
Chapter 1

Probability Concepts

This chapter reviews basic probability concepts that are necessary for the
modeling and statistical analysis of financial data.

1.1 Random Variables

We start with the basic definition of a random variable:

Definition 1 A Random variable X is a variable that can take on a given
set of values, called the sample space and denoted SX, where the likeli-
hood of the values in SX is determined by X’s probability distribution
function (pdf).

Example 2 Future price of Microsoft stock

Consider the price of Microsoft stock next month. Since the price of Microsoft
stock next month is not known with certainty today, we can consider it a
random variable. The price next month must be positive and realistically
it can’t get too large. Therefore the sample space is the set of positive real
numbers bounded above by some large number: SP = {P : P ∈ [0,M ],
M > 0}. It is an open question as to what is the best characterization of the
probability distribution of stock prices. The log-normal distribution is one
possibility1. ¥

1If P is a positive random variable such that lnP is normally distributed the P has a
log-normal distribution.

1
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Example 3 Return on Microsoft stock

Consider a one-month investment in Microsoft stock. That is, we buy one
share of Microsoft stock at the end of month t− 1 (today) and plan to sell it
at the end of month t. The return on this investment, Rt = (Pt − Pt−1)/Pt,
is a random variable because we do not know what the price will be at the
end of the month. In contrast to prices, returns can be positive or negative
and are bounded from below by -100%. We can express the sample space
as SRt = {Rt : Rt ∈ [−1,M ], M > 0}. The normal distribution is often
a good approximation to the distribution of simple monthly returns, and
is a better approximation to the distribution of continuously compounded
monthly returns. ¥

Example 4 Up-down indicator variable

As a final example, consider a variable X defined to be equal to one if the
monthly price change on Microsoft stock, Pt−Pt−1, is positive, and is equal to
zero if the price change is zero or negative. Here, the sample space is the set
SX = {0, 1}. If it is equally likely that the monthly price change is positive
or negative (including zero) then the probability that X = 1 or X = 0 is 0.5.
This is an example of a bernoulli random variable. ¥
The next sub-sections define discrete and continuous random variables.

1.1.1 Discrete Random Variables

Consider a random variable generically denoted X and its set of possible
values or sample space denoted SX .

Definition 5 A discrete random variable X is one that can take on a finite
number of n different values SX = {x1, x2, . . . , xn} or, at most, a countably
infinite number of different values SX = {x1, x2, . . . .}.

Definition 6 The pdf of a discrete random variable, denoted p(x), is a func-
tion such that p(x) = Pr(X = x). The pdf must satisfy (i) p(x) ≥ 0 for all
x ∈ SX ; (ii) p(x) = 0 for all x /∈ SX; and (iii)

P
x∈SX p(x) = 1.

Example 7 Annual return on Microsoft stock
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State of Economy SX = Sample Space p(x) = Pr(X = x)

Depression -0.30 0.05

Recession 0.0 0.20

Normal 0.10 0.50

Mild Boom 0.20 0.20

Major Boom 0.50 0.05

Table 1.1: Probability distribution for the annual return on Microsoft

Let X denote the annual return on Microsoft stock over the next year. We
might hypothesize that the annual return will be influenced by the general
state of the economy. Consider five possible states of the economy: de-
pression, recession, normal, mild boom and major boom. A stock analyst
might forecast different values of the return for each possible state. Hence,
X is a discrete random variable that can take on five different values. Ta-
ble 1.1describes such a probability distribution of the return and a graphical
representation of the probability distribution is presented in Figure 1.1.
¥

The Bernoulli Distribution

Let X = 1 if the price next month of Microsoft stock goes up and X = 0 if
the price goes down (assuming it cannot stay the same). Then X is clearly
a discrete random variable with sample space SX = {0, 1}. If the probability
of the stock price going up or down is the same then p(0) = p(1) = 1/2 and
p(0) + p(1) = 1.

The probability distribution described above can be given an exact math-
ematical representation known as the Bernoulli distribution. Consider two
mutually exclusive events generically called “success” and “failure”. For ex-
ample, a success could be a stock price going up or a coin landing heads
and a failure could be a stock price going down or a coin landing tails. In
general, let X = 1 if success occurs and let X = 0 if failure occurs. Let
Pr(X = 1) = π, where 0 < π < 1, denote the probability of success. Then
Pr(X = 0) = 1 − π is the probability of failure. A mathematical model
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Figure 1.1: Discrete distribution for Microsoft stock.

describing this distribution is

p(x) = Pr(X = x) = πx(1− π)1−x, x = 0, 1. (1.1)

When x = 0, p(0) = π0(1 − π)1−0 = 1 − π and when x = 1, p(1) = π1(1 −
π)1−1 = π.

The Binomial Distribution

To be completed.

1.1.2 Continuous Random Variables

Definition 8 A continuous random variable X is one that can take on any
real value. That is, SX = {x : x ∈ R}.

Definition 9 The probability density function (pdf) of a continuous random
variable X is a nonnegative function f, defined on the real line, such that for
any interval A

Pr(X ∈ A) =

Z
A

f(x)dx.
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Figure 1.2: Pr(−2 ≤ X ≤ 1) is represented by the area under the probability
curve.

That is, Pr(X ∈ A) is the “area under the probability curve over the interval
A”. The pdf f(x) must satisfy (i) f(x) ≥ 0; and (ii)

R∞
−∞ f(x)dx = 1.

A typical “bell-shaped” pdf is displayed in Figure 1.2 and the area under
the curve between −2 and 1 represents Pr(−2 ≤ X < 1). For a continuous
random variable, f(x) 6= Pr(X = x) but rather gives the height of the
probability curve at x. In fact, Pr(X = x) = 0 for all values of x. That is,
probabilities are not defined over single points. They are only defined over
intervals. As a result, for a continuous random variable X we have

Pr(a ≤ X ≤ b) = Pr(a < X ≤ b) = Pr(a < X < b) = Pr(a ≤ X < b).

The Uniform Distribution on an Interval

Let X denote the annual return on Microsoft stock and let a and b be two
real numbers such that a < b. Suppose that the annual return on Microsoft
stock can take on any value between a and b. That is, the sample space is
restricted to the interval SX = {x ∈ R : a ≤ x ≤ b}. Further suppose that
the probability that X will belong to any subinterval of SX is proportional to
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the length of the interval. In this case, we say that X is uniformly distributed
on the interval [a, b]. The pdf of X has the very simple mathematical form:

f(x) =

⎧⎨⎩ 1
b−a

0

for a ≤ x ≤ b,

otherwise,

and is presented graphically in Figure xxx. Notice that the area under the
curve over the interval [a, b] (area of rectangle) integrates to one:Z b

a

1

b− a
dx =

1

b− a

Z b

a

dx =
1

b− a
[x]ba =

1

b− a
[b− a] = 1.

[Insert figure here]

Example 10 Uniform distribution on [−1, 1]

Let a = −1 and b = 1, so that b−a = 2. Consider computing the probability
that the return will be between -50% and 50%.We solve

Pr(−50% < X < 50%) =

Z 0.5

−0.5

1

2
dx =

1

2
[x]0.5−0.5 =

1

2
[0.5− (−0.5)] = 1

2
.

Next, consider computing the probability that the return will fall in the
interval [0, δ] where δ is some small number less than b = 1 :

Pr(0 ≤ X ≤ δ) =
1

2

Z δ

0

dx =
1

2
[x]δ0 =

1

2
δ.

As δ → 0, Pr(0 ≤ X ≤ δ)→ Pr(X = 0). Using the above result we see that

lim
δ→0

Pr(0 ≤ X ≤ δ) = Pr(X = 0) = lim
δ→0

1

2
δ = 0.

Hence, probabilities are defined on intervals but not at distinct points. ¥

The Standard Normal Distribution

The normal or Gaussian distribution is perhaps the most famous and most
useful continuous distribution in all of statistics. The shape of the normal
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Figure 1.3: Standard normal density.

distribution is the familiar “bell curve”. As we shall see, it can be used to de-
scribe the probabilistic behavior of stock returns although other distributions
may be more appropriate.
If a random variable X follows a standard normal distribution then we

often writeX ∼ N(0, 1) as short-hand notation. This distribution is centered
at zero and has inflection points at ±1. The pdf of a normal random variable
is given by

f(x) =
1√
2π
· e−1

2
x2 −∞ ≤ x ≤ ∞.

It can be shown via the change of variables formula in calculus that the area
under the standard normal curve is one:Z ∞

−∞

1√
2π
· e−1

2
x2dx = 1.

The standard normal distribution is illustrated in Figure 1.3. Notice that
the distribution is symmetric about zero; i.e., the distribution has exactly
the same form to the left and right of zero.

The normal distribution has the annoying feature that the area under the
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normal curve cannot be evaluated analytically. That is

Pr(a ≤ X ≤ b) =

Z b

a

1√
2π
· e− 1

2
x2dx,

does not have a closed form solution. The above integral must be computed
by numerical approximation. Areas under the normal curve, in one form or
another, are given in tables in almost every introductory statistics book and
standard statistical software can be used to find these areas. Some useful
approximate results are

Pr(−1 ≤ X ≤ 1) ≈ 0.67,
Pr(−2 ≤ X ≤ 2) ≈ 0.95,
Pr(−3 ≤ X ≤ 3) ≈ 0.99.

1.1.3 The Cumulative Distribution Function

Definition 11 The cumulative distribution function (cdf) of a random vari-
able X (discrete or continuous), denoted FX , is the probability that X ≤ x :

FX(x) = Pr(X ≤ x), −∞ ≤ x ≤ ∞.

¥

The cdf has the following properties:

(i) If x1 < x2 then FX(x1) ≤ FX(x2)

(ii) FX(−∞) = 0 and FX(∞) = 1

(iii) Pr(X > x) = 1− FX(x)

(iv) Pr(x1 < X ≤ x2) = FX(x2)− FX(x1)

(v) F 0
X(x) =

d
dx
FX(x) = f(x) if X is a continuous random variable and

FX (x) is continuous and differentiable.

Example 12 FX (x) for a discrete random variable
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The cdf for the discrete distribution of Microsoft is given by

FX(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0,

0.05,

0.25,

0.75

0.95

1

x < −0.3

−0.3 ≤ x < 0

0 ≤ x < 0.1

0.1 ≤ x < 0.2

0.2 ≤ x < 0.5

x > 0.5

and is graphed Figure xxx. Notice that the cdf in this case is a discontinuous
step function with jumps at the four return values.

Insert figure here

¥
Example 13 F (x) for a uniform random variable

The cdf for the uniform distribution over [a, b] can be determined analytically:

FX(x) = Pr(X < x) =

Z x

−∞
f(t)dt

=
1

b− a

Z x

a

dt =
1

b− a
[t]xa =

x− a

b− a
.

We can determine the pdf of X directly from the cdf via

f(x) = F 0
X(x) =

d

dx
FX(x) =

1

b− a
.

¥
Example 14 FX (x) for a standard normal random variable

The cdf of standard normal random variable X is used so often in statistics
that it is given its own special symbol:

FX(x) = Φ(x) =

Z x

−∞

1√
2π

e−
1
2
z2dz. (1.2)

The cdf Φ(x), however, does not have an analytic representation like the
cdf of the uniform distribution and must be approximated using numerical
techniques. A graphical representation of Φ(x) is given in Figure 1.4.
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Figure 1.4: Standard normal cdf Φ(x).

1.1.4 Quantiles of the Distribution of a Random Vari-
able

Consider a random variable X with cdf FX(x) = Pr(X ≤ x). For 0 ≤ α ≤ 1,
the 100 · α% quantile of the distribution for X is the value qα that satisfies

FX(qα) = Pr(X ≤ qα) = α.

For example, the 5% quantile of X, q0.05, satisfies

FX(q0.05) = Pr(X ≤ q0.05) = 0.05.

The median of the distribution is 50% quantile. That is, the median, q0.5,
satisfies

FX(q0.5) = Pr(X ≤ q0.5) = 0.5.

If FX is invertible2 then qα may be determined analytically as

qα = F−1X (α)

where F−1X denotes the inverse function of FX . Hence, the 5% quantile and
the median may be determined from

q0.05 = F−1X (.05), q0.5 = F−1X (.5).

2The inverse of F (x) will exist if F is strictly increasing and is continuous.
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Example 15 Quantiles from a uniform distribution

Let X ∼ U [a, b] where b > a. Recall, the cdf of X is given by

FX(x) =
x− a

b− a
, a ≤ x ≤ b.

Given α ∈ [0, 1] such that FX(x) = α, solving for x gives the inverse cdf:

x = F−1X (α) = α(b− a) + a. (1.3)

Using (1.3), the 5% quantile and median, for example, are given by

q0.05 = F−1X (.05) = .05(b− a) + a = .05b+ .95a,

q0.5 = F−1X (.5) = .5(b− a) + a = .5(a+ b).

If a = 0 and b = 1, then q0.05 = 0.05 and q0.5 = 0.5.

Example 16 Quantiles from a standard normal distribution

Let X ∼ N(0, 1). The quantiles of the standard normal distribution are
determined by solving

qα = Φ−1(α),

where Φ−1 denotes the inverse of the cdf Φ. This inverse function must be
approximated numerically and is available in most spreadsheets and statisti-
cal software. Using the numerical approximation to the inverse function, the
1%, 2.5%, 5%, 10% quantiles and median are given by

q0.01 = Φ−1(.05) = −2.33, q0.025 = Φ−1(.05) = −1.96,
q0.05 = Φ−1(.05) = −1.645, q0.10 = Φ−1(.05) = −1.28,
q.05 = Φ−1(.5) = 0.

1.1.5 R Functions for Discrete and Continuous Distri-
butions

R has built-in functions for a number of discrete and continuous distributions.
These are summarized in Table 1.2. For each distribution, there are four
functions starting with d, p, q and r that compute density (pdf) values,
cumulative probabilities (cdf), quantiles (inverse cdf) and random draws,
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respectively. Consider, for example, the functions associated with the normal
distribution. The functions dnorm(), pnorm() and qnorm() evaluate the
standard normal density (), the cdf (), and the inverse cdf (), respectively,
with the default values mean=1 and sd = 0. The function rnorm() returns
a specified number of simulated values from the normal distribution.

Finding Areas Under the Normal Curve Most spreadsheet and sta-
tistical software packages have functions for finding areas under the nor-
mal curve. Let X denote a standard normal random variable. Some tables
and functions give Pr(0 ≤ X ≤ z) for various values of z > 0, some give
Pr(X ≥ z) and some give Pr(X ≤ z). Given that the total area under
the normal curve is one and the distribution is symmetric about zero the
following results hold:

• Pr(X ≤ z) = 1− Pr(X ≥ z) and Pr(X ≥ z) = 1− Pr(X ≤ z)

• Pr(X ≥ z) = Pr(X ≤ −z)

• Pr(X ≥ 0) = Pr(X ≤ 0) = 0.5

The following examples show how to compute various probabilities.

Example 17 Finding areas under the normal curve using R

First, consider finding Pr(X ≥ 2). By the symmetry of the normal distribu-
tion, Pr(X ≥ 2) = Pr(X ≤ −2) = Φ(−2). In R use

> pnorm(-2)
[1] 0.0228

Next, consider finding Pr(−1 ≤ X ≤ 2). Using the cdf, we compute Pr(−1 ≤
X ≤ 2) = Pr(X ≤ 2)− Pr(X ≤ −1) = Φ(2)− Φ(−1). In R use

> pnorm(2) - pnorm(-1)
[1] 0.8186

Finally, using R the exact values for Pr(−1 ≤ X ≤ 1), Pr(−2 ≤ X ≤ 2) and
Pr(−3 ≤ X ≤ 3) are
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Distribution Function (root) Parameters Defaults

beta beta shape1, shape2 _, _

binomial binom size, prob _, _

Cauchy cauchy location, scale 0, 1

chi-squared chisq df, ncp _, 1

F f df1, df2 _, _

gamma gamma shape, rate, scale _, 1, 1/rate

geometric geom prob _

hyper-geometric hyper m, n, k _, _, _

log-normal lnorm meanlog, sdlog 0, 1

logistic logis location, scale 0, 1

negative binomial nbinom size, prob, mu _, _, _

normal norm mean, sd 0, 1

Poisson pois Lambda 1

Student’s t t df, ncp _, 1

uniform unif min, max 0, 1

Weibull weibull shape, scale _, 1

Wilcoxon wilcoxon m, n _, _

Table 1.2: Probability distributions in R
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> pnorm(1) - pnorm(-1)
[1] 0.6827
> pnorm(2) - pnorm(-2)
[1] 0.9545
> pnorm(3) - pnorm(-3)
[1] 0.9973

Plotting Distributions

When working with a probability distribution, it is a good idea to make plots
of the pdf or cdf to reveal important characteristics. The following examples
illustrate plotting distributions using R.

Example 18 Plotting the standard normal curve

The graphs of the standard normal pdf and cdf in Figures 1.3 and 1.4 were
created using the following R code:

# plot pdf
> x.vals = seq(-4, 4, length=150)
> plot(x.vals, dnorm(x.vals), type="l", lwd=2, col="blue",
+ xlab="x", ylab="pdf")
# plot cdf
> plot(x.vals, pnorm(x.vals), type="l", lwd=2, col="blue",
+ xlab="x", ylab="CDF")

¥

Example 19 Shading a region under the standard normal curve

Figure 1.2 showing Pr(−2 ≤ X ≤ 1) as a red shaded area is created with the
following code

> lb = -2
> ub = 1
> x.vals = seq(-4, 4, length=150)
> d.vals = dnorm(x.vals)
# create plot layout but do not plot anything
> plot(x.vals, d.vals, type="n", xlab="x", ylab="pdf")
> i = x.vals >= lb & x.vals <= ub
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# add normal curve
> lines(x.vals, d.vals)
# add shaded region between -2 and 1
> polygon(c(lb, x.vals[i], ub), c(0, d.vals[i], 0), col="red")

¥

1.1.6 Shape Characteristics of Probability Distributions

Very often we would like to know certain shape characteristics of a probability
distribution. We might want to know where the distribution is centered, and
how spread out the distribution is about the central value. We might want to
know if the distribution is symmetric about the center or if the distribution
has a long left or right tail. For stock returns we might want to know about
the likelihood of observing extreme values for returns representing market
crashes. This means that we would like to know about the amount of proba-
bility in the extreme tails of the distribution. In this section we discuss four
important shape characteristics of a probability distribution:

1. expected value (mean): measures the center of mass of a distribution

2. variance and standard deviation: measures the spread about the mean

3. skewness: measures symmetry about the mean

4. kurtosis: measures “tail thickness”

Expected Value

The expected value of a random variable X, denoted E[X] or μX , measures
the center of mass of the pdf. For a discrete random variable X with sample
space SX , the expected value is defined as

μX = E[X] =
X
x∈SX

x · Pr(X = x). (1.4)

Eq. (1.4) shows that E[X] is a probability weighted average of the possible
values of X.

Example 20 Expected value of discrete random variable



16 CHAPTER 1 PROBABILITY CONCEPTS

Using the discrete distribution for the return on Microsoft stock in Table 1.1,
the expected return is computed as:

E[X] = (−0.3) · (0.05) + (0.0) · (0.20) + (0.1) · (0.5) + (0.2) · (0.2) + (0.5) · (0.05)
= 0.10.

¥

Example 21 Expected value of Bernoulli random variable

Let X be a Bernoulli random variable with success probability π. Then

E[X] = 0 · (1− π) + 1 · π = π

That is, the expected value of a Bernoulli random variable is its probability
of success. ¥
For a continuous random variable X with pdf f(x), the expected value is

defined as

μX = E[X] =

Z ∞

−∞
x · f(x)dx. (1.5)

Example 22 Expected value of a uniform random variable

Suppose X has a uniform distribution over the interval [a, b]. Then

E[X] =
1

b− a

Z b

a

xdx =
1

b− a

∙
1

2
x2
¸b
a

=
1

2(b− a)

£
b2 − a2

¤
=
(b− a)(b+ a)

2(b− a)
=

b+ a

2
.

If b = −1 and a = 1, then E[X] = 0.

Example 23 Expected value of a standard normal random variable

Let X ∼ N(0, 1). Then it can be shown that

E[X] =

Z ∞

−∞
x · 1√

2π
e−

1
2
x2dx = 0.

Hence, the standard normal distribution is centered at zero.



1.1 RANDOM VARIABLES 17

Expectation of a Function of a Random Variable

The other shape characteristics of the distribution of a random variable X
are based on expectations of certain functions of X. Let g(X) denote some
function of the random variable X. If X is a discrete random variable with
sample space SX then

E[g(X)] =
X
x∈SX

g(x) · Pr(X = x),

and if X is a continuous random variable with pdf f then

E[g(X)] =

Z ∞

−∞
g(x) · f(x)dx.

Variance and Standard Deviation

The variance of a random variable X, denoted var(X) or σ2X , measures the
spread of the distribution about the mean using the function g(X) = (X −
μX)

2. If most values of X are close to μX then on average (X − μX)
2 will be

small. In contrast, if many values of X are far below and/or far above μX
then on average (X − μX)

2 will be large. Squaring the deviations about μX
guarantees a positive value. The variance of X is defined as

σ2X = var(X) = E[(X − μX)
2] =

X
x∈SX

(x− μX)
2 · Pr(X = x),

for X discrete, and

σ2X =

Z ∞

−∞
(x− μX)

2f(x)dx

for X continuous.
Because σ2X represents an average squared deviation, it is not in the same

units as X. The standard deviation of X, denoted SD(X) or σX , is the
square root of the variance and is in the same units as X. For “bell-shaped”
distributions, σX measures the typical size of a deviation from the mean
value.

Example 24 Variance and standard deviation for a discrete random vari-
able
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Using the discrete distribution for the return on Microsoft stock in Table 1.1
and the result that μX = 0.1, we have

var(X) = (−0.3− 0.1)2 · (0.05) + (0.0− 0.1)2 · (0.20) + (0.1− 0.1)2 · (0.5)
+(0.2− 0.1)2 · (0.2) + (0.5− 0.1)2 · (0.05)

= 0.020

SD(X) = σX =
√
0.020 = 0.141.

Given that the distribution is fairly bell-shaped we can say that typical values
deviate from the mean value of 10% by about 14.1%. ¥

Example 25 Variance and standard deviation of a Bernoulli random vari-
able

Let X be a Bernoulli random variable with success probability π. Given that
μX = π it follows that

var(X) = (0− π)2 · (1− π) + (1− π)2 · π
= π2(1− π) + (1− π2)π

= π(1− π) [π + (1− π)]

= π(1− π),

SD(X) =
p
π(1− π).

¥

Example 26 Variance and standard deviation of a uniform random variable

To be completed

Example 27 Variance and standard deviation of a standard normal random
variable

Let X ∼ N(0, 1).Here, μX = 0 and it can be shown that

σ2X =

Z ∞

−∞
x2 · 1√

2π
e−

1
2
x2dx = 1.

It follows that SD(X) = 1.¥
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The General Normal Distribution

Recall, if X has a standard normal distribution then E[X] = 0, var(X) = 1.
A general normal random variable X has E[X] = μX and var(X) = σ2X and
is denoted X ∼ N(μX , σ

2
X). Its pdf is given by

f(x) =
1p
2πσ2X

exp

½
− 1

2σ2X
(x− μX)

2

¾
, −∞ ≤ x ≤ ∞.

Showing that E[X] = μX and var(X) = σ2X is a bit of work and is good
calculus practice. As with the standard normal distribution, areas under
the general normal curve cannot be computed analytically. Using numerical
approximations, it can be shown that

Pr(μX − σX < X < μX + σX) ≈ 0.67,
Pr(μX − 2σX < X < μX + 2σX) ≈ 0.95,
Pr(μX − 3σX < X < μX + 3σX) ≈ 0.99.

Hence, for a general normal random variable about 95% of the time we expect
to see values within ± 2 standard deviations from its mean. Observations
more than three standard deviations from the mean are very unlikely.

Example 28 Normal distribution for monthly returns

Let R denote the monthly return on an investment in Microsoft stock, and
assume that it is normally distributed with mean μR = 0.01 and standard
deviation σR = 0.10. That is, R ∼ N(0.01, (0.10)2). Notice that σ2R = 0.01
and is not in units of return per month. Figure 1.5 illustrates the distribution.
Notice that essentially all of the probability lies between −0.4 and 0.4. Using
the R function pnorm(), we can easily compute the probabilities Pr(R <
−0.5), Pr(R < 0), Pr(R > 0.5) and Pr(R > 1):

> pnorm(-0.5, mean=0.01, sd=0.1)
[1] 1.698e-07
> pnorm(0, mean=0.01, sd=0.1)
[1] 0.4602
> 1 - pnorm(0.5, mean=0.01, sd=0.1)
[1] 4.792e-07
> 1 - pnorm(1, mean=0.01, sd=0.1)
[1] 0
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Figure 1.5: Normal distribution for the monthly returns on Microsoft: R ∼
N(0.01, (0.10)2).

Using the R function qnorm(), we can find the quantiles q0.01, q0.05, q0.95 and
q0.99:

> a.vals = c(0.01, 0.05, 0.95, 0.99)
> qnorm(a.vals, mean=0.01, sd=0.10)
[1] -0.2226 -0.1545 0.1745 0.2426

Hence, over the next month, there are 1% and 5% chances of losing more than
22.2% and 15.5%, respectively. In addition, there are 1% and 5% chances of
gaining more than 17.5% and 24.3%, respectively.
¥

Example 29 Why the normal distribution may not be appropriate for simple
returns

Let Rt denote the simple annual return on an asset, and suppose that Rt ∼
N(0.05, (0.50)2). Because asset prices must be non-negative, Rt must al-
ways be larger than −1. However, based on the assumed normal distribution
Pr(Rt < −1) = 0.018. That is, there is a 1.8% chance that Rt is smaller than
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−1. This implies that there is a 1.8% chance that the asset price at the end
of the year will be negative! This is why the normal distribution may not
appropriate for simple returns. ¥

Example 30 The normal distribution is more appropriate for continuously
compounded returns

Let rt = ln(1 + Rt) denote the continuously compounded annual return on
an asset, and suppose that rt ∼ N(0.05, (0.50)2). Unlike the simple return,
the continuously compounded return can take on values less than −1. For
example, suppose rt = −2. This implies a simple return of Rt = e−2 − 1 =
−0.865. Then Pr(rt ≤ −2) = Pr(Rt ≤ −0.865) = 0.00002. Although the
normal distribution allows for values of rt smaller than−1, the implied simple
return Rt will always be greater than −1.¥

The Log-Normal distribution

Let X ∼ N(μX , σ
2
X), which is defined for −∞ < X < ∞. The log-normally

distributed random variable Y is determined from the normally distributed
random variable X using the transformation Y = eX . In this case, we say
that Y is log-normally distributed and write

Y ∼ lnN(μX , σ2X), 0 < Y <∞.

Due to the exponential transformation, Y is only defined for non-negative
values. It can be shown that

μY = E[Y ] = eμX+σ
2
X/2, (1.6)

σ2Y = var(Y ) = e2μX+σ
2
X (eσ

2
X − 1).

Example 31 Log-normal distribution for simple returns

Let rt = ln(Pt/Pt−1) denote the continuously compounded monthly return on
an asset and assume that rt ∼ N(0.05, (0.50)2). That is, μr = 0.05 and σr =
0.50. Let Rt =

Pt−Pt−1
Pt

denote the simple monthly return. The relationship
between rt and Rt is given by rt = ln(1 + Rt) and 1 + Rt = ert. Since rt
is normally distributed 1 + Rt is log-normally distributed. Notice that the
distribution of 1 + Rt is only defined for positive values of 1 + Rt. This is
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Normal distribution for r(t)=ln(1+R(t))
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Figure 1.6: Normal distribution for rt and log-normal distribution for Rt =
ert.

appropriate since the smallest value that Rt can take on is −1. Using (1.6),
the mean and variance for 1 +Rt are given by

μ1+R = e0.05+(0.5)
2/2 = 1.191

σ21+R = e2(0.05)+(0.5)
2

(e(0.5)
2 − 1) = 0.563

The pdfs for rt and Rt are shown in figure 1.6.

Using standard deviation as a measure of risk

Consider the following investment problem. We can invest in two non-
dividend paying stocks, Amazon and Boeing, over the next month. Let RA
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denote the monthly return on Amazon and RB denote the monthly return
on Boeing. These returns are to be treated as random variables since the
returns will not be realized until the end of the month. We assume that
RA ∼ N(μA, σ

2
A) and RB ∼ N(μB, σ

2
B). Hence, μi gives the expected return,

E[Ri], on asset i = A,B and σi gives the typical size of the deviation of the
return on asset i from its expected value. Figure xxx shows the pdfs for the
two returns. Notice that μA > μB but also that σA > σB. The return we
expect on asset A is bigger than the return we expect on asset B but the
variability of the return on asset A is also greater than the variability on
asset B. The high return variability of asset A reflects the risk associated
with investing in asset A. In contrast, if we invest in asset B we get a lower
expected return but we also get less return variability or risk. This exam-
ple illustrates the fundamental “no free lunch” principle of economics and
finance: you can’t get something for nothing. In general, to get a higher
return you must take on extra risk.

insert figure here

Skewness

The skewness of a random variable X, denoted skew(X), measures the sym-
metry of a distribution about its mean value using the function g(X) =
(X − μX)

3/σ3X , where σ
3
X is just SD(X) raised to the third power. For a

discrete random variable X with sample space SX

skew(X) =
E[(X − μX)

3]

σ3X
=

P
x∈SX (x− μX)

3 · Pr(X = x)

σ3X
.

For a continuous random variable X with pdf p(x)

skew(X) =
E[(X − μX)

3]

σ3X
=

R∞
−∞(x− μX)

3 · p(x)dx
σ3X

.

If X has a symmetric distribution then skew(X) = 0 since positive and
negative values in the formula for skewness cancel out. If skew(X) > 0
then the distribution of X has a “long right tail” and if skew(X) < 0 the
distribution of X has a “long left tail”. These cases are illustrated in Figure
6.

insert figure 6 here
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Example 32 Skewness for a discrete random variable

Using the discrete distribution for the return on Microsoft stock in Table 1,
the results that μX = 0.1 and σX = 0.141, we have

skew(X) = [(−0.3− 0.1)3 · (0.05) + (0.0− 0.1)3 · (0.20) + (0.1− 0.1)3 · (0.5)
+(0.2− 0.1)3 · (0.2) + (0.5− 0.1)3 · (0.05)]/(0.141)3

= 0.0

Example 33 Skewness for a normal random variable

Suppose X has a general normal distribution with mean μX and variance
σ2X . Then it can be shown that

skew(X) =

Z ∞

−∞

(x− μX)
3

σ3X
· 1√
2πσ2

e
− 1

2σ2
X

(x−μX)2
dx = 0.

This result is expected since the normal distribution is symmetric about it’s
mean value μX .

Example 34 Skewness for a log-Normal random variable

Let Y = eX , where X ∼ N(μX , σ
2
X), be a log-normally distributed random

variable with parameters μX and σ2X . Then it can be shown that

skew(Y ) =
³
eσ

2
X + 2

´p
eσ

2
X − 1 > 0

Notice that skew(Y ) is always positive, indicating that the distribution of Y
has a long right tail, and that it is an increasing function of σ2X .

Kurtosis

The kurtosis of a random variable X, denoted kurt(X), measures the thick-
ness in the tails of a distribution and is based on g(X) = (X−μX)4/σ4X . For
a discrete random variable X with sample space SX

kurt(X) =
E[(X − μX)

4]

σ4X
=

P
x∈SX (x− μX)

4 · Pr(X = x)

σ4X
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where σ4X is just SD(X) raised to the fourth power. For a continuous random
variable X with pdf p(x)

kurt(X) =
E[(X − μX)

4]

σ4X
=

R∞
−∞(x− μX)

4 · p(x)dx
σ4X

.

Since kurtosis is based on deviations from the mean raised to the fourth
power, large deviations get lots of weight. Hence, distributions with large
kurtosis values are ones where there is the possibility of extreme values. In
contrast, if the kurtosis is small then most of the observations are tightly
clustered around the mean and there is very little probability of observing
extreme values.

Example 35 Kurtosis for a discrete random variable

Using the discrete distribution for the return on Microsoft stock in Table 1,
the results that μX = 0.1 and σX = 0.141, we have

kurt(X) = [(−0.3− 0.1)4 · (0.05) + (0.0− 0.1)4 · (0.20) + (0.1− 0.1)4 · (0.5)
+(0.2− 0.1)4 · (0.2) + (0.5− 0.1)4 · (0.05)]/(0.141)4

= 6.5

Example 36 Kurtosis for a normal random variable

Suppose X has a general normal distribution mean μX and variance σ2X .
Then it can be shown that

kurt(X) =

Z ∞

−∞

(x− μX)
4

σ4X
· 1p

2πσ2X
e−

1
2
(x−μX)2dx = 3.

Hence a kurtosis of 3 is a benchmark value for tail thickness of bell-shaped
distributions. If a distribution has a kurtosis greater than 3 then the distrib-
ution has thicker tails than the normal distribution and if a distribution has
kurtosis less than 3 then the distribution has thinner tails than the normal.
Sometimes the kurtosis of a random variable is described relative to the

kurtosis of a normal random variable. This relative value of kurtosis is re-
ferred to as excess kurtosis and is defined as

excess kurt(X) = kurt(X)− 3
If excess the excess kurtosis of a random variable is equal to zero then the
random variable has the same kurtosis as a normal random variable. If excess
kurtosis is greater than zero, then kurtosis is larger than that for a normal; if
excess kurtosis is less than zero, then kurtosis is less than that for a normal.
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The Student-t Distribution To be completed

1.1.7 Linear Functions of a Random Variable

Let X be a random variable either discrete or continuous with E[X] = μX ,
var(X) = σ2X and let a and b be known constants. Define a new random
variable Y via the linear function of X

Y = g(X) = aX + b.

Then the following results hold:

• E[Y ] = aE[X] + b or μY = aμX + b.

• var(Y ) = a2var(X) or σ2Y = a2σ2X .

The first result shows that expectation is a linear operation. That is,

E[aX + b] = aE[X] + b.

In the second result notice that adding a constant to X does not affect its
variance and that the effect of multiplying X by the constant a increases the
variance of X by the square of a. These results will be used often enough
that it useful to go through the derivations, at least for the case that X is a
discrete random variable.
Proof. Consider the first result. By the definition of E[g(X)] with

g(X) = b+ aX we have

E[Y ] =
X
x∈SX

(ax+ b) · Pr(X = x)

= a
X
x∈SX

x · Pr(X = x) + b
X
x∈SX

Pr(X = x)

= aE[X] + b · 1
= aμX + b

= μY .
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Next consider the second result. Since μY = aμX + b we have

var(Y ) = E[(Y − μy)
2]

= E[(aX + b− (aμX + b))2]

= E[(a(X − μX) + (b− b))2]

= E[a2(X − μX)
2]

= a2E[(X − μX)
2] (by the linearity of E[·])

= a2var(X)

a2σ2X .

Notice that our proof of the second result works for discrete and continuous
random variables.
A normal random variable has the special property that a linear function

of it is also a normal random variable. The following proposition establishes
the result.

Proposition 37 Let X ∼ N(μX , σ
2
X) and let a and b be constants. Let

Y = aX + b. Then Y ∼ N(aμX + b, a2σ2X).

The above property is special to the normal distribution and may or may
not hold for a random variable with a distribution that is not normal.

Standardizing a Random Variable

Let X be a random variable with E[X] = μX and var(X) = σ2X . Define a
new random variable Z as

Z =
X − μX
σX

=
1

σX
X − μX

σX

which is a linear function aX + b where a = 1
σX
and b = −μX

σX
. This trans-

formation is called “standardizing” the random variable X since, using the
results of the previous section,

E[Z] =
1

σX
E[X]− μX

σX
=

1

σX
μX −

μX
σX

= 0

var(Z) =

µ
1

σX

¶2
var(X) =

σ2X
σ2X

= 1.
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Hence, standardization creates a new random variable with mean zero and
variance 1. In addition, if X is normally distributed then so is Z.
Let X ∼ N(2, 4) and suppose we want to find Pr(X > 5). Since X is not
standard normal we can’t use the standard normal tables to evaluate Pr(X >
5) directly. We solve the problem by standardizing X as follows:

Pr (X > 5) = Pr

µ
X − 2√
4

>
5− 2√
4

¶
= Pr

µ
Z >

3

2

¶
where Z ∼ N(0, 1) is the standardized value of X. Pr

¡
Z > 3

2

¢
can be found

directly from the standard normal tables.
Standardizing a random variable is often done in the construction of test

statistics. For example, the so-called “t-statistic” or “t-ratio” used for testing
simple hypotheses on coefficients in the linear regression model is constructed
by the above standardization process.
A non-standard random variable X with mean μX and variance σ

2
X can

be created from a standard random variable via the linear transformation

X = μX + σXZ.

This result is useful for modeling purposes. For example, in Chapter 3 we
will consider the Constant Expected Return (CER) model of asset returns.
Let R denote the monthly continuously compounded return on an asset and
let μ = E[R] and σ2 =var(R). A simplified version of the CER model is

R = μ+ σ · ε

where ε is a random variable with mean zero and variance 1. The random
variable ε is often interpreted as representing the random news arriving in a
given month that makes the observed return differ from the expected value
μ. The fact that ε has mean zero means that new, on average, is neutral.
The value of σ represents the typical size of a news shock.

1.1.8 Value at Risk: An Introduction

To illustrate the concept of Value-at-Risk (VaR), consider an investment of
$10,000 in Microsoft stock over the next month. Let R denote the monthly
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simple return on Microsoft stock and assume that R ~N(0.05, (0.10)2). That
is, E[R] = μ = 0.05 and var(R) = σ2 = (0.10)2. Let W0 denote the invest-
ment value at the beginning of the month and W1 denote the investment
value at the end of the month. In this example, W0 = $10, 000. Consider the
following questions:

• What is the probability distribution of end of month wealth, W1?

• What is the probability that end of month wealth is less than $9, 000
and what must the return on Microsoft be for this to happen?

• What is the monthly VaR on the $10, 000 investment in Microsoft stock
with 5% probability? That is, what is the loss that would occur if the
return on Microsoft stock is equal to its 5% quantile, q.05?

To answer the first question, note that end of month wealthW1 is related
to initial wealth W0 and the return on Microsoft stock R via the linear
function

W1 = W0(1 +R) =W0 +W0R

= $10, 000 + $10, 000 ·R.

Using the properties of linear functions of a random variable we have

E[W1] = W0 +W0E[R]

= $10, 000 + $10, 000(0.05) = $10, 500

and

var(W1) = (W0)
2var(R)

= ($10, 000)2(0.10)2,

SD(W1) = ($10, 000)(0.10) = $1, 000.

Further, since R is assumed to be normally distributed we have

W1 ∼ N($10, 500, ($1, 000)2)

To answer the second question, we use the above normal distribution for
W1 to get

Pr(W1 < $9, 000) = 0.067
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To find the return that produces end of month wealth of $9, 000 or a loss of
$10, 000− $9, 000 = $1, 000 we solve

R∗ =
$9, 000− $10, 000

$10, 000
= −0.10.

In other words, if the monthly return on Microsoft is −10% or less then end
of month wealth will be $9, 000 or less. Notice that−0.10 is the 6.7% quantile
of the distribution of R :

Pr(R < −0.10) = 0.067

The third question can be answered in two equivalent ways. First, use
R ∼ N(0.05, (0.10)2) and solve for the the 5% quantile of Microsoft Stock:

Pr(R < qR.05) = 0.05⇒ qR.05 = −0.114.

That is, with 5% probability the return on Microsoft stock is −11.4% or less.
Now, if the return on Microsoft stock is −11.4% the loss in investment value
is $10, 000 · (0.114) = $1, 144. Hence, $1, 144 is the 5% VaR over the next
month on the $10, 000 investment in Microsoft stock.
For the second method, use W1 ~N($10, 500, ($1, 000)2) and solve for the

5% quantile of end of month wealth:

Pr(W1 < qW1
.05 ) = 0.05⇒ qW1

.05 = $8, 856

This corresponds to a loss of investment value of $10, 000−$8, 856 = $1, 144.
Hence, if W0 represents the initial wealth and qW1

.05 is the 5% quantile of the
distribution of W1 then the 5% VaR is

5% VaR =W0 − qW1
.05 .

In general, if W0 represents the initial wealth in dollars and qRα is the
α× 100% quantile of distribution of the simple return R then the α× 100%
VaR may be computed using

VaRα = |W0 · qRα |.

In words, VaRα represents the dollar loss that could occur with probability
α. By convention, it is reported as a positive number (hence the use of the
absolute value function).
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Value-at-Risk Calculations for Continuously Compounded Returns

The above calculations illustrate how to calculate value-at-risk using the nor-
mal distribution for simple returns. However, as argued in Example xxx, the
normal distribution may not be appropriate for characterizing the distrib-
ution of simple returns and is more appropriate for characterizing contin-
uously compounded returns. Let R denote the simple monthly return, let
r = ln(1 +R) denote the continuously compounded return and assume that

r ∼ N(μr, σ
2
r)

The α× 100% monthly VaR on an investment of $W0 may be computed as
follows:

• Compute the α · 100% quantile, qrα, from the Normal distribution for
the continuously compounded return r

qα = μr + σrzα

where zα is the α · 100% quantile of the standard normal distribution.

• Convert the continuously compounded return quantile, qrα, to a simple
return quantile using the transformation

qRα = eq
r
α − 1

• Compute VaR using the simple return quantile

VaRα = |W0 · qR.05|.

1.1.9 Log-Normal Distribution and Jensen’s Inequal-
ity

(discuss Jensen’s inequality: E[g(X)] < g(E[X]) for a convex function. Use
this to illustrate the difference between E[W0 exp(R)] and W0 exp(E[R])
where R is a continuously compounded return.) Note, this is where the
log-normal distribution will come in handy.


