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1 Univariate Random Variables

Defnition: A random variable (rv) X is a variable that can take on a given
set of values, called the sample space Sy, where the likelihood of the values
in Sx is determined by the variable's probability distribution function (pdf).




Examples

e X = price of microsoft stock next month. Sy = {R:0< X < M}

IN

e X = simple return on a one month investment. Sy = {R : —1
X < M}

e X = 1 if stock price goes up; X = 0 if stock price goes down. Sy =

{0,1}

1.1 Discrete Random Variables

Definition: A discrete rv X is one that can take on a finite number of n
different values x1,--- ,zn

Definition: The pdf of a discrete rv X, p(x), is a function such that p(z) =
Pr(X = z). The pdf must satisfy

1. p(z) > 0forallx € Sx; p(x) =0 forall z ¢ Sx

2. Y p(r)=1

r€SY

3. p(x) < 1lforallz € Sx




State of Economy Sx = Sample Space p(z) = Pr(X = x)

Depression -0.30 0.05
Recession 0.0 0.20
Normal 0.10 0.50
Mild Boom 0.20 0.20
Major Boom 0.50 0.05

Table 1: Discrete Distribution for Annual Return

Example: Probability Distribution for Annual Return on Microsoft

Example: Bernouli Distribution

Consider two mutually exclusive events generically called “success” and “fail-

ure’.
Let X = 1 if success occurs and let X = 0 if failure occurs.

Let Pr(X = 1) = m, where 0 < 7 < 1, denote the probability of success.
Then Pr(X = 0) =1 — 7 is the probability of failure. A mathematical model
describing this distribution is

p(z) =Pr(X =x) =71 —n)17% z=0,1.

When z = 0, p(0) = 7%(1 — )10 = 1 — 7 and when =z = 1,p(1) =
al(1—m)1 =7,




1.2 Continuous Random Variables

Definition: A continuous rv X is one that can take on any real value

Definition: The pdf of a continuous rv X is a nonnegative function f(z)
such that for any interval A on the real line

Pr(X € A) = /Af(a:)da:

Pr(X € A) = "Area under probability curve over the interval A".

The pdf f(z) must satisfy

L f(z) > 0; [ f(z)dz =1

Example: Uniform distribution over [a, b]

Let X « U [a, b], where "~" means "is distributed as". Then

1
—— fora <z <b
ey b_ - -
f(x) { oa otherwise

Properties:

f(x) > 0, provided b > a, and

00 b 1 1 b
/ f(x)dx:/ dr = / dx
—o0 ab—a b—ala

1 b
a:1

_ b _
_b—a[x]a b—a




1.3 The Cumulative Distribution Function (CDF)
Definition The CDF, F, of a rv X is F'(x) = Pr(X < z) and
o If x1 < xp, then F(z1) < F(x2)

e ['(—oco) =0and F(o0)=1

Pr(X >x)=1- F(x)

Pr(z1 < X < x3) = F(x2) — F(z1)

%F(az) = f(zx) if X is a continuous rv.

Example: Uniform distribution over [0, 1]

X -~ UJ0,1]
l.—1 for0<z<1

f(x):{l_—oz

0 otherwise
Then

F(z)=Pr(X <z)= /()de
=[zlg ==
and, for example,
Pr(0 < X <0.5) = F(0.5) — F(0)
=05—-0=05

Note

() =1= f(z)




Remark:

For a continuous rv

Pr(X <z) =Pr(X < x)
Pr(X =2)=0

1.4 Quantiles of a Distribution

X is a rv with continuous CDF Fx(z) = Pr(X < z)

Definition: The a* 100% quantile of F'x for a € [0, 1] is the value g4 such
that

Fx(ga) = Pr(X < qa) = «

The area under the probability curve to the left of g is a. If the inverse CDF
F)}l exists then

do = F)zl(a)

Note: Fil is sometimes called the “quantile” function.




Example:

1% quantile = q o1
5% quantile = ¢ o5
50% quantile = g5 = median

Example: Quantile function of uniform distn on [0,1]

Fx(z) =2 = ga = «
q.01 = 0.01
q5 = 0.5




1.5 The Standard Normal Distribution

Let X be a rv such that X «~ N(0,1). Then

f(2) = 6(a) = ——exp (—322), —oo<w oo

V2w 2
o(z) = Pr(X < z) = / _ol=)dz

Shape Characteristics

e Centered at zero

e Symmetric about zero (same shape to left and right of zero)
Pr(-1 <z <1)=d(1) — ¢(—1) =0.67
Pr(—2 <z <2)=9(2) — $(—2) =0.95
Pr(—3 <2 <3)=®(3) — (—3) =0.99




Finding Areas under the Normal Curve

1.2 . ) )
° f e —2% dx = 1, via change of variables formula in calculus

e Prla< X <b)= [P \/12—6 592 g — ®(b) — d(a), cannot be computed

analytically!

e Special numerical algorithms are used to calculate ®(z)

Excel functions
1. NORMSDIST computes Pr(X < z) = ®(z) or p(z) = ¢(z)
2. NORMSINV computes the quantile zo = ®~1(a)
R functions
1. pnorm computes Pr(X < z) = d(z)
2. gnorm computes the quantile zq = ®~1(a)

3. dnorm computes the density ¢(z)




Some Tricks for Computing Area under Normal Curve

N(0, 1) is symmeric about 0; total area =1
Pr(X <z)=1-Pr(X > 2)

Pr(X > 2) =Pr(X < —2)
Pr(X >0) = Pr(X <0) = 0.5

Example In Excel use

Pr(—1< X <2)=Pr(X <2)—Pr(X <-1)
= NORMSDIST(2) — NORMSDIST(-1)
= 0.97725 — 0.15866 = 0.81860
In R use

pnorm(2) — pnorm(-1) = 0.81860
The 1%, 2.5%, 5% quantiles are

Excel:z.; = ®1(0.01) = NORMSINV(0.01) = —2.33
R :gnorm(0.01) = —2.33

Excel:z gp5 = ®~1(0.025) = NORMSINV(0.025) = —1.96
R : gnorm(0.025) = —1.96

Excel:z g5 = ®1(.05) = NORMSINV(.05) = —1.645
R : gnorm(0.05) = —1.645




1.6 Shape Characteristics of pdfs

e Expected Value or Mean - Center of Mass

e Variance and Standard Deviation - Spread about mean

e Skewness - Symmetry about mean

e Kurtosis - Tail thickness

Expected Value - Discrete rv

BlX]=px = Y = p(x)
reSY

= Z x - Pr(X = x)

€S

E[X] = probability weighted average of possible values of X

Expected Value - Continuous rv

BIX]=px = [ o f(a)de

Note: In continuous case, >°,cg, becames [°2,




Expected value of discrete random variable

Using the discrete distribution for the return on Microsoft stock in Table 1, the
expected return is

E[X] = (~0.3) - (0.05) + (0.0) - (0.20) + (0.1) - (0.5)

+(0.2) - (0.2) + (0.5) - (0.05)
= 0.10.

Example: X « UJ1, 2]

E[X] :/lzacdx: [?L

1
=3t 1=

Example: X «~ N(0,1)

1 1.2
e 2V dr =0

px =ElX]= [

—00 27




Expectation of a Function of X

Definition: Let g(X) be some function of the rv X. Then
Elg(X)] = ) g(z)-p(z) Discrete case
€Sy
oo
Elg(X)] = / g(z) - f(x)dz Continuous case

Variance and Standard Deviation

9(X) = (X — B[X])? = (X — px)?
Var(X) = 0% = E[(X — px)?] = B[X?] — &%

SD(X) = ox = y/Var(X)

Note: Var(X) is in squared units of X, and SD(X) is in the same units as X.
Therefore, SD(X) is easier to interpret.




Computation of Var(X) and SD(X)

0% = El(X — px)’]
= > (z— nx)? - p(z) if X is a discrete rv
TESx

(& o]
= / ( — px)? - f(x)dx if X is a continuous rv
oo

O'X:\/O'%(

Remark: For “bell-shaped” data, o x measures the size of the typical deviation

from the mean value px.

Example: Variance and standard deviation for a discrete random variable

Using the discrete distribution for the return on Microsoft stock in Table 1 and
the result that ux = 0.1, we have

Var(X) = (—0.3 — 0.1)% - (0.05) + (0.0 — 0.1) - (0.20)
+ (0.1 —0.1)2-(0.5) + (0.2 — 0.1)%- (0.2)
+ (0.5 — 0.1)? - (0.05)
= 0.020
SD(X) = ox = /0.020 = 0.141.
Given that the distribution is fairly bell-shaped we can say that typical values
deviate from the mean value of 0.10 by about 0.141

p+o=—0.10+0.141 = [—0.041, 0.241]




Example: X «~ N(0,1).

o0 1 1.2
,LLX:/ x - e 2¥dr=20
—00

V2T
2 o0 o 1 1.2
— x —0)°- e 27 dr=1
o /_Oo( ) o

ox =vV1=1

= size of typical deviation from uxy =0isoxy =1

The General Normal Distribution

X v N(uy, o0%)
1 1/(z—px)?
flx) = 2exp(2< MX))daz,oo<:c<oo

o
2o X X

E[X] = px = mean value
Var(X) = agf = variance
SD(X) = ox = standard deviation




Shape Characteristics
e Centered at px

e Symmetric about

Priux —ox < X < px +ox) =0.67
Prlux —2-ox <X <ux+2-0x)=0.95
Prlux —3-0ox <X <ux+3-0x)=0.99

e Quantiles of the general normal distribution:

o =px +ox -9 Ha) =px +ox 2

Remarks:
e X «~ N(0,1): Standard Normal = px = 0 and 03( =1

e The pdf of the general Normal is completely determined by values of ux
and o2
X




Finding Areas under General Normal Curve

Excel Functions

e NORMDIST(z, ux, o0 x,cumulative). If cumulative = true: Pr(X <

x) is computed; If cumulative = false, f(z) = ée_i( 7X

2
27TO'X

computed

e NORMINV(c, pg, 02) computes go = px + 0x2a

R Runctions

e simulate data: rnorm(n, mean, sd)

e compute CDF: pnorm(q, mean, sd)

e compute quantiles: gnorm(p, mean, sd)

e compute density: dnorm(x, mean, sd)




Standard Deviation as a Measure of Risk

R 4 = monthly return on asset A
Rp = monthly return on assetB

Rp v N(pa,04), Rg v N(up,0%)

where
pwa = E[R4] = expected monthly return on asset A
o4 =SD(R4)
= std. deviation of monthly return on asset A
Typically, if
HA > KB
then
oA > 0B

Example: Why the normal distribution may not be appropriate for simple
returns

- PB-Ph
P
Assume R; ~ N(0.05, (0.50)?)

Ry = simple return

Note: P > 0 — Ry > —1. However, based on the assumed normal
distribution

Pr(R; < —1) = NORMDIST(-1,0.05,0.50,TRUE) = 0.018

This implies that there is a 1.8% chance that the asset price will be negative.
This is why the normal distribution may not be appropriate for simple returns.




Example: The normal distribution is more appropriate for cc returns

r¢ = In(1 + R¢) = cc return
Ry = €'t — 1 = simple return
Assume ¢ ~ N(0.05, (0.50)?)

Unlike R¢, 7+ can take on values less than —1. For example,
rp=—-2 = Ry=e ?—1=—0.865

Pr(r; < —2) = Pr(R; < —0.865)
= NORMDIST(-2,0.05,0.50,TRUE) = 0.00002

The Log-Normal Distribution

XNN(,uX,Jg(), —o00 <X < oo
Y = exp(X) ~ lognormal(px,0%), 0 <Y < oo
E[Y] = py = exp(ux + 0%/2)
Var(Y) = 0% = exp(2u + 0% )(exp(0%) — 1)

Example: log-normal distribution for simple returns

r¢ ~ N(0.05,(0.50)?)
1+ Ry ~ lognormal(0.05, (0.50)?)
14 r = exp(0.05 + (0.5)%/2) = 1.191
o3, r = exp(2(0.05) + (0.5)%)(exp(0.5%) — 1) = 0.563




R Runctions

e simulate data: rlnorm(n, mean, sd)

e compute CDF: plnorm(q, mean, sd)

e compute quantiles: glnorm(p, mean, sd)

e compute density: dlnorm(y, mean, sd)

Skewness - Measure of symmetry

9(X) = ((X — px)/ox)?
)
ox

3
= > (m MX) p(x) if X is discrete

rESY oX

Skew(X)=F

© (r—px ’
:/ ( ) f(x)dz if X is continuous
—00

ox




Intuition

e If X has a symmetric distribution about px then Skew(X) =0
e Skew(X) > 0 = pdf has long right tail, and median < mean

e Skew(X) < 0 = pdf has long left tail, and median > mean

Example: Using the discrete distribution for the return on Microsoft stock in
Table 1, the results that ux = 0.1 and ox = 0.141, we have

skew(X) = [(—=0.3 — 0.1)3- (0.05) + (0.0 — 0.1)3 - (0.20)
+(0.1-0.1)%-(0.5) + (0.2 — 0.1)>- (0.2)
+ (0.5 —0.1)3 - (0.05)]/(0.141)3
=0.0




Example: X « N(,uX,agf). Then

3 z—
o0 <3L‘ — MX) ! exp <_%( U;X)z) dr =0

ox 271'0%

Skew(X) = /

—00

Example: Y « lognormal(pux, cr%(). Then

Skew(Y) = (exp((f%() + 2) \/exp(agg) —1>0

Kurtosis - Measure of tail thickness

9(X) = (X — px)/ox)*
()
ox

4
= > (m — MX) p(z) if X is discrete

Kurt(X)=F

rESY oX
4
oo —
:/ (w MX) f(x)dz if X is continuous
—00 ox

Intuition

e Values of x far from px get blown up resulting in large values of kurtosis

e Two extreme cases: fat tails (large kurtosis); thin tails (small kurtosis)




Example: Kurtosis for a discrete random variable

Using the discrete distribution for the return on Microsoft stock in Table 1, the
results that ux = 0.1 and ox = 0.141, we have

Kurt(X) = [(—0.3 — 0.1)*- (0.05) + (0.0 — 0.1)* - (0.20)
+ (0.1 —0.1)*-(0.5) + (0.2 — 0.1)*- (0.2)
+ (0.5 —0.1)*. (0.05)]/(0.141)*
=6.5

Example: X « N(MX,UE()

_ 4 _1(rpx 2
OO (:1: MX) 1 e 2 X )da::3
ox 2770%

Kurt(X) = /

—0o0

Definition:  Excess kurtosis = Kurt(X) — 3 = kurtosis value in excess of
kurtosis of normal distribution.

e Excess kurtosis (X) > 0 = X has fatter tails than normal distribution

e Excess kurtosis (X) < 0 = X has thinner tails than normal distribution




The Student’s-t Distribution

A distribution similar to the standard normal distribution but with fatter tails,
and hence larger kurtosis, is the Student'’s t distribution. If X has a Student’s
t distribution with degrees of freedom parameter v, denoted X ~ ty, then its
pdf has the form

+1 —(utl
f(m):L(l—i—x—z) <2 , —oo<x<oo, v>0.
ﬁf(%) v

where (2) = [§°t*~Le~!dt denotes the gamma function.

It can be shown that

E[X]=0, v>1
var(X) =

v
7U>27
2

skew(X) =0, v > 3,
6
kurt(X) =—+3, v > 4.
v—4
The parameter v controls the scale and tail thickness of distribution. If v is
close to four, then the kurtosis is large and the tails are thick. If v < 4, then

kurt(X) = oco. As v — oo the Student's t pdf approaches that of a standard
normal random variable and kurt(X) = 3.




R Runctions

e simulate data: rt(n, df)

e compute CDF: pt(q, df)

e compute quantiles: qt(p, df)

e compute density: dt(x, df)

Here df is the degrees of freedom parameter v.

1.7 Linear Functions of a Random Variable

Let X be a discrete or continuous rv with ux = E[X], and 0% = Var(X).
Define a new rv Y to be a linear function of X :

Y=9g(X)=a-X+D
a and b are known constants

Then

py = E[Y] = E[a - X + b]
=a-E[X]+b=a-pux+5b
o2 = Var(Y) = Var(a - X + b)
— a® - Var(X)
=a?. 0%

Oy —a-0Xx




Linear Function of a Normal rv

Let X v~ N(ux, a‘%() and define Y =a- X 4+ b. Then
Y ~ N(MYaa%)

with
py =a-px +b
0% = - 0%
Remarks

e Proof of result relies on change-of-variables formula for determining pdf of
a function of a rv

e Result may or may not hold for random variables whose distributions are
not normal

Example - Standardizing a Normal rv

Let X ~ N(ux, ag(). The standardized rv Z is created using

X — 1
7 — KX _ Cx _HX
ox ox ox
=a-X+5b
S SN

oXx D¢




Properties of Z

1
E[7] = —E[Xx] - BX
X D¢
_ 1 HX _
= —px - =0
ox ox
1 2
Var(Z) = (—) - Var(X)
o
2
1
(&)
ox
Z ~ N(0,1)

1.8 Value at Risk: Introduction

Consider a $10, 000 investment in Microsoft for 1 month. Assume

R = simple monthly return on Microsoft
R ~ N(0.05, (0.10)?), up = 0.05, o = 0.10

Goal: Calculate how much we can lose with a specified probability o




Questions:

1. What is the probability distribution of end of month wealth, W7 = $10, 000-
(1+ R)?

2. What is Pr(W7 < $9,000)?

3. What value of R produces W7 = $9, 0007

4. What is the monthly value-at-risk (VaR) on the $10,000 investment with
5% probability? That is, how much can we lose if R < g 57

Answers:

1. Wi = $10,000 - (1 + R) is a linear function of R, and R is a normally
distributed rv. Therefore, W7 is normally distributed with

E[W1] = $10,000 - (1 + E[R])
— $10,000 - (1 + 0.05) = $10, 500,
Var(W7) = ($10,000)?Var(R)
— ($10, 000)%(0.1)? = 1,000, 000
W1 ~ N($10,500, ($1,000)?)

2. Using W ~ N($10, 500, ($1, 000)?)

Pr (W7 < $9,000)
= NORMDIST(9000,10500,1000) = 0.067




3. To find R that produces W7 = $9, 000 solve

~$9,000 — $10,000
- $10, 000
Notice that —0.10 is the 6.7% quantile of the distribution of R :

R = —0.10.

q.067 = Pr(R < —0.10) = 0.067

4. Use R ~ N(0.05, (0.10)2) and solve for the the 5% quantile:

Pr(R < ¢/%) = 0.05 =
q'%s = NORMINV(0.05, 0.05,0.10) = —0.114.
If R = —11.4% the loss in investment value is at least

$10,000 - (—0.114) = —$1, 144
= 5% VaR

In general, the o x 100% Value-at-Risk (VaRy) for an initial investment of
$Wp is computed as

VaRy = $W) X qa
ga = a X 100% quantile of simple return distn

Remark:

Because VaR represents a loss, it is often reported as a positive number. For
example, —$1,144 represents a loss of $1,144. So the VaR is reported as
$1, 144.




VaR for Continuously Compounded Returns

= In(1 4+ R), cc monthly return

ﬁ
|

R = e" — 1, simple monthly return
Assume

TNN(NWO—?%)

Wo = initial investment

100 - a% VaR Computation

e Compute o quantile of Normal Distribution for r:

qu = Ur + Orza

e Convert o quantile for r into a quantile for R:

gt = elo — 1

e Compute 100 - a% VaR using ¢Z*:

VaR, = $Wy - qg




Example: Conpute 5% VaR assuming
r¢ ~ N(0.05, (0.10)?), Wy = $10, 000
The 5% cc return quantile is

q'05 = pr + orz05
= 0.05 + (0.10)(—1.645) = —0.114

The 5% simple return quantile is
gl = efos —1 =114 _ 1= _0.108
The 5% VaR based on a $10,000 initial investment is

VaR g5 = $10,000 - (—0.108) = —$%$1,077




