Introduction to Computational Finance and

 Financial EconometricsIntroduction to Portfolio Theory

Eric Zivot

Spring 2015

Outline

(1) Portfolios of Two Risky Assets
(2) Efficient Portfolios with Two Risky Asssets
(3) Efficient Portfolios with a Risk-free Asset
(1) Emcient Portfolios with Two Risky Assets and a Risk-free Asset

Investment in Two Risky Assets

$R_{A}=$ simple return on asset A
$R_{B}=$ simple return on asset B

$$
W_{0}=\text { initial wealth }
$$

Assumptions:

- R_{A} and R_{B} are described by the CER model:

$$
\begin{aligned}
& R_{i} \sim \operatorname{iid} N\left(\mu_{i}, \sigma_{i}^{2}\right), i=A, B \\
& \operatorname{cov}\left(R_{A}, R_{B}\right)=\sigma_{A B}, \operatorname{cor}\left(R_{A}, R_{B}\right)=\rho_{A B}
\end{aligned}
$$

- Investors like high $E\left[R_{i}\right]=\mu_{i}$
- Investors dislike high $\operatorname{var}\left(R_{i}\right)=\sigma_{i}^{2}$
- Investment horizon is one period (e.g., one month or one year) Note: Traditionally in portfolio theory, returns are simple and not continuously compounded

Portfolios

$$
\begin{aligned}
& x_{A}=\text { share of wealth in asset } \mathrm{A}=\frac{\$ \text { in } \mathrm{A}}{W_{0}} \\
& x_{B}=\text { share of wealth in asset } \mathrm{B}=\frac{\$ \text { in } \mathrm{B}}{W_{0}}
\end{aligned}
$$

Long position:

$$
x_{A}, x_{B}>0
$$

Short position:

$$
x_{A}<0 \text { or } x_{B}<0
$$

Assumption: Allocate all wealth between assets A and B:

$$
x_{A}+x_{B}=1
$$

Portfolio return:

$$
R_{p}=x_{A} R_{A}+x_{B} R_{B}
$$

Portfolios cont.

Portfolio Distribution:

$$
\begin{aligned}
& \mu_{p}=E\left[R_{p}\right]=x_{A} \mu_{A}+x_{B} \mu_{B} \\
& \sigma_{p}^{2}=\operatorname{var}\left(R_{p}\right)=x_{A}^{2} \sigma_{A}^{2}+x_{B}^{2} \sigma_{B}^{2}+2 x_{A} x_{B} \sigma_{A B} \\
& \quad=x_{A}^{2} \sigma_{A}^{2}+x_{B}^{2} \sigma_{B}^{2}+2 x_{A} x_{B} \rho_{A B} \sigma_{A} \sigma_{B} \\
& \quad R_{p} \sim \operatorname{iid} N\left(\mu_{p}, \sigma_{p}^{2}\right)
\end{aligned}
$$

End of Period Wealth:

$$
\begin{aligned}
& W_{1}=W_{0}\left(1+R_{p}\right)=W_{0}\left(1+x_{A} R_{A}+x_{B} R_{B}\right) \\
& \quad W_{1} \sim N\left(W_{0}\left(1+\mu_{p}\right), \sigma_{p}^{2} W_{0}^{2}\right)
\end{aligned}
$$

Portfolios cont.

Result: Portfolio SD is not a weighted average of asset SD unless $\rho_{A B}=1$:

$$
\sigma_{p}=\left(x_{A}^{2} \sigma_{A}^{2}+x_{B}^{2} \sigma_{B}^{2}+2 x_{A} x_{B} \rho_{A B} \sigma_{A} \sigma_{B}\right)^{1 / 2}
$$

$$
\neq x_{A} \sigma_{A}+x_{B} \sigma_{B} \text { for } \rho_{A B} \neq 1
$$

If $\rho_{A B}=1$ then:

$$
\sigma_{A B}=\rho_{A B} \sigma_{A} \sigma_{B}=\sigma_{A} \sigma_{B}
$$

and,

$$
\begin{aligned}
\sigma_{p}^{2} & =x_{A}^{2} \sigma_{A}^{2}+x_{B}^{2} \sigma_{B}^{2}+2 x_{A} x_{B} \sigma_{A} \sigma_{B} \\
& =\left(x_{A} \sigma_{A}+x_{B} \sigma_{B}\right)^{2} \\
& \Rightarrow \sigma_{p}=x_{A} \sigma_{A}+x_{B} \sigma_{B}
\end{aligned}
$$

Example data

$$
\begin{aligned}
\mu_{A} & =0.175, \mu_{B}=0.055 \\
\sigma_{A}^{2} & =0.067, \sigma_{B}^{2}=0.013 \\
\sigma_{A} & =0.258, \sigma_{B}=0.115 \\
\sigma_{A B} & =-0.004875, \\
\rho_{A B} & =\frac{\sigma_{A B}}{\sigma_{A} \sigma_{B}}=-0.164
\end{aligned}
$$

Note: Asset A has higher expected return and risk than asset B.

Example

Example: Long only two asset portfolio

Consider an equally weighted portfolio with $x_{A}=x_{B}=0.5$. The expected return, variance and volatility are:

$$
\begin{aligned}
\mu_{p} & =(0.5) \cdot(0.175)+(0.5) \cdot(0.055)=0.115 \\
\sigma_{p}^{2} & =(0.5)^{2} \cdot(0.067)+(0.5)^{2} \cdot(0.013) \\
& +2 \cdot(0.5)(0.5)(-0.004875)=0.01751 \\
\sigma_{p} & =\sqrt{0.01751}=0.1323
\end{aligned}
$$

This portfolio has expected return half-way between the expected returns on assets A and B , but the portfolio standard deviation is less than half-way between the asset standard deviations. This reflects risk reduction via diversification.

Example

Example: Long-Short two asset portfolio

Next, consider a long-short portfolio with $x_{A}=1.5$ and $x_{B}=-0.5$. In this portfolio, asset B is sold short and the proceeds of the short sale are used to leverage the investment in asset A. The portfolio characteristics are

$$
\begin{aligned}
\mu_{p} & =(1.5) \cdot(0.175)+(-0.5) \cdot(0.055)=0.235 \\
\sigma_{p}^{2} & =(1.5)^{2} \cdot(0.067)+(-0.5)^{2} \cdot(0.013) \\
& +2 \cdot(1.5)(-0.5)(-0.004875)=0.1604 \\
\sigma_{p} & =\sqrt{0.01751}=0.4005
\end{aligned}
$$

This portfolio has both a higher expected return and standard deviation than asset A.

Portfolio Value-at-Risk

- Assume an initial investment of $\$ W_{0}$ in the portfolio of assets A and B.
- Given that the simple return $R_{p} \sim N\left(\mu_{p}, \sigma_{p}^{2}\right)$. For $\alpha \in(0,1)$, the $\alpha \times 100 \%$ portfolio value-at-risk is

$$
\begin{aligned}
\operatorname{VaR}_{p, \alpha} & =q_{p, \alpha}^{R} W_{0} \\
& =\left(\mu_{p}+\sigma_{p} q_{\alpha}^{z}\right) W_{0}
\end{aligned}
$$

where $q_{p, \alpha}^{R}$ is the α quantile of the distribution of R_{p} and $q_{\alpha}^{z}=\alpha$ quantile of $Z \sim N(0,1)$.

Relationship between Portfolio VaR and Individual Asset VaR

Result: Portfolio VaR is not a weighted average of asset VaR:

$$
\operatorname{VaR}_{p, \alpha} \neq x_{A} \operatorname{VaR}_{A, \alpha}+x_{B} \operatorname{VaR}_{B, \alpha}
$$

unless $\rho_{A B}=1$.

Asset VaRs for A and B are:

$$
\begin{aligned}
& \operatorname{VaR}_{A, \alpha}=q_{0.05}^{R_{A}} W_{0}=\left(\mu_{A}+\sigma_{A} q_{\alpha}^{z}\right) W_{0} \\
& \operatorname{VaR}_{B, \alpha}=q_{0.05}^{R_{B}} W_{0}=\left(\mu_{B}+\sigma_{B} q_{\alpha}^{z}\right) W_{0}
\end{aligned}
$$

Portfolio VaR is:

$$
\begin{aligned}
\mathrm{VaR}_{p, \alpha} & =\left(\mu_{p}+\sigma_{p} q_{\alpha}^{z}\right) W_{0} \\
& =\left[\left(x_{A} \mu_{A}+x_{B} \mu_{B}\right)+\left(x_{A}^{2} \sigma_{A}^{2}+x_{B}^{2} \sigma_{B}^{2}+2 x_{A} x_{B} \sigma_{A B}\right)^{1 / 2} q_{\alpha}^{z}\right] W_{0}
\end{aligned}
$$

Relationship between Portfolio VaR and Individual Asset VaR cont.

Portfolio weighted asset VaR is:

$$
\begin{aligned}
x_{A} \operatorname{VaR}_{A, \alpha}+x_{B} \operatorname{VaR}_{B, \alpha} & =x_{A}\left(\mu_{A}+\sigma_{A} q_{\alpha}^{z}\right) W_{0}+x_{B}\left(\mu_{B}+\sigma_{B} q_{\alpha}^{z}\right) W_{0} \\
& =\left[\left(x_{A} \mu_{A}+x_{B} \mu_{B}\right)+\left(x_{A} \sigma_{A}+x_{B} \sigma_{B}\right) q_{\alpha}^{z}\right] W_{0} \\
& \neq\left(\mu_{p}+\sigma_{p} q_{\alpha}^{z}\right) W_{0}=\operatorname{VaR}_{p, \alpha}
\end{aligned}
$$

provided $\rho_{A B} \neq 1$.
If $\rho_{A B}=1$ then $\sigma_{A B}=\rho_{A B} \sigma_{A} \sigma_{B}=\sigma_{A} \sigma_{B}$ and:

$$
\begin{aligned}
\sigma_{p}^{2} & =x_{A}^{2} \sigma_{A}^{2}+x_{B}^{2} \sigma_{B}^{2}+2 x_{A} x_{B} \sigma_{A} \sigma_{B}=\left(x_{A} \sigma_{A}+x_{B} \sigma_{B}\right)^{2} \\
& \Rightarrow \sigma_{p}=x_{A} \sigma_{A}+x_{B} \sigma_{B}
\end{aligned}
$$

and so,

$$
x_{A} \operatorname{VaR}_{A, \alpha}+x_{B} \operatorname{VaR}_{B, \alpha}=\operatorname{VaR}_{p, \alpha}
$$

Example

Example: Portfolio VaR and Individual Asset VaR

Consider an initial investment of $W_{0}=\$ 100,000$. The 5% VaRs on assets A and B are:

$$
\begin{aligned}
\operatorname{VaR}_{A, 0.05} & =q_{0.05}^{R_{A}} W_{0}=(0.175+0.258(-1.645)) \cdot 100,000=-24,937, \\
\operatorname{VaR}_{B, 0.05} & =q_{0.05}^{R_{B}} W_{0}=(0.055+0.115(-1.645)) \cdot 100,000=-13,416 .
\end{aligned}
$$

The $5 \% \mathrm{VaR}$ on the equal weighted portfolio with $x_{A}=x_{B}=0.5$ is:

$$
\operatorname{VaR}_{p, 0.05}=q_{0.05}^{R_{p}} W_{0}=(0.115+0.1323(-1.645)) \cdot 100,000=-10,268
$$

and the weighted average of the individual asset VaRs is,

$$
x_{A} \operatorname{VaR}_{A, 0.05}+x_{B} \operatorname{VaR}_{B, 0.05}=0.5(-24,937)+0.5(-13,416)=-19,177
$$

Outline

(1) Portfolios of Two Risky Assets

(2) Efficient Portfolios with Two Risky Asssets
(3) Efficient Portfolios with a Risk-free Asset
(4) Efficient Portfolios with Two Risky Assets and a Risk-free Asset

Portfolio Frontier

Vary investment shares x_{A} and x_{B} and compute resulting values of μ_{p} and σ_{p}^{2}. Plot μ_{p} against σ_{p} as functions of x_{A} and x_{B}.

- Shape of portfolio frontier depends on correlation between assets A and B
- If $\rho_{A B}=-1$ then there exists portfolio shares x_{A} and x_{B} such that $\sigma_{p}^{2}=0$
- If $\rho_{A B}=1$ then there is no benefit from diversification
- Diversification is beneficial even if $0<\rho_{A B}<1$

Efficient Portfolios

Definition: Portfolios with the highest expected return for a given level of risk, as measured by portfolio standard deviation, are efficient portfolios.

- If investors like portfolios with high expected returns and dislike portfolios with high return standard deviations then they will want to hold efficient portfolios
- Which efficient portfolio an investor will hold depends on their risk preferences
- Very risk averse investors dislike volatility and will hold portfolios near the global minimum variance portfolio. They sacrifice expected return for the safety of low volatility.
- Risk tolerant investors don't mind volatility and will hold portfolios that have high expected returns. They gain expected return by taking on more volatility.

Globabl Minimum Variance Portfolio

- The portfolio with the smallest possible variance is called the global minimum variance portfolio.
- This portfolio is chosen by the most risk averse individuals
- To find this portfolio, one has to solve the following constrained minimization problem

$$
\begin{aligned}
& \min _{x_{A}, x_{B}} \sigma_{p}^{2}=x_{A}^{2} \sigma_{A}^{2}+x_{B}^{2} \sigma_{B}^{2}+2 x_{A} x_{B} \sigma_{A B} \\
& \text { s.t. } x_{A}+x_{B}=1
\end{aligned}
$$

Review of Optimization Techniques: Constrained Optimization

Example: Finding the minimum of a bivariate function subject to a linear constraint

$$
\begin{aligned}
y & =f(x, z)=x^{2}+z^{2} \\
\min _{x, z} y & =f(x, z) \\
\text { s.t. } x+z & =1
\end{aligned}
$$

Solution methods:

- Substitution
- Lagrange multipliers

Method of Substitution

Substitute $z=x-1$ in $f(x, z)$ and solve univariate minimization:

$$
y=f(x, x-1)=x^{2}+(1-x)^{2}
$$

$$
\min _{x} f(x, x-1)
$$

First order conditions:

$$
\begin{aligned}
0 & =\frac{d}{d x}\left(x^{2}+(1-x)\right)=2 x+2(1-x)(-1) \\
& =4 x-2 \\
& \Rightarrow x=0.5
\end{aligned}
$$

Solving for z :

$$
z=1-0.5=0.5
$$

Method of Lagrange Multipliers

Idea: Augment function to be minimized with extra terms to impose constraints.
(1) Put constraints in homogeneous form:

$$
x+z=1 \Rightarrow x+z-1=0
$$

(2) Form Lagrangian function:

$$
\begin{aligned}
L(x, z, \lambda) & =x^{2}+z^{2}+\lambda(x+z-1) \\
\lambda & =\text { Lagrange multiplier }
\end{aligned}
$$

(3) Minimize Lagrangian function:

$$
\min _{x, z, \lambda} L(x, z, \lambda)
$$

Method of Lagrange Multipliers cont.

First order conditions:

$$
\begin{aligned}
& 0=\frac{\partial L(x, z, \lambda)}{\partial x}=2 \cdot x+\lambda \\
& 0=\frac{\partial L(x, z, \lambda)}{\partial z}=2 \cdot z+\lambda \\
& 0=\frac{\partial L(x, z, \lambda)}{\partial \lambda}=x+z-1
\end{aligned}
$$

We have three linear equations in three unknowns. Solving gives:

$$
\begin{gathered}
2 x=2 z=-\lambda \Rightarrow x=z \\
2 z-1=0 \Rightarrow z=0.5, x=0.5
\end{gathered}
$$

Example

Example: Finding the Global Minimum Variance Portfolio

Two methods for solution:

- Analytic solution using Calculus
- Numerical solution
- use the Solver in Excel
- use R function solve. QP() in package quadprog for quadratic optimization problems with equality and inequality constraints

Calculus Solution

Minimization problem:

$$
\begin{aligned}
& \min _{x_{A}, x_{B}} \sigma_{p}^{2}=x_{A}^{2} \sigma_{A}^{2}+x_{B}^{2} \sigma_{B}^{2}+2 x_{A} x_{B} \sigma_{A B} \\
& \text { s.t. } x_{A}+x_{B}=1
\end{aligned}
$$

Use substitution method with:

$$
x_{B}=1-x_{A}
$$

to give the univariate minimization,

$$
\min _{x_{A}} \sigma_{p}^{2}=x_{A}^{2} \sigma_{A}^{2}+\left(1-x_{A}\right)^{2} \sigma_{B}^{2}+2 x_{A}\left(1-x_{A}\right) \sigma_{A B}
$$

Calculus Solution cont.

First order conditions:

$$
\begin{aligned}
0 & =\frac{d}{d x_{A}} \sigma_{p}^{2}=\frac{d}{d x_{A}}\left(x_{A}^{2} \sigma_{A}^{2}+\left(1-x_{A}\right)^{2} \sigma_{B}^{2}+2 x_{A}\left(1-x_{A}\right) \sigma_{A B}\right) \\
& =2 x_{A} \sigma_{A}^{2}-2\left(1-x_{A}\right) \sigma_{B}^{2}+2 \sigma_{A B}\left(1-2 x_{A}\right) \\
& \Rightarrow x_{A}^{\min }=\frac{\sigma_{B}^{2}-\sigma_{A B}}{\sigma_{A}^{2}+\sigma_{B}^{2}-2 \sigma_{A B}}, x_{B}^{\min }=1-x_{A}^{\min }
\end{aligned}
$$

Excel Solver Solution

The Solver is an Excel add-in, that can be used to numerically solve general linear and nonlinear optimization problems subject to equality or inequality constraints.

- The solver is made by FrontLine Systems and is provided with Excel
- The solver add-in may not be installed in a "default installation" of Excel
- Tools/Add-Ins and check the Solver Add-In box
- If Solver Add-In box is not available, the Solver Add-In must be installed from original Excel installation CD

Outline

(1) Portfolios of Two Risky Assets

(2) Efficient Portfolios with Two Risky Asssets
(3) Efficient Portfolios with a Risk-free Asset
(4) Efficient Portfolios with Two Risky Assets and a Risk-free Asset

Portfolios with a Risk Free Asset

Risk Free Asset:

- Asset with fixed and known rate of return over investment horizon
- Usually use U.S. government T-Bill rate (horizons <1 year) or T-Note rate (horizon >1 year)
- T-Bill or T-Note rate is only nominally risk free

Properties of Risk-Free Asset

$$
\begin{aligned}
R_{f} & =\text { return on risk-free asset } \\
E\left[R_{f}\right] & =r_{f}=\text { constant } \\
\operatorname{var}\left(R_{f}\right) & =0 \\
\operatorname{cov}\left(R_{f}, R_{i}\right) & =0, R_{i}=\text { return on any asset }
\end{aligned}
$$

Portfolios of Risky Asset and Risk Free Asset:

$$
\begin{aligned}
x_{f} & =\text { share of wealth in T-Bills } \\
x_{B} & =\text { share of wealth in asset B } \\
x_{f}+x_{B} & =1 \\
x_{f} & =1-x_{B}
\end{aligned}
$$

Properties of Risk-Free Asset cont.

Portfolio return:

$$
\begin{aligned}
R_{p} & =x_{f} r_{f}+x_{B} R_{B} \\
& =\left(1-x_{B}\right) r_{f}+x_{B} R_{B} \\
& =r_{f}+x_{B}\left(R_{B}-r_{f}\right)
\end{aligned}
$$

Portfolio excess return:

$$
R_{p}-r_{f}=x_{B}\left(R_{B}-r_{f}\right)
$$

Portfolio Distribution:

$$
\begin{aligned}
& \mu_{p}=E\left[R_{p}\right]=r_{f}+x_{B}\left(\mu_{B}-r_{f}\right) \\
& \sigma_{p}^{2}=\operatorname{var}\left(R_{p}\right)=x_{B}^{2} \sigma_{B}^{2} \\
& \sigma_{p}=x_{B} \sigma_{B} \\
& \quad R_{p} \sim N\left(\mu_{p}, \sigma_{p}^{2}\right)
\end{aligned}
$$

Risk Premium

$\mu_{B}-r_{f}=$ excess expected return on asset B
$=$ expected return on risky asset over return on safe asset
For the portfolio of T-Bills and asset B:
$\mu_{p}-r_{f}=x_{B}\left(\mu_{B}-r_{f}\right)$
$=$ expected portfolio return over T-Bill
The risk premia is an increasing function of the amount invested in asset B.

Leveraged Investment

$$
x_{f}<0, x_{B}>1
$$

Borrow at T-Bill rate to buy more of asset B.

Result: Leverage increases portfolio expected return and risk.

$$
\begin{aligned}
& \mu_{p}=r_{f}+x_{B}\left(\mu_{B}-r_{f}\right) \\
& \sigma_{p}=x_{B} \sigma_{B} \\
& x_{B} \uparrow \Rightarrow \mu_{p} \& \sigma_{p} \uparrow
\end{aligned}
$$

Determining Portfolio Frontier

Goal: Plot μ_{p} vs. σ_{p}.

$$
\begin{aligned}
\sigma_{p} & =x_{B} \sigma_{B} \Rightarrow x_{B}=\frac{\sigma_{p}}{\sigma_{B}} \\
\mu_{p} & =r_{f}+x_{B}\left(\mu_{B}-r_{f}\right) \\
& =r_{f}+\frac{\sigma_{p}}{\sigma_{B}}\left(\mu_{B}-r_{f}\right) \\
& =r_{f}+\left(\frac{\mu_{B}-r_{f}}{\sigma_{B}}\right) \sigma_{p}
\end{aligned}
$$

where,
$\left(\frac{\mu_{B}-r_{f}}{\sigma_{B}}\right)=\mathrm{SR}_{B}=$ Asset B Sharpe Ratio
$=$ excess expected return per unit risk

Determining Portfolio Frontier cont.

Remarks:

- The Sharpe Ratio (SR) is commonly used to rank assets.
- Assets with high Sharpe Ratios are preferred to assets with low Sharpe Ratios

Outline

(1) Portfolios of Two Risky Assets

(2) Efficient Portfolios with Two Risky Asssets
(3) Efficient Portfolios with a Risk-free Asset
(4) Efficient Portfolios with Two Risky Assets and a Risk-free Asset

Efficient Portfolios with 2 Risky Assets and a Risk Free Asset

Investment in 2 Risky Assets and T-Bill:

$$
\begin{aligned}
R_{A} & =\text { simple return on asset } \mathrm{A} \\
R_{B} & =\text { simple return on asset } \mathrm{B} \\
R_{f} & =r_{f}=\text { return on T-Bill }
\end{aligned}
$$

Assumptions:

- R_{A} and R_{B} are described by the CER model:

$$
\begin{aligned}
& R_{i} \sim \text { iid } N\left(\mu_{i}, \sigma_{i}^{2}\right), i=A, B \\
& \operatorname{cov}\left(R_{A}, R_{B}\right)=\sigma_{A B}, \operatorname{corr}\left(R_{A}, R_{B}\right)=\rho_{A B}
\end{aligned}
$$

Efficient Portfolios with 2 Risky Assets and a Risk Free Asset cont.

Results:

- The best portfolio of two risky assets and T-Bills is the one with the highest Sharpe Ratio
- Graphically, this portfolio occurs at the tangency point of a line drawn from R_{f} to the risky asset only frontier
- The maximum Sharpe Ratio portfolio is called the "tangency portfolio"

Mutual Fund Separation Theorem

Efficient portfolios are combinations of two portfolios (mutual funds):

- T-Bill portfolio
- Tangency portfolio - portfolio of assets A and B that has the maximum Shape ratio

Implication: All investors hold assets A and B according to their proportions in the tangency portfolio regardless of their risk preferences.

Finding the tangency portfolio

$$
\begin{aligned}
& \max _{x_{A}, x_{B}} \mathrm{SR}_{p}=\frac{\mu_{p}-r_{f}}{\sigma_{p}} \text { subject to } \\
\mu_{p} & =x_{A} \mu_{A}+x_{B} \mu_{B} \\
\sigma_{p}^{2} & =x_{A}^{2} \sigma_{A}^{2}+x_{B}^{2} \sigma_{B}^{2}+2 x_{A} x_{B} \sigma_{A B} \\
1 & =x_{A}+x_{B}
\end{aligned}
$$

Solution can be found analytically or numerically (e.g., using solver in Excel).

Finding the tangency portfolio cont.

Using the substitution method it can be shown that:

$$
\begin{aligned}
& x_{A}^{\tan }= \\
& \frac{\left(\mu_{A}-r_{f}\right) \sigma_{B}^{2}-\left(\mu_{B}-r_{f}\right) \sigma_{A B}}{\left(\mu_{A}-r_{f}\right) \sigma_{B}^{2}+\left(\mu_{B}-r_{f}\right) \sigma_{A}^{2}-\left(\mu_{A}-r_{f}+\mu_{B}-r_{f}\right) \sigma_{A B}} \\
& x_{B}^{\tan }=1-x_{A}^{\tan }
\end{aligned}
$$

Portfolio characteristics:

$$
\begin{aligned}
\mu_{p}^{\mathrm{tan}} & =x_{A}^{\mathrm{tan}} \mu_{A}+x_{B}^{\mathrm{tan}} \mu_{B} \\
\left(\sigma_{p}^{\tan }\right)^{2} & =\left(x_{A}^{\mathrm{tan}}\right)^{2} \sigma_{A}^{2}+\left(x_{B}^{\mathrm{tan}}\right)^{2} \sigma_{B}^{2}+2 x_{A}^{\mathrm{tan}} x_{B}^{\mathrm{tan}} \sigma_{A B}
\end{aligned}
$$

Efficient Portfolios: tangency portfolio plus T-Bills

$$
\begin{aligned}
x_{\tan } & =\text { share of wealth in tangency portfolio } \\
x_{f} & =\text { share of wealth in T-bills } \\
x_{\tan }+x_{f} & =1 \\
\mu_{p}^{e} & =r_{f}+x_{\tan }\left(\mu_{p}^{\tan }-r_{f}\right) \\
\sigma_{p}^{e} & =x_{\tan } \sigma_{p}^{\tan }
\end{aligned}
$$

Result: The weights $x_{\tan }$ and x_{f} are determined by an investor's risk preferences

- Risk averse investors hold mostly T-Bills
- Risk tolerant investors hold mostly tangency portfolio

Example

For the two asset example, the tangency portfolio is:

$$
\begin{aligned}
x_{A}^{\mathrm{tan}} & =.46, x_{B}^{\mathrm{tan}}=0.54 \\
\mu_{p}^{\tan } & =(.46)(.175)+(.54)(.055)=0.11 \\
\left(\sigma_{p}^{\tan }\right)^{2} & =(.46)^{2}(.067)+(.54)^{2}(.013) \\
& +2(.46)(.54)(-.005) \\
& =0.015 \\
\sigma_{p}^{\tan } & =\sqrt{.015}=0.124
\end{aligned}
$$

Efficient portfolios have the following characteristics:

$$
\begin{aligned}
\mu_{p}^{e} & =r_{f}+x_{\tan }\left(\mu_{p}^{\tan }-r_{f}\right) \\
& =0.03+x_{\tan }(0.11-0.03)
\end{aligned}
$$

Problem

Find the efficient portfolio that has the same risk (SD) as asset B? That is, determine $x_{\tan }$ and x_{f} such that

$$
\sigma_{p}^{e}=\sigma_{B}=0.114=\text { target risk }
$$

Note: The efficient portfolio will have a higher expected return than asset B.

Solution

$$
\begin{aligned}
.114 & =\sigma_{p}^{e}=x_{\tan } \sigma_{p}^{\tan } \\
& =x_{\tan }(.124) \\
& \Rightarrow x_{\tan }=\frac{.114}{.124}=.92 \\
x_{f} & =1-x_{\tan }=.08
\end{aligned}
$$

Efficient portfolio with same risk as asset B has:

$$
\begin{aligned}
& (.92)(.46)=.42 \text { in asset } \mathrm{A} \\
& (.92)(.54)=.50 \text { in asset } \mathrm{B}
\end{aligned}
$$

$$
.08 \text { in T-Bills }
$$

If $r_{f}=0.03$, then expected Return on efficient portfolio is:

$$
\mu_{p}^{e}=.03+(.92)(.11-0.03)=.104
$$

Problem

Assume that $r_{f}=0.03$. Find the efficient portfolio that has the same expected return as asset B. That is, determine $x_{\tan }$ and x_{f} such that:

$$
\mu_{p}^{e}=\mu_{B}=0.055=\text { target expected return. }
$$

Note: The efficient portfolio will have a lower SD than asset B.

Solution

$$
\begin{aligned}
0.055 & =\mu_{p}^{e}=0.03+x_{\tan }(.11-.03) \\
x_{\tan } & =\frac{0.055-0.03}{.11-.03}=.31 \\
x_{f} & =1-x_{\tan }=.69
\end{aligned}
$$

Efficient portfolio with same expected return as asset B has:

$$
\begin{aligned}
& (.31)(.46)=.14 \text { in asset } \mathrm{A} \\
& (.31)(.54)=.17 \text { in asset } \mathrm{B}
\end{aligned}
$$

$$
.69 \text { in T-Bills }
$$

The SD of the efficient portfolio is:

$$
\sigma_{p}^{e}=.31(.124)=.038
$$

faculty.washington.edu/ezivot/

