2-period return based on the arithmetic average is

$$
(1+\bar{R})^{2}-1=1^{2}-1=0
$$

The geometric average is

$$
[(1.5)(0.5)]^{1 / 2}-1=(0.75)^{1 / 2}-1=-0.1340
$$

This is a better measure because it indicates that the investment eventually lost money. The compound 2-period return is

$$
(1+\bar{R})^{2}-1=(0.867)^{2}-1=-0.25
$$

Outline

(1) The time value of money

(2) Asset return calculations

- Simple returns
- Multi-period returns
- Portfolio returns
- Adjusting for dividends
- Adjusting for inflation
- Annualizing returns
- Average returns
- Continuously compounded (cc) returns
- Multi-period returns
- Portfolio returns
- Adjusting for inflation

Continuously compounded (cc) returns

$$
r_{t}=\ln \left(1+R_{t}\right)=\ln \left(\frac{P_{t}}{P_{t-1}}\right)
$$

$\ln (\cdot)=$ natural \log function
Note:

$$
\begin{aligned}
& \ln \left(1+R_{t}\right)=r_{t}: \text { given } R_{t} \text { we can solve for } r_{t} \\
& R_{t}=e^{r_{t}}-1: \text { given } r_{t} \text { we can solve for } R_{t} \\
& r_{t} \text { is always smaller than } R_{t}
\end{aligned}
$$

Digression on natural log and exponential functions

- $\ln (0)=-\infty, \ln (1)=0$
- $e^{-\infty}=0, e^{0}=1, e^{1}=2.7183$
- $\frac{d \ln (x)}{d x}=\frac{1}{x}, \frac{d e^{x}}{d x}=e^{x}$
- $\ln \left(e^{x}\right)=x, e^{\ln (x)}=x$
- $\ln (x \cdot y)=\ln (x)+\ln (y) ; \ln \left(\frac{x}{y}\right)=\ln (x)-\ln (y)$
- $\ln \left(x^{y}\right)=y \ln (x)$
- $e^{x} e^{y}=e^{x+y}, e^{x} e^{-y}=e^{x-y}$
- $\left(e^{x}\right)^{y}=e^{x y}$

Intuition

$$
e^{r_{t}}=e^{\ln \left(1+R_{t}\right)}=e^{\ln \left(P_{t} / P_{t-1}\right)}
$$

$$
=\frac{P_{t}}{P_{t-1}}
$$

$$
\Longrightarrow P_{t-1} \cdot e^{r_{t}}=P_{t}
$$

$\Longrightarrow r_{t}=\mathrm{cc}$ growth rate in prices between months $t-1$ and t

Result

If R_{t} is small then

$$
r_{t}=\ln \left(1+R_{t}\right) \approx R_{t}
$$

Proof. For a function $f(x)$, a first order Taylor series expansion about $x=x_{0}$ is

$$
f(x)=f\left(x_{0}\right)+\frac{d}{d x} f\left(x_{0}\right)\left(x-x_{0}\right)+\text { remainder }
$$

Let $f(x)=\ln (1+x)$ and $x_{0}=0$. Note that

$$
\frac{d}{d x} \ln (1+x)=\frac{1}{1+x}, \frac{d}{d x} \ln \left(1+x_{0}\right)=1
$$

Then

$$
\ln (1+x) \approx \ln (1)+1 \cdot x=0+x=x
$$

Computational trick

$$
\begin{aligned}
r_{t} & =\ln \left(\frac{P_{t}}{P_{t-1}}\right) \\
& =\ln \left(P_{t}\right)-\ln \left(P_{t-1}\right) \\
& =p_{t}-p_{t-1} \\
& =\text { difference in log prices }
\end{aligned}
$$

where

$$
p_{t}=\ln \left(P_{t}\right)
$$

Example

Let $P_{t-1}=85, P_{t}=90$ and $R_{t}=0.0588$. Then the cc monthly return can be computed in two ways:

$$
\begin{aligned}
& r_{t}=\ln (1.0588)=0.0571 \\
& r_{t}=\ln (90)-\ln (85)=4.4998-4.4427=0.0571
\end{aligned}
$$

Notice that r_{t} is slightly smaller than R_{t}.

Multi-period returns

$$
\begin{aligned}
r_{t}(2) & =\ln \left(1+R_{t}(2)\right) \\
& =\ln \left(\frac{P_{t}}{P_{t-2}}\right) \\
& =p_{t}-p_{t-2}
\end{aligned}
$$

Note that

$$
\begin{aligned}
e^{r_{t}(2)} & =e^{\ln \left(P_{t} / P_{t-2}\right)} \\
& \Rightarrow P_{t-2} e^{r_{t}(2)}=P_{t}
\end{aligned}
$$

$\Longrightarrow r_{t}(2)=$ cc growth rate in prices between months $t-2$ and t

Result

cc returns are additive

$$
\begin{aligned}
r_{t}(2) & =\ln \left(\frac{P_{t}}{P_{t-1}} \cdot \frac{P_{t-1}}{P_{t-2}}\right) \\
& =\ln \left(\frac{P_{t}}{P_{t-1}}\right)+\ln \left(\frac{P_{t-1}}{P_{t-2}}\right) \\
& =r_{t}+r_{t-1}
\end{aligned}
$$

where $r_{t}=\mathrm{cc}$ return between months $t-1$ and $t, r_{t-1}=\mathrm{cc}$ return between months $t-2$ and $t-1$

Example

Compute cc two-month return

Suppose $P_{t-2}=80, P_{t-1}=85$ and $P_{t}=90$. The cc two-month return can be computed in two equivalent ways: (1) take difference in log prices

$$
r_{t}(2)=\ln (90)-\ln (80)=4.4998-4.3820=0.1178
$$

(2) sum the two cc one-month returns

$$
\begin{aligned}
r_{t} & =\ln (90)-\ln (85)=0.0571 \\
r_{t-1} & =\ln (85)-\ln (80)=0.0607 \\
r_{t}(2) & =0.0571+0.0607=0.1178
\end{aligned}
$$

Notice that $r_{t}(2)=0.1178<R_{t}(2)=0.1250$.

Result

$$
\begin{aligned}
r_{t}(k) & =\ln \left(1+R_{t}(k)\right)=\ln \left(\frac{P_{t}}{P_{t-k}}\right) \\
& =\sum_{j=0}^{k-1} r_{t-j} \\
& =r_{t}+r_{t-1}+\cdots+r_{t-k+1}
\end{aligned}
$$

Portfolio returns

$$
\begin{aligned}
R_{p, t} & =\sum_{i=1}^{n} x_{i} R_{i, t} \\
r_{p, t} & =\ln \left(1+R_{p, t}\right)=\ln \left(1+\sum_{i=1}^{n} x_{i} R_{i, t}\right) \neq \sum_{i=1}^{n} x_{i} r_{i, t}
\end{aligned}
$$

\Rightarrow portfolio returns are not additive
Note: If $R_{p, t}=\sum_{i=1}^{n} x_{i} R_{i, t}$ is not too large, then $r_{p, t} \approx R_{p, t}$ otherwise, $R_{p, t}>r_{p, t}$.

Example

Compute cc return on portfolio

Consider a portfolio of Microsoft and Starbucks stock with

$$
\begin{aligned}
x_{m s f t} & =0.25, x_{s b u x}=0.75 \\
R_{m s f t, t} & =0.0588, R_{s b u x, t}=-0.0503 \\
R_{p, t} & =x_{m s f t} R_{m s f t, t}+x_{s b u x, t} R_{s b u x, t}=-0.02302
\end{aligned}
$$

The cc portfolio return is

$$
r_{p, t}=\ln (1-0.02302)=\ln (0.977)=-0.02329
$$

Note

$$
\begin{aligned}
r_{m s f t, t} & =\ln (1+0.0588)=0.05714 \\
r_{s b u x, t} & =\ln (1-0.0503)=-0.05161 \\
x_{m s f t} r_{m s f t}+x_{s b u x} r_{s b u x} & =-0.02442 \neq r_{p, t}
\end{aligned}
$$

Adjusting for inflation

The cc one period real return is

$$
\begin{aligned}
r_{t}^{\text {Real }} & =\ln \left(1+R_{t}^{\text {Real }}\right) \\
1+R_{t}^{\text {Real }} & =\frac{P_{t}}{P_{t-1}} \cdot \frac{C P I_{t-1}}{C P I_{t}}
\end{aligned}
$$

It follows that

$$
\begin{aligned}
r_{t}^{\text {Real }} & =\ln \left(\frac{P_{t}}{P_{t-1}} \cdot \frac{C P I_{t-1}}{C P I_{t}}\right)=\ln \left(\frac{P_{t}}{P_{t-1}}\right)+\ln \left(\frac{C P I_{t-1}}{C P I_{t}}\right) \\
& =\ln \left(P_{t}\right)-\ln \left(P_{t-1}\right)+\ln \left(C P I_{t-1}\right)-\ln \left(C P I_{t}\right) \\
& =r_{t}-\pi_{t}^{c c}
\end{aligned}
$$

where

$$
\begin{aligned}
r_{t} & =\ln \left(P_{t}\right)-\ln \left(P_{t-1}\right)=\text { nominal cc return } \\
\pi_{t}^{c c} & =\ln \left(C P I_{t}\right)-\ln \left(C P I_{t-1}\right)=\text { cc inflation }
\end{aligned}
$$

Example

Compute cc real return
Suppose:

$$
\begin{aligned}
R_{t} & =0.0588 \\
\pi_{t} & =0.01
\end{aligned}
$$

$$
R_{t}^{\text {Real }}=0.0483
$$

The real cc return is

$$
r_{t}^{\text {Real }}=\ln \left(1+R_{t}^{\text {Real }}\right)=\ln (1.0483)=0.047
$$

Equivalently,

$$
r_{t}^{\text {Real }}=r_{t}-\pi_{t}^{c c}=\ln (1.0588)-\ln (1.01)=0.047
$$

W

UNIVERSITY of WASHINGTON

faculty.washington.edu/ezivot/

