# Introduction to Computational Finance and Financial Econometrics Probability Theory Review: Part 1 

Eric Zivot

June 28, 2011

## 1 Univariate Random Variables

Defnition: A random variable (rv) $X$ is a variable that can take on a given set of values, called the sample space $S_{X}$, where the likelihood of the values in $S_{X}$ is determined by the variable's probability distribution function (pdf).

## Examples

- $X=$ price of microsoft stock next month. $S_{X}=\{\mathbb{R}: 0<X \leq M\}$
- $X=$ simple return on a one month investment. $S_{X}=\{\mathbb{R}:-1 \leq$ $X<M\}$
- $X=1$ if stock price goes up; $X=0$ if stock price goes down. $S_{X}=$ $\{0,1\}$


### 1.1 Discrete Random Variables

Definition: A discrete $\mathrm{rv} X$ is one that can take on a finite number of $n$ different values $x_{1}, \cdots, x_{n}$

Definition: The pdf of a discrete rv $X, p(x)$, is a function such that $p(x)=$ $\operatorname{Pr}(X=x)$. The pdf must satisfy

1. $p(x) \geqslant 0$ for all $x \in S_{X} ; p(x)=0$ for all $x \notin S_{X}$
2. $\sum_{x \in S_{X}} p(x)=1$
3. $p(x) \leqslant 1$ for all $x \in S_{X}$

| State of Economy | $S_{X}=$ Sample Space | $p(x)=\operatorname{Pr}(X=x)$ |
| :---: | :---: | :---: |
| Depression | -0.30 | 0.05 |
| Recession | 0.0 | 0.20 |
| Normal | 0.10 | 0.50 |
| Mild Boom | 0.20 | 0.20 |
| Major Boom | 0.50 | 0.05 |

Table 1: Discrete Distribution for Annual Return

Example: Probability Distribution for Annual Return on Microsoft

## Example: Bernouli Distribution

Consider two mutually exclusive events generically called "success" and "failure".

Let $X=1$ if success occurs and let $X=0$ if failure occurs.

Let $\operatorname{Pr}(X=1)=\pi$, where $0<\pi<1$, denote the probability of success. Then $\operatorname{Pr}(X=0)=1-\pi$ is the probability of failure. A mathematical model describing this distribution is

$$
p(x)=\operatorname{Pr}(X=x)=\pi^{x}(1-\pi)^{1-x}, x=0,1
$$

When $x=0, p(0)=\pi^{0}(1-\pi)^{1-0}=1-\pi$ and when $x=1, p(1)=$ $\pi^{1}(1-\pi)^{1-1}=\pi$.

### 1.2 Continuous Random Variables

Definition: A continuous rv $X$ is one that can take on any real value

Definition: The pdf of a continuous rv $X$ is a nonnegative function $f(x)$ such that for any interval $A$ on the real line

$$
\operatorname{Pr}(X \in A)=\int_{A} f(x) d x
$$

$\operatorname{Pr}(X \in A)=$ "Area under probability curve over the interval $A$ ".

The pdf $f(x)$ must satisfy

1. $f(x) \geqslant 0 ; \int_{-\infty}^{\infty} f(x) d x=1$

Example: Uniform distribution over $[a, b]$

Let $X \backsim U[a, b]$, where " $\backsim$ " means "is distributed as". Then

$$
f(x)=\left\{\begin{array}{cc}
\frac{1}{b-a} & \text { for } a \leq x \leq b \\
0 & \text { otherwise }
\end{array}\right.
$$

Properties:
$f(x) \geq 0$, provided $b>a$, and

$$
\begin{aligned}
\int_{-\infty}^{\infty} f(x) d x & =\int_{a}^{b} \frac{1}{b-a} d x=\frac{1}{b-a} \int_{a}^{b} d x \\
& =\frac{1}{b-a}[x]_{a}^{b}=\frac{b-a}{b-a}=1
\end{aligned}
$$

### 1.3 The Cumulative Distribution Function (CDF)

Definition The CDF, $F$, of a rv $X$ is $F(x)=\operatorname{Pr}(X \leq x)$ and

- If $x_{1}<x_{2}$, then $F\left(x_{1}\right) \leq F\left(x_{2}\right)$
- $F(-\infty)=0$ and $F(\infty)=1$
- $\operatorname{Pr}(X \geq x)=1-F(x)$
- $\operatorname{Pr}\left(x_{1}<X \leq x_{2}\right)=F\left(x_{2}\right)-F\left(x_{1}\right)$
- $\frac{d}{d x} F(x)=f(x)$ if $X$ is a continuous rv.

Example: Uniform distribution over [0, 1]

$$
\begin{aligned}
X & \backsim U[0,1] \\
f(x) & =\left\{\begin{array}{cc}
\frac{1}{1-0}=1 & \text { for } 0 \leq x \leq 1 \\
0 & \text { otherwise }
\end{array}\right.
\end{aligned}
$$

Then

$$
\begin{aligned}
F(x) & =\operatorname{Pr}(X \leq x)=\int_{0}^{x} d z \\
& =[z]_{0}^{x}=x
\end{aligned}
$$

and, for example,

$$
\begin{aligned}
\operatorname{Pr}(0 & \leq X \leq 0.5)=F(0.5)-F(0) \\
& =0.5-0=0.5
\end{aligned}
$$

Note

$$
\frac{d}{d x} F(x)=1=f(x)
$$

## Remark:

For a continuous rv

$$
\begin{aligned}
& \operatorname{Pr}(X \leq x)=\operatorname{Pr}(X<x) \\
& \operatorname{Pr}(X=x)=0
\end{aligned}
$$

### 1.4 Quantiles of a Distribution

$X$ is a rv with continuous CDF $F_{X}(x)=\operatorname{Pr}(X \leq x)$

Definition: The $\alpha * 100 \%$ quantile of $F_{X}$ for $\alpha \in[0,1]$ is the value $q_{\alpha}$ such that

$$
F_{X}\left(q_{\alpha}\right)=\operatorname{Pr}\left(X \leq q_{\alpha}\right)=\alpha
$$

The area under the probability curve to the left of $q_{\alpha}$ is $\alpha$. If the inverse CDF $F_{X}^{-1}$ exists then

$$
q_{\alpha}=F_{X}^{-1}(\alpha)
$$

Note: $F_{X}^{-1}$ is sometimes called the "quantile" function.

## Example:

$$
\begin{aligned}
1 \% \text { quantile } & =q .01 \\
5 \% \text { quantile } & =q .05 \\
50 \% \text { quantile } & =q_{.5}=\text { median }
\end{aligned}
$$

Example: Quantile function of uniform distn on $[0,1]$

$$
\begin{aligned}
F_{X}(x) & =x \Rightarrow q_{\alpha}=\alpha \\
q .01 & =0.01 \\
q .5 & =0.5
\end{aligned}
$$

### 1.5 The Standard Normal Distribution

Let $X$ be a rv such that $X \sim N(0,1)$. Then

$$
\begin{aligned}
& f(x)=\phi(x)=\frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{1}{2} x^{2}\right),-\infty \leq x \leq \infty \\
& \Phi(x)=\operatorname{Pr}(X \leq x)=\int_{-\infty}^{x} \phi(z) d z
\end{aligned}
$$

## Shape Characteristics

- Centered at zero
- Symmetric about zero (same shape to left and right of zero)

$$
\begin{aligned}
& \operatorname{Pr}(-1 \leq x \leq 1)=\Phi(1)-\Phi(-1)=0.67 \\
& \operatorname{Pr}(-2 \leq x \leq 2)=\Phi(2)-\Phi(-2)=0.95 \\
& \operatorname{Pr}(-3 \leq x \leq 3)=\Phi(3)-\Phi(-3)=0.99
\end{aligned}
$$

Finding Areas under the Normal Curve

- $\int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2} x^{2}} d x=1$, via change of variables formula in calculus
- $\operatorname{Pr}(a<X<b)=\int_{a}^{b} \frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2} x^{2}} d x=\Phi(b)-\Phi(a)$, cannot be computed analytically!
- Special numerical algorithms are used to calculate $\Phi(z)$


## Excel functions

1. NORMSDIST computes $\operatorname{Pr}(X \leq z)=\Phi(z)$ or $p(z)=\phi(z)$
2. NORMSINV computes the quantile $z_{\alpha}=\Phi^{-1}(\alpha)$
$R$ functions
3. pnorm computes $\operatorname{Pr}(X \leq z)=\Phi(z)$
4. qnorm computes the quantile $z_{\alpha}=\Phi^{-1}(\alpha)$
5. dnorm computes the density $\phi(z)$

Some Tricks for Computing Area under Normal Curve
$N(0,1)$ is symmeric about 0 ; total area $=1$

$$
\begin{aligned}
& \operatorname{Pr}(X \leq z)=1-\operatorname{Pr}(X \geq z) \\
& \operatorname{Pr}(X \geq z)=\operatorname{Pr}(X \leq-z) \\
& \operatorname{Pr}(X \geq 0)=\operatorname{Pr}(X \leq 0)=0.5
\end{aligned}
$$

Example In Excel use

$$
\begin{aligned}
\operatorname{Pr}(-1 & \leq X \leq 2)=\operatorname{Pr}(X \leq 2)-\operatorname{Pr}(X \leq-1) \\
& =\operatorname{NORMSDIST}(2)-\operatorname{NORMSDIST}(-1) \\
& =0.97725-0.15866=0.81860
\end{aligned}
$$

In R use

$$
\operatorname{pnorm}(2)-\operatorname{pnorm}(-1)=0.81860
$$

The 1\%, 2.5\%, 5\% quantiles are

$$
\begin{aligned}
& \text { Excel: } z .01=\Phi^{-1}(0.01)=\operatorname{NORMSINV}(0.01)=-2.33 \\
& \quad \mathrm{R}: \text { qnorm }(0.01)=-2.33 \\
& \text { Excel: } z .025=\Phi^{-1}(0.025)=\operatorname{NORMSINV}(0.025)=-1.96 \\
& \quad \mathrm{R}: \text { qnorm }(0.025)=-1.96 \\
& \text { Excel: } z .05=\Phi^{-1}(.05)=\operatorname{NORMSINV}(.05)=-1.645 \\
& \quad \mathrm{R}: \text { qnorm }(0.05)=-1.645
\end{aligned}
$$

### 1.6 Shape Characteristics of pdfs

- Expected Value or Mean - Center of Mass
- Variance and Standard Deviation - Spread about mean
- Skewness - Symmetry about mean
- Kurtosis - Tail thickness


## Expected Value - Discrete rv

$$
\begin{aligned}
E[X] & =\mu_{X}=\sum_{x \in S_{X}} x \cdot p(x) \\
& =\sum_{x \in S_{X}} x \cdot \operatorname{Pr}(X=x)
\end{aligned}
$$

$E[X]=$ probability weighted average of possible values of $X$

## Expected Value - Continuous rv

$$
E[X]=\mu_{X}=\int_{-\infty}^{\infty} x \cdot f(x) d x
$$

Note: In continuous case, $\sum_{x \in S_{X}}$ becames $\int_{-\infty}^{\infty}$

Expected value of discrete random variable

Using the discrete distribution for the return on Microsoft stock in Table 1, the expected return is

$$
\begin{aligned}
E[X] & =(-0.3) \cdot(0.05)+(0.0) \cdot(0.20)+(0.1) \cdot(0.5) \\
& +(0.2) \cdot(0.2)+(0.5) \cdot(0.05) \\
& =0.10
\end{aligned}
$$

Example: $X \backsim U[1,2]$

$$
\begin{aligned}
E[X] & =\int_{1}^{2} x d x=\left[\frac{x^{2}}{2}\right]_{1}^{2} \\
& =\frac{1}{2}[4-1]=\frac{3}{2}
\end{aligned}
$$

Example: $X \backsim N(0,1)$

$$
\mu_{X}=E[X]=\int_{-\infty}^{\infty} x \cdot \frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2} x^{2}} d x=0
$$

## Expectation of a Function of $X$

Definition: Let $g(X)$ be some function of the rv $X$. Then

$$
\begin{aligned}
& E[g(X)]=\sum_{x \in S_{X}} g(x) \cdot p(x) \text { Discrete case } \\
& E[g(X)]=\int_{-\infty}^{\infty} g(x) \cdot f(x) d x \text { Continuous case }
\end{aligned}
$$

## Variance and Standard Deviation

$$
\begin{aligned}
g(X) & =(X-E[X])^{2}=\left(X-\mu_{X}\right)^{2} \\
\operatorname{Var}(X) & =\sigma_{X}^{2}=E\left[\left(X-\mu_{X}\right)^{2}\right]=E\left[X^{2}\right]-\mu_{X}^{2} \\
\mathrm{SD}(X) & =\sigma_{X}=\sqrt{\operatorname{Var}(X)}
\end{aligned}
$$

Note: $\operatorname{Var}(X)$ is in squared units of $X$, and $\mathrm{SD}(X)$ is in the same units as $X$. Therefore, $\mathrm{SD}(X)$ is easier to interpret.

## Computation of $\operatorname{Var}(X)$ and $\operatorname{SD}(X)$

$$
\begin{aligned}
\sigma_{X}^{2} & =E\left[\left(X-\mu_{X}\right)^{2}\right] \\
& =\sum_{x \in S_{X}}\left(x-\mu_{X}\right)^{2} \cdot p(x) \text { if } X \text { is a discrete } \mathrm{rv} \\
& =\int_{-\infty}^{\infty}\left(x-\mu_{X}\right)^{2} \cdot f(x) d x \text { if } X \text { is a continuous } \mathrm{rv} \\
\sigma_{X} & =\sqrt{\sigma_{X}^{2}}
\end{aligned}
$$

Remark: For "bell-shaped" data, $\sigma_{X}$ measures the size of the typical deviation from the mean value $\mu_{X}$.

Example: Variance and standard deviation for a discrete random variable

Using the discrete distribution for the return on Microsoft stock in Table 1 and the result that $\mu_{X}=0.1$, we have

$$
\begin{aligned}
\operatorname{Var}(X) & =(-0.3-0.1)^{2} \cdot(0.05)+(0.0-0.1)^{2} \cdot(0.20) \\
& +(0.1-0.1)^{2} \cdot(0.5)+(0.2-0.1)^{2} \cdot(0.2) \\
& +(0.5-0.1)^{2} \cdot(0.05) \\
& =0.020 \\
\mathrm{SD}(X) & =\sigma_{X}=\sqrt{0.020}=0.141 .
\end{aligned}
$$

Given that the distribution is fairly bell-shaped we can say that typical values deviate from the mean value of 0.10 by about 0.141

$$
\mu \pm \sigma=-0.10 \pm 0.141=\left[\begin{array}{ll}
-0.041, & 0.241]
\end{array}\right.
$$

Example: $\quad X \backsim N(0,1)$.

$$
\begin{aligned}
\mu_{X} & =\int_{-\infty}^{\infty} x \cdot \frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2} x^{2}} d x=0 \\
\sigma_{X}^{2} & =\int_{-\infty}^{\infty}(x-0)^{2} \cdot \frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2} x^{2}} d x=1 \\
\sigma_{X} & =\sqrt{1}=1 \\
& \Rightarrow \text { size of typical deviation from } \mu_{X}=0 \text { is } \sigma_{X}=1
\end{aligned}
$$

## The General Normal Distribution

$$
\begin{aligned}
X & \sim N\left(\mu_{X}, \sigma_{X}^{2}\right) \\
f(x) & =\frac{1}{\sqrt{2 \pi \sigma_{X}^{2}}} \exp \left(-\frac{1}{2}\left(\frac{x-\mu_{X}}{\sigma_{X}}\right)^{2}\right) d x,-\infty \leq x \leq \infty \\
E[X] & =\mu_{X}=\text { mean value } \\
\operatorname{Var}(X) & =\sigma_{X}^{2}=\text { variance } \\
\mathrm{SD}(X) & =\sigma_{X}=\text { standard deviation }
\end{aligned}
$$

## Shape Characteristics

- Centered at $\mu_{X}$
- Symmetric about $\mu_{X}$

$$
\begin{gathered}
\operatorname{Pr}\left(\mu_{X}-\sigma_{X} \leq X \leq \mu_{X}+\sigma_{X}\right)=0.67 \\
\operatorname{Pr}\left(\mu_{X}-2 \cdot \sigma_{X} \leq X \leq \mu_{X}+2 \cdot \sigma_{X}\right)=0.95 \\
\operatorname{Pr}\left(\mu_{X}-3 \cdot \sigma_{X} \leq X \leq \mu_{X}+3 \cdot \sigma_{X}\right)=0.99
\end{gathered}
$$

- Quantiles of the general normal distribution:

$$
q_{\alpha}=\mu_{X}+\sigma_{X} \cdot \Phi^{-1}(\alpha)=\mu_{X}+\sigma_{X} \cdot z_{\alpha}
$$

## Remarks:

- $X \sim N(0,1):$ Standard Normal $\Longrightarrow \mu_{X}=0$ and $\sigma_{X}^{2}=1$
- The pdf of the general Normal is completely determined by values of $\mu_{X}$ and $\sigma_{X}^{2}$


## Finding Areas under General Normal Curve

## Excel Functions

- NORMDIST( $x, \mu_{X}, \sigma_{X}$, cumulative). If cumulative $=$ true: $\operatorname{Pr}(X \leq$ $x)$ is computed; If cumulative $=$ false, $f(x)=\frac{1}{\sqrt{2 \pi \sigma_{X}^{2}}} e^{-\frac{1}{2}\left(\frac{x-\mu_{X}}{\sigma_{X}}\right)^{2}}$ is computed
- $\operatorname{NORMINV}\left(\alpha, \mu_{x}, \sigma_{x}\right)$ computes $q_{\alpha}=\mu_{X}+\sigma_{X} z_{\alpha}$


## R Runctions

- simulate data: rnorm(n, mean, sd)
- compute CDF: pnorm(q, mean, sd)
- compute quantiles: qnorm(p, mean, sd)
- compute density: dnorm(x, mean, sd)


## Standard Deviation as a Measure of Risk

$$
\begin{aligned}
& R_{A}=\text { monthly return on asset } \mathrm{A} \\
& R_{B}=\text { monthly return on asset } \mathrm{B} \\
& R_{A} \backsim N\left(\mu_{A}, \sigma_{A}^{2}\right), R_{B} \backsim N\left(\mu_{B}, \sigma_{B}^{2}\right)
\end{aligned}
$$

where

$$
\begin{aligned}
\mu_{A} & =E\left[R_{A}\right]=\text { expected monthly return on asset } \mathrm{A} \\
\sigma_{A} & =\mathrm{SD}\left(R_{A}\right) \\
& =\text { std. deviation of monthly return on asset } \mathrm{A}
\end{aligned}
$$

Typically, if

$$
\mu_{A}>\mu_{B}
$$

then

$$
\sigma_{A}>\sigma_{B}
$$

Example: Why the normal distribution may not be appropriate for simple returns

$$
R_{t}=\frac{P_{t}-P_{t-1}}{P_{t-1}}=\text { simple return }
$$

Assume $R_{t} \sim N\left(0.05,(0.50)^{2}\right)$

Note: $P_{t} \geq 0 \Longrightarrow R_{t} \geq-1$. However, based on the assumed normal distribution

$$
\operatorname{Pr}\left(R_{t}<-1\right)=\operatorname{NORMDIST}(-1,0.05,0.50, \text { TRUE })=0.018
$$

This implies that there is a $1.8 \%$ chance that the asset price will be negative. This is why the normal distribution may not be appropriate for simple returns.

Example: The normal distribution is more appropriate for cc returns

$$
\begin{aligned}
r_{t} & =\ln \left(1+R_{t}\right)=\mathrm{cc} \text { return } \\
R_{t} & =e^{r}-1=\text { simple return } \\
\text { Assume } r_{t} & \sim N\left(0.05,(0.50)^{2}\right)
\end{aligned}
$$

Unlike $R_{t}, r_{t}$ can take on values less than -1 . For example,

$$
\begin{aligned}
r_{t} & =-2 \Longrightarrow R_{t}=e^{-2}-1=-0.865 \\
\operatorname{Pr}\left(r_{t}\right. & <-2)=\operatorname{Pr}\left(R_{t}<-0.865\right) \\
& =\operatorname{NORMDIST}(-2,0.05,0.50, \text { TRUE })=0.00002
\end{aligned}
$$

## The Log-Normal Distribution

$$
\begin{aligned}
X & \sim N\left(\mu_{X}, \sigma_{X}^{2}\right),-\infty<X<\infty \\
Y & =\exp (X) \sim \operatorname{lognormal}\left(\mu_{X}, \sigma_{X}^{2}\right), 0<Y<\infty \\
E[Y] & =\mu_{Y}=\exp \left(\mu_{X}+\sigma_{X}^{2} / 2\right) \\
\operatorname{Var}(Y) & =\sigma_{Y}^{2}=\exp \left(2 \mu_{X}+\sigma_{X}^{2}\right)\left(\exp \left(\sigma_{X}^{2}\right)-1\right)
\end{aligned}
$$

Example: log-normal distribution for simple returns

$$
\begin{aligned}
r_{t} & \sim N\left(0.05,(0.50)^{2}\right) \\
1+R_{t} & \sim \operatorname{lognormal}\left(0.05,(0.50)^{2}\right) \\
\mu_{1+R} & =\exp \left(0.05+(0.5)^{2} / 2\right)=1.191 \\
\sigma_{1+R}^{2} & =\exp \left(2(0.05)+(0.5)^{2}\right)\left(\exp \left(0.5^{2}\right)-1\right)=0.563
\end{aligned}
$$

## R Runctions

- simulate data: rlnorm(n, mean, sd)
- compute CDF: plnorm(q, mean, sd)
- compute quantiles: qlnorm(p, mean, sd)
- compute density: dlnorm(y, mean, sd)


## Skewness - Measure of symmetry

$$
\begin{aligned}
g(X) & =\left(\left(X-\mu_{X}\right) / \sigma_{X}\right)^{3} \\
\operatorname{Skew}(X) & =E\left[\left(\frac{X-\mu_{X}}{\sigma_{X}}\right)^{3}\right] \\
& =\sum_{x \in S_{X}}\left(\frac{x-\mu_{X}}{\sigma_{X}}\right)^{3} p(x) \text { if } X \text { is discrete } \\
& =\int_{-\infty}^{\infty}\left(\frac{x-\mu_{X}}{\sigma_{X}}\right)^{3} f(x) d x \text { if } X \text { is continuous }
\end{aligned}
$$

Intuition

- If $X$ has a symmetric distribution about $\mu_{X}$ then $\operatorname{Skew}(X)=0$
- Skew $(X)>0 \Longrightarrow$ pdf has long right tail, and median $<$ mean
- Skew $(X)<0 \Longrightarrow$ pdf has long left tail, and median $>$ mean

Example: Using the discrete distribution for the return on Microsoft stock in Table 1, the results that $\mu_{X}=0.1$ and $\sigma_{X}=0.141$, we have

$$
\begin{aligned}
\operatorname{skew}(X) & =\left[(-0.3-0.1)^{3} \cdot(0.05)+(0.0-0.1)^{3} \cdot(0.20)\right. \\
& +(0.1-0.1)^{3} \cdot(0.5)+(0.2-0.1)^{3} \cdot(0.2) \\
& \left.+(0.5-0.1)^{3} \cdot(0.05)\right] /(0.141)^{3} \\
& =0.0
\end{aligned}
$$

Example: $\quad X \backsim N\left(\mu_{X}, \sigma_{X}^{2}\right)$. Then

$$
\operatorname{Skew}(X)=\int_{-\infty}^{\infty}\left(\frac{x-\mu_{X}}{\sigma_{X}}\right)^{3} \frac{1}{\sqrt{2 \pi \sigma_{X}^{2}}} \exp \left(-\frac{1}{2}\left(\frac{x-\mu_{X}}{\sigma_{X}}\right)^{2}\right) d x=0
$$

Example: $Y \backsim$ lognormal $\left(\mu_{X}, \sigma_{X}^{2}\right)$. Then

$$
\operatorname{Skew}(Y)=\left(\exp \left(\sigma_{X}^{2}\right)+2\right) \sqrt{\exp \left(\sigma_{X}^{2}\right)-1}>0
$$

## Kurtosis - Measure of tail thickness

$$
\begin{aligned}
g(X) & =\left(\left(X-\mu_{X}\right) / \sigma_{X}\right)^{4} \\
\operatorname{Kurt}(X) & =E\left[\left(\frac{X-\mu_{X}}{\sigma_{X}}\right)^{4}\right] \\
& =\sum_{x \in S_{X}}\left(\frac{x-\mu_{X}}{\sigma_{X}}\right)^{4} p(x) \text { if } X \text { is discrete } \\
& =\int_{-\infty}^{\infty}\left(\frac{x-\mu_{X}}{\sigma_{X}}\right)^{4} f(x) d x \text { if } X \text { is continuous }
\end{aligned}
$$

Intuition

- Values of $x$ far from $\mu_{X}$ get blown up resulting in large values of kurtosis
- Two extreme cases: fat tails (large kurtosis); thin tails (small kurtosis)


## Example: Kurtosis for a discrete random variable

Using the discrete distribution for the return on Microsoft stock in Table 1, the results that $\mu_{X}=0.1$ and $\sigma_{X}=0.141$, we have

$$
\begin{aligned}
\operatorname{Kurt}(X) & =\left[(-0.3-0.1)^{4} \cdot(0.05)+(0.0-0.1)^{4} \cdot(0\right. \\
& +(0.1-0.1)^{4} \cdot(0.5)+(0.2-0.1)^{4} \cdot(0.2) \\
& \left.+(0.5-0.1)^{4} \cdot(0.05)\right] /(0.141)^{4} \\
& =6.5
\end{aligned}
$$

Example: $X \backsim N\left(\mu_{X}, \sigma_{X}^{2}\right)$

$$
\operatorname{Kurt}(X)=\int_{-\infty}^{\infty}\left(\frac{x-\mu_{X}}{\sigma_{X}}\right)^{4} \frac{1}{\sqrt{2 \pi \sigma_{X}^{2}}} e^{-\frac{1}{2}\left(\frac{x-\mu_{X}}{\sigma_{X}}\right)^{2}} d x=3
$$

Definition: Excess kurtosis $=\operatorname{Kurt}(X)-3=$ kurtosis value in excess of kurtosis of normal distribution.

- Excess kurtosis $(X)>0 \Rightarrow X$ has fatter tails than normal distribution
- Excess kurtosis $(X)<0 \Rightarrow X$ has thinner tails than normal distribution


## The Student's-t Distribution

A distribution similar to the standard normal distribution but with fatter tails, and hence larger kurtosis, is the Student's $t$ distribution. If $X$ has a Student's t distribution with degrees of freedom parameter $v$, denoted $X \sim t_{v}$, then its pdf has the form

$$
f(x)=\frac{\Gamma\left(\frac{v+1}{2}\right)}{\sqrt{v \pi} \Gamma\left(\frac{v}{2}\right)}\left(1+\frac{x^{2}}{v}\right)^{-\left(\frac{v+1}{2}\right)},-\infty<x<\infty, v>0
$$

where $\Gamma(z)=\int_{0}^{\infty} t^{z-1} e^{-t} d t$ denotes the gamma function.

It can be shown that

$$
\begin{aligned}
E[X] & =0, v>1 \\
\operatorname{var}(X) & =\frac{v}{v-2}, v>2 \\
\operatorname{skew}(X) & =0, v>3 \\
\operatorname{kurt}(X) & =\frac{6}{v-4}+3, v>4
\end{aligned}
$$

The parameter $v$ controls the scale and tail thickness of distribution. If $v$ is close to four, then the kurtosis is large and the tails are thick. If $v<4$, then $\operatorname{kurt}(X)=\infty$. As $v \rightarrow \infty$ the Student's t pdf approaches that of a standard normal random variable and $\operatorname{kurt}(X)=3$.

## R Runctions

- simulate data: $\mathrm{rt}(\mathrm{n}, \mathrm{df})$
- compute CDF: pt (q, df)
- compute quantiles: $q t(p, d f)$
- compute density: $d t(x, d f)$

Here df is the degrees of freedom parameter $v$.

### 1.7 Linear Functions of a Random Variable

Let $X$ be a discrete or continuous rv with $\mu_{X}=E[X]$, and $\sigma_{X}^{2}=\operatorname{Var}(X)$. Define a new rv $Y$ to be a linear function of $X$ :

$$
\begin{aligned}
& Y=g(X)=a \cdot X+b \\
& \quad a \text { and } b \text { are known constants }
\end{aligned}
$$

Then

$$
\begin{aligned}
\mu_{Y} & =E[Y]=E[a \cdot X+b] \\
& =a \cdot E[X]+b=a \cdot \mu_{X}+b \\
\sigma_{Y}^{2} & =\operatorname{Var}(Y)=\operatorname{Var}(a \cdot X+b) \\
& =a^{2} \cdot \operatorname{Var}(X) \\
& =a^{2} \cdot \sigma_{X}^{2} \\
\sigma_{Y} & =a \cdot \sigma_{X}
\end{aligned}
$$

## Linear Function of a Normal rv

Let $X \sim N\left(\mu_{X}, \sigma_{X}^{2}\right)$ and define $Y=a \cdot X+b$. Then

$$
Y \sim N\left(\mu_{Y}, \sigma_{Y}^{2}\right)
$$

with

$$
\begin{aligned}
& \mu_{Y}=a \cdot \mu_{X}+b \\
& \sigma_{Y}^{2}=a^{2} \cdot \sigma_{X}^{2}
\end{aligned}
$$

Remarks

- Proof of result relies on change-of-variables formula for determining pdf of a function of a rv
- Result may or may not hold for random variables whose distributions are not normal

Example - Standardizing a Normal rv

Let $X \sim N\left(\mu_{X}, \sigma_{X}^{2}\right)$. The standardized $r v Z$ is created using

$$
\begin{aligned}
Z & =\frac{X-\mu_{X}}{\sigma_{X}}=\frac{1}{\sigma_{X}} \cdot X-\frac{\mu_{X}}{\sigma_{X}} \\
& =a \cdot X+b \\
a & =\frac{1}{\sigma_{X}}, b=-\frac{\mu_{X}}{\sigma_{X}}
\end{aligned}
$$

Properties of $Z$

$$
\begin{aligned}
E[Z] & =\frac{1}{\sigma_{X}} E[X]-\frac{\mu_{X}}{\sigma_{X}} \\
& =\frac{1}{\sigma_{X}} \cdot \mu_{X}-\frac{\mu_{X}}{\sigma_{X}}=0 \\
\operatorname{Var}(Z) & =\left(\frac{1}{\sigma_{X}}\right)^{2} \cdot \operatorname{Var}(X) \\
& =\left(\frac{1}{\sigma_{X}}\right)^{2} \cdot \sigma_{X}^{2}=1 \\
Z & \sim N(0,1)
\end{aligned}
$$

### 1.8 Value at Risk: Introduction

Consider a \$10, 000 investment in Microsoft for 1 month. Assume
$R=$ simple monthly return on Microsoft

$$
R \sim N\left(0.05,(0.10)^{2}\right), \mu_{R}=0.05, \sigma_{R}=0.10
$$

Goal: Calculate how much we can lose with a specified probability $\alpha$

## Questions:

1. What is the probability distribution of end of month wealth, $W_{1}=\$ 10,000$. $(1+R)$ ?
2. What is $\operatorname{Pr}\left(W_{1}<\$ 9,000\right)$ ?
3. What value of $R$ produces $W_{1}=\$ 9,000$ ?
4. What is the monthly value-at-risk ( VaR ) on the $\$ 10,000$ investment with $5 \%$ probability? That is, how much can we lose if $R \leq q .05$ ?

Answers:

1. $W_{1}=\$ 10,000 \cdot(1+R)$ is a linear function of $R$, and $R$ is a normally distributed rv . Therefore, $W_{1}$ is normally distributed with

$$
\begin{aligned}
& E\left[W_{1}\right]=\$ 10,000 \cdot(1+E[R]) \\
= & \$ 10,000 \cdot(1+0.05)=\$ 10,500, \\
& \operatorname{Var}\left(W_{1}\right)=(\$ 10,000)^{2} \operatorname{Var}(R) \\
= & (\$ 10,000)^{2}(0.1)^{2}=1,000,000 \\
& W_{1} \sim N\left(\$ 10,500,(\$ 1,000)^{2}\right)
\end{aligned}
$$

2. Using $W_{1} \sim N\left(\$ 10,500,(\$ 1,000)^{2}\right)$

$$
\begin{aligned}
& \operatorname{Pr}\left(W_{1}<\$ 9,000\right) \\
& =\operatorname{NORMDIST}(9000,10500,1000)=0.067
\end{aligned}
$$

3. To find $R$ that produces $W_{1}=\$ 9,000$ solve

$$
R=\frac{\$ 9,000-\$ 10,000}{\$ 10,000}=-0.10
$$

Notice that -0.10 is the $6.7 \%$ quantile of the distribution of $R$ :

$$
q .067=\operatorname{Pr}(R<-0.10)=0.067
$$

4. Use $R \sim N\left(0.05,(0.10)^{2}\right)$ and solve for the the $5 \%$ quantile:

$$
\begin{aligned}
& \operatorname{Pr}\left(R<q_{.05}^{R}\right)=0.05 \Rightarrow \\
& q_{.05}^{R}=\operatorname{NORMINV}(0.05,0.05,0.10)=-0.114
\end{aligned}
$$

If $R=-11.4 \%$ the loss in investment value is at least

$$
\begin{aligned}
\$ 10,000 \cdot(-0.114) & =-\$ 1,144 \\
& =5 \% \mathrm{VaR}
\end{aligned}
$$

In general, the $\alpha \times 100 \%$ Value-at-Risk $\left(\mathrm{VaR}_{\alpha}\right)$ for an initial investment of $\$ W_{0}$ is computed as

$$
\begin{aligned}
\mathrm{VaR}_{\alpha} & =\$ W_{0} \times q_{\alpha} \\
q_{\alpha} & =\alpha \times 100 \% \text { quantile of simple return distn }
\end{aligned}
$$

Remark:

Because VaR represents a loss, it is often reported as a positive number. For example, $-\$ 1,144$ represents a loss of $\$ 1,144$. So the VaR is reported as \$1, 144.

## VaR for Continuously Compounded Returns

$$
\begin{aligned}
r & =\ln (1+R), \text { cc monthly return } \\
R & =e^{r}-1, \text { simple monthly return }
\end{aligned}
$$

Assume

$$
\begin{aligned}
r & \sim N\left(\mu_{r}, \sigma_{r}^{2}\right) \\
W_{0} & =\text { initial investment }
\end{aligned}
$$

- Compute $\alpha$ quantile of Normal Distribution for $r$ :

$$
q_{\alpha}^{r}=\mu_{r}+\sigma_{r} z_{\alpha}
$$

- Convert $\alpha$ quantile for $r$ into $\alpha$ quantile for $R$ :

$$
q_{\alpha}^{R}=e^{q_{\alpha}^{r}}-1
$$

- Compute $100 \cdot \alpha \%$ VaR using $q_{\alpha}^{R}$.

$$
\mathrm{VaR}_{\alpha}=\$ W_{0} \cdot q_{\alpha}^{R}
$$

Example: Conpute 5\% VaR assuming

$$
r_{t} \sim N\left(0.05,(0.10)^{2}\right), W_{0}=\$ 10,000
$$

The $5 \%$ cc return quantile is

$$
\begin{aligned}
q_{.05}^{r} & =\mu_{r}+\sigma_{r} z .05 \\
& =0.05+(0.10)(-1.645)=-0.114
\end{aligned}
$$

The $5 \%$ simple return quantile is

$$
q_{.05}^{R}=e^{q^{r} .05}-1=e^{-.114}-1=-0.108
$$

The $5 \%$ VaR based on a $\$ 10,000$ initial investment is

$$
\operatorname{VaR}_{.05}=\$ 10,000 \cdot(-0.108)=-\$ 1,077
$$

