
Chapter 1

Descriptive Statistics for

Financial Data

Updated: February 3, 2015

In this chapter we use graphical and numerical descriptive statistics to

study the distribution and dependence properties of daily and monthly asset

returns on a number of representative assets. The purpose of this chapter

is to introduce the techniques of exploratory data analysis for financial time

series and to document a set of stylized facts for monthly and daily asset

returns that will be used in later chapters to motivate probability models for

asset returns.

The R packages used in this Chapter are corrplot, PerformanceAna-

lytics, tseries and zoo. Make sure these packages are installed and loaded

before running the R examples.

1.1 Univariate Descriptive Statistics

Let {} denote a univariate time series of asset returns (simple or continu-
ously compounded). Throughout this chapter we will assume that {} is a
covariance stationary and ergodic stochastic process such that

[] =  independent of 

var() = 2 independent of 

cov( −) =  independent of 

corr( −) = 
2 =  independent of 

1
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In addition, we will assume that each  is identically distributed with un-

known pdf ()

An observed sample of size  of historical asset returns {}=1 is assumed
to be a realization from the stochastic process {} for  = 1      That is,

{}=1 = {1 = 1      = }

The goal of exploratory data analysis is to use the observed sample {}=1 to
learn about the unknown pdf () as well as the time dependence properties

of {}

1.1.1 Example Data

We illustrate the descriptive statistical analysis using daily and monthly ad-

justed closing prices on Microsoft stock and the S&P 500 index over the

period January 1, 1998 and May 31, 2012. 1 These data are obtained from

finance.yahoo.com. We first use the daily and monthly data to illustrate

descriptive statistical analysis and to establish a number of stylized facts

about the distribution and time dependence in daily and monthly returns.

Example 1 Getting daily and monthly adjusted closing price data from Ya-

hoo! in R

As described in chapter 1, historical data on asset prices from finance.yahoo.com

can be downloaded and loaded into R automatically in a number of ways.

Here we use the get.hist.quote() function from the tseries package to

get daily adjusted closing prices and end-of-month adjusted closing prices on

Microsoft stock (ticker symbol msft) and the S&P 500 index (ticker symbol

^gspc):2

> msftPrices = get.hist.quote(instrument="msft", start="1998-01-01",

+ end="2012-05-31", quote="AdjClose",

1An adjusted closing price is adjusted for dividend payments and stock splits. Any

dividend payment received between closing dates are added to the close price. If a stock

split occurs between the closing dates then the all past prices are divided by the split ratio.
2The ticker symbol ^gspc refers to the actual S&P 500 index, which is not a tradable

security. There are several mutual funds (e.g., Vanguard’s S&P 500 fund with ticker

VFINF) and exchange traded funds (e.g., State Street’s SPDR S&P 500 ETF with ticker

SPY) which track the S&P 500 index that are investable.
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+ provider="yahoo", origin="1970-01-01",

+ compression="m", retclass="zoo")

> sp500Prices = get.hist.quote(instrument="^gspc", start="1998-01-01",

+ end="2012-05-31", quote="AdjClose",

+ provider="yahoo", origin="1970-01-01",

+ compression="m", retclass="zoo")

> msftDailyPrices = get.hist.quote(instrument="msft", start="1998-01-01",

+ end="2012-05-31", quote="AdjClose",

+ provider="yahoo", origin="1970-01-01",

+ compression="d", retclass="zoo")

> sp500DailyPrices = get.hist.quote(instrument="^gspc", start="1998-01-01",

+ end="2012-05-31", quote="AdjClose",

+ provider="yahoo", origin="1970-01-01",

+ compression="d", retclass="zoo")

> class(msftPrices)

[1] "zoo"

> colnames(msftPrices)

[1] "AdjClose"

> start(msftPrices)

[1] "1998-01-02"

> end(msftPrices)

[1] "2012-05-01"

> head(msftPrices, n=3)

AdjClose

1998-01-02 13.53

1998-02-02 15.37

1998-03-02 16.24

> head(msftDailyPrices, n=3)

AdjClose

1998-01-02 11.89

1998-01-05 11.83

1998-01-06 11.89

The objects msftPrices, sp500Prices, msftDailyPrices, and sp500DailyPrices

are of class "zoo" and each have a column called AdjClose containing the

end-of-month adjusted closing prices. Notice, however, that the dates asso-
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ciated with the monthly closing prices are beginning-of-month dates.3 It will

be helpful for our analysis to change the column names in each object, and

to change the class of the date index for the monthly prices to "yearmon"

> colnames(msftPrices) = colnames(msftDailyPrices) = "MSFT"

> colnames(sp500Prices) = colnames(sp500DailyPrices) = "SP500"

> index(msftPrices) = as.yearmon(index(msftPrices))

> index(sp500Prices) = as.yearmon(index(sp500Prices))

It will also be convenient to create merged "zoo" objects containing both

the Microsoft and S&P500 prices

> msftSp500Prices = merge(msftPrices, sp500Prices)

> msftSp500DailyPrices = merge(msftDailyPrices, sp500DailyPrices)

> head(msftSp500Prices, n=3)

MSFT SP500

Jan 1998 13.53 980.3

Feb 1998 15.37 1049.3

Mar 1998 16.24 1101.8

> head(msftSp500DailyPrices, n=3)

MSFT SP500

1998-01-02 11.89 975.0

1998-01-05 11.83 977.1

1998-01-06 11.89 966.6

We create "zoo" objects containing simple returns using the Perfor-

manceAnalytics function Return.calculate()

> msftRetS = Return.calculate(msftPrices, method="simple")

> msftDailyRetS = Return.calculate(msftDailyPrices, method="simple")

> sp500RetS = Return.calculate(sp500Prices, method="simple")

> sp500DailyRetS = Return.calculate(sp500DailyPrices, method="simple")

> msftSp500RetS = Return.calculate(msftSp500Prices, method="simple")

> msftSp500DailyRetS = Return.calculate(msftSp500DailyPrices, method="simple")

We remove the first NA value of each object to avoid problems that some

R functions have when missing values are encountered

3When retrieving monthly data from Yahoo!, the full set of data contains the open,

high, low, close, adjusted close, and volume for the month. The convention in Yahoo! is

to report the date associated with the open price for the month.
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> msftRetS = msftRetS[-1]

> msftDailyRetS = msftDailyRetS[-1]

> sp500RetS = sp500RetS[-1]

> sp500DailyRetS = sp500DailyRetS[-1]

> msftSp500RetS = msftSp500RetS[-1]

> msftSp500DailyRetS = msftSp500DailyRetS[-1]

We also create "zoo" objects containing continuously compounded (cc) re-

turns

> msftRetC = log(1 + msftRetS)

> sp500RetC = log(1 + sp500RetS)

> MSFTsp500RetC = merge(msftRetC, sp500RetC)

¥

1.1.2 Time Plots

A natural graphical descriptive statistic for time series data is a time plot.

This is simply a line plot with the time series data on the y-axis and the

time index on the x-axis. Time plots are useful for quickly visualizing many

features of the time series data.

Example 2 Time plots of monthly prices and returns.

A two-panel plot showing the monthly prices is given in Figure 1.1, and is

created using the plot method for "zoo" objects:

> plot(msftSp500Prices, main="", lwd=2, col="blue")

The prices exhibit random walk like behavior (no tendency to revert to a time

independent mean) and appear to be non-stationary. Both prices show two

large boom-bust periods associated with the dot-com period of the late 1990s

and the run-up to the financial crisis of 2008. Notice the strong common trend

behavior of the two price series.

A time plot for the monthly returns is created using:

> my.panel <- function(...) {

+ lines(...)

+ abline(h=0)

+ }

> plot(msftSp500RetS, main="", panel=my.panel, lwd=2, col="blue")
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Figure 1.1: End-of-month closing prices on Microsoft stock and the S&P 500

index.

and is given in Figure 1.2. The horizontal line at zero in each panel is created

using the custom panel function my.panel() passed to plot(). In contrast to

prices, returns show clear mean-reverting behavior and the common monthly

mean values look to be very close to zero. Hence, the common mean value

assumption of covariance stationarity looks to be satisfied. However, the

volatility (i.e., fluctuation of returns about the mean) of both series appears

to change over time. Both series show higher volatility over the periods

1998 - 2003 and 2008 - 2012 than over the period 2003 - 2008. This is an

indication of possible non-stationarity in volatility.4 Also, the coincidence of

high and low volatility periods across assets suggests a common driver to the

time varying behavior of volatility. There does not appear to be any visual

evidence of systematic time dependence in the returns. Later on we will see

that the estimated autocorrelations are very close to zero. The returns for

4The retuns can still be convariance stationary and exhibit time varying conditional

volatility.
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Figure 1.2: Monthly continuously compounded returns on Microsoft stock

and the S&P 500 index.

Microsoft and the S&P 500 tend to go up and down together suggesting a

positive correlation. ¥

Example 3 Plotting returns on the same graph

In Figure 1.2, the volatility of the returns on Microsoft and the S&P 500

looks to be similar but this is illusory. The y-axis scale for Microsoft is much

larger than the scale for the S&P 500 index and so the volatility of Microsoft

returns is actually much larger than the volatility of the S&P 500 returns.

Figure 1.3 shows both returns series on the same time plot created using

> plot(msftSp500RetS, plot.type="single", main="",

+ col = c("red", "blue"), lty=c("dashed", "solid"),

+ lwd=2, ylab="Returns")

> abline(h=0)

> legend(x="bottomright", legend=colnames(msftSp500RetS),
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Figure 1.3: Monthly continuously compounded returns for Microsoft and

S&P 500 index on the same graph.

+ lty=c("dashed", "solid"), lwd=2,

+ col=c("red","blue"))

Now the higher volatility of Microsoft returns, especially before 2003, is

clearly visible. However, after 2008 the volatilities of the two series look

quite similar. In general, the lower volatility of the S&P 500 index repre-

sents risk reduction due to holding a large diversified portfolio. ¥

Example 4 Comparing simple and continuously compounded returns

Figure 1.4 compares the simple and cc monthly returns for Microsoft

created using

> retDiff = msftRetS - msftRetC

> dataToPlot = merge(msftRetS, msftRetC, retDiff)

> plot(dataToPlot, plot.type="multiple", main="",
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Figure 1.4: Monthly simple and cc returns on Microsoft. Top panel: simple

returns; middle panel: cc returns; bottom panel: difference between simple

and cc returns.

+ panel = my.panel,

+ lwd=2, col=c("black", "blue", "red"))

The top panel shows the simple returns, the middle panel shows the cc re-

turns, and the bottom panel shows the difference between the simple and cc

returns. Qualitatively, the simple and cc returns look almost identical. The

main differences occur when the simple returns are large in absolute value

(e.g., mid 2000, early 2001 and early 2008). In this case the difference be-

tween the simple and cc returns can be fairly large (e.g., as large as 0.08 in

mid 2000). When the simple return is large and positive, the cc return is not

quite as large; when the simple return is large and negative, the cc return is

a larger negative number.

Example 5 Plotting Daily Returns



10CHAPTER 1DESCRIPTIVE STATISTICS FORFINANCIALDATA

-0
.1

5
-0

.0
5

0
.0

5
0

.1
5

M
S

F
T

2000 2005 2010

Index

-0
.0

5
0

.0
0

0
.0

5
0

.1
0

S
P

5
0

0

Figure 1.5: Daily returns on Microsoft and the S&P 500 index.

Figure 1.5 shows the daily simple returns on Microsoft and the S&P 500

index created with

> plot(msftSp500DailyRetS, main="",

+ panel=my.panel, col=c("black", "blue"))

Compared with the monthly returns, the daily returns are closer to zero

and the magnitude of the fluctuations (volatility) is smaller. However, the

clustering of periods of high and low volatility is more pronounced in the daily

returns. As with the monthly returns, the volatility of the daily returns on

Microsoft is larger than the volatility of the S&P 500 returns. Also, the

daily returns show some large and small “spikes” that represent unusually

large (in absolute value) daily movements (e.g., Microsoft up 20% in one day

and down 15% on another day). The monthly returns do not exhibit such

extreme movements relative to typical volatility.
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Equity Curves

To directly compare the investment performance of two or more assets, plot

the simple multi-period cumulative returns of each asset on the same graph.

This type of graph, sometimes called an equity curve, shows how a one dol-

lar investment amount in each asset grows over time. Better preforming

assets have higher equity curves. For simple returns, the k-period returns

are () =
−1Q
=0

(1 + −) and represent the growth of one dollar invested

for  periods. For continuously compounded returns, the k-period returns

are () =
−1P
=0

− However, this cc -period return must be converted to a

simple -period return, using () = exp (())− 1 to properly represent
the growth of one dollar invested for  periods.

Example 6 Equity curves for Microsoft and S&P 500 monthly returns

To create the equity curves for Microsoft and the S&P 500 index based on

simple returns use:

> equityCurveMsft = cumprod(1 + msftRetS)

> equityCurveSp500 = cumprod(1 + sp500RetS)

> dataToPlot = merge(equityCurveMsft, equityCurveSp500)

> plot(dataToPlot, plot.type="single", ylab="Cumulative Returns",

+ col=c("black", "blue"), lwd=2)

> legend(x="topright", legend=c("MSFT", "SP500"),

+ col=c("black", "blue"), lwd=2)

The R function cumprod() creates the cumulative products needed for the

equity curves. Figure 1.6 shows that a one dollar investment in Microsoft

dominated a one dollar investment in the S&P 500 index over the given

period. In particular, $1 invested in Microsoft grew to about $2.10 (over

about 12 years) whereas $1 invested in the S&P 500 index only grew to

about $1.40. Notice the huge increases and decreases in value of Microsoft

during the dot-com bubble and bust over the period 1998 - 2001. ¥

Drawdowns

To be completed
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Figure 1.6: Monthly cumulative continuously componded returns on Mi-

crosoft and the S&P 500 index.

1.1.3 Descriptive Statistics for the Distribution of Re-

turns

In this section, we consider graphical and numerical descriptive statistics for

the unknown marginal pdf, () of returns. Recall, we assume that the

observed sample {}=1 is a realization from a covariance stationary and

ergodic time series {} where each  is a continuous random variable with

common pdf () The goal is to use {}=1 to describe properties of ()
We study returns and not prices because prices are non-stationary. Sam-

ple descriptive statistics are only meaningful for covariance stationary and

ergodic time series.

Histograms

A histogram of returns is a graphical summary used to describe the general

shape of the unknown pdf () It is constructed as follows. Order returns

from smallest to largest. Divide the range of observed values into  equally
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sized bins. Show the number or fraction of observations in each bin using a

bar chart.

Example 7 Histograms for the daily and monthly returns on Microsoft and

the S&P 500 index

Figure 1.7 shows the histograms of the daily and monthly returns on Mi-

crosoft stock and the S&P 500 index created using the R function hist():

> par(mfrow=c(2,2))

> hist(msftRetS, main="", col="cornflowerblue")

> hist(msftDailyRetS, main="", col="cornflowerblue")

> hist(sp500RetS, main="", col="cornflowerblue")

> hist(sp500DailyRetS, main="", col="cornflowerblue")

> par(mfrow=c(1,1))

All histograms have a bell-shape like the normal distribution. The histograms

of daily returns are centered around zero and those for the monthly return

are centered around values slightly larger than zero. The bulk of the daily

(monthly) returns for Microsoft and the S&P 500 are between -5% and 5%

(-20% and 20%) and -3% and 3% (-10% and 10%), respectively. The his-

togram for the S&P 500 monthly returns is slightly skewed left (long left

tail) due to more large negative returns than large positive returns whereas

the histograms for the other returns are roughly symmetric.

When comparing two or more return distributions, it is useful to use the

same bins for each histogram. Figure ?? shows the histograms for Microsoft

and S&P 500 returns using the same 15 bins, created with the R code:

> msftHist = hist(msftRetS, plot=FALSE, breaks=15)

> par(mfrow=c(2,2))

> hist(msftRetS, main="", col="cornflowerblue")

> hist(msftDailyRetS, main="", col="cornflowerblue",

+ breaks=msftHist$breaks)

> hist(sp500RetS, main="", col="cornflowerblue",

+ breaks=msftHist$breaks)

> hist(sp500DailyRetS, main="", col="cornflowerblue",

+ breaks=msftHist$breaks)

> par(mfrow=c(1,1))
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Figure 1.7: Histograms of monthly continuously compounded returns on Mi-

crosoft stock and S&P 500 index.

Using the same bins for all histograms allows us to see more clearly that the

distribution of monthly returns is more spread out than the distributions for

daily returns, and that the distribution of S&P 500 returns is more tightly

concentrated around zero than the distribution of Microsoft returns. ¥

Example 8 Are Microsoft returns normally distributed? A first look.

The shape of the histogram for Microsoft returns suggests that a normal

distribution might be a good candidate for the unknown distribution of Mi-

crosoft returns. To investigate this conjecture, we simulate random returns

from a normal distribution with mean and standard deviation calibrated to

the Microsoft daily and monthly returns using:

> set.seed(123)

> gwnDaily = rnorm(length(msftDailyRetS), mean=mean(msftDailyRetS),
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Figure 1.8: Histograms for Microsoft and S&P 500 returns using the same

bins.

+ sd=sd(msftDailyRetS))

> gwnDaily = zoo(gwnDaily, index(msftDailyRetS))

> gwnMonthly = rnorm(length(msftRetS), mean=mean(msftRetS),

+ sd=sd(msftRetS))

> gwnMonthly = zoo(gwnMonthly, index(msftRetS))

Figure 1.9 shows the Microsoft monthly returns together with the simulated

normal returns created using

> par(mfrow=c(2,2))

> plot(msftRetS, main="Monthly Returns on MSFT",

+ lwd=2, col="blue", ylim=c(-0.4, 0.4))

> abline(h=0)
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> plot(gwnMonthly, main="Simulated Normal Returns",

+ lwd=2, col="blue", ylim=c(-0.4, 0.4))

> abline(h=0)

> hist(msftRetS, main="", col="cornflowerblue",

+ xlab="returns")

> hist(gwnMonthly, main="", col="cornflowerblue",

+ xlab="returns", breaks=msftHist$breaks)

> par(mfrow=c(1,1))

The simulated normal returns shares many of the same features as the Mi-

crosoft returns: both fluctuate randomly about zero. However, there are

some important differences. In particular, the volatility of Microsoft returns

appears to change over time (large before 2003, small between 2003 and

2008, and large again after 2008) whereas the simulated returns has constant

volatility. Additionally, the distribution of Microsoft returns has fatter tails

(more extreme large and small returns) than the simulated normal returns.

Apart from these features, the simulated normal returns look remarkably like

the Microsoft monthly returns.

Figure 1.10 shows the Microsoft daily returns together with the simulated

normal returns. The daily returns look much less like GWN than the monthly

returns. Here the constant volatility of simulated GWN does not match

the volatility patterns of the Microsoft daily returns, and the tails of the

histogram for the Microsoft returns are “fatter” than the tails of the GWN

histogram. ¥

Smoothed histogram

Histograms give a good visual representation of the data distribution. The

shape of the histogram, however, depends on the number of bins used. With

a small number of bins, the histogram often appears blocky and fine details of

the distribution are not revealed. With a large number of bins, the histogram

might have many bins with very few observations. The hist() function in R

smartly chooses the number of bins so that the resulting histogram typically

looks good.

The main drawback of the histogram as descriptive statistic for the un-

derlying pdf of the data is that it is discontinuous. If it is believed that the

underlying pdf is continuous, it is desirable to have a continuous graphical

summary of the pdf. The smoothed histogram achieves this goal. Given a
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Figure 1.9: Comparison of Microsoft monthly returns with simulated normal

returns with the same mean and standard deviation as the Microsoft returns.

sample of data {}=1 the R function density() computes a smoothed esti-
mate of the underlying pdf at each point  in the bins of the histogram using

the formula

̂() =
1



X
=1



µ
− 



¶


where (·) is a continuous smoothing function (typically a standard normal
distribution) and  is a bandwidth (or bin-width) parameter that determines

the width of the bin around  in which the smoothing takes place. The

resulting pdf estimate ̂() is a two-sided weighted average of the histogram

values around 

Example 9 Smoothed histogram for Microsoft monthly returns
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Figure 1.10: Comparison of Microsoft daily returns with simulated normal

returns with the same mean and standard deviation as the Microsoft returns.

Figure 1.11 shows the histogram of Microsoft returns overlaid with the smoothed

histogram created using

> MSFT.density = density(msftRetS)

> hist(msftRetS, main="", xlab="Microsoft Monthly Returns",

+ col="cornflowerblue", probability=T, ylim=c(0,5))

> points(MSFT.density,type="l", col="orange", lwd=2)

In Figure 1.11, the histogram is normalized (using the argument probability=TRUE),

so that its total area is equal to one. The smoothed density estimate trans-

forms the blocky shape of the histogram into a smooth continuous graph.

¥
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Figure 1.11: Histogram and smoothed density estimate for the monthly re-

turns on Microsoft.

Empirical CDF

Recall, the CDF of a random variable  is the function () = Pr( ≤ )

The empirical CDF of a data sample {}=1 is the function that counts the
fraction of observations less than or equal to  :

̂() =
1


(# ≤ )

=
number of  values ≤ 

sample size

Example 10 Empirical CDF for daily and monthly returns on Microsoft

To be completed
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Empirical quantiles/percentiles

Recall, for  ∈ (0 1) the  × 100% quantile of the distribution of a contin-

uous random variable  with CDF  is the point 

 such that (


 ) =

Pr( ≤  ) =  Accordingly, the ×100% empirical quantile (or 100×

percentile) of a data sample {}=1 is the data value ̂ such that  · 100%
of the data are less than or equal to ̂ Empirical quantiles can be easily

determined by ordering the data from smallest to largest giving the ordered

sample (also know as order statistics)

(1)  (2)  · · ·  ( )

The empirical quantile ̂ is the order statistic closest to ×  5

The empirical quartiles are the empirical quantiles for  = 025 05 and

075 respectively. The second empirical quartile ̂50 is called the sample

median and is the data point such that half of the data is less than or equal

to its value. The interquartile range (IQR) is the difference between the 3rd

and 1st quartile

IQR = ̂75 − ̂25

and shows the size of the middle of the data distribution.

Example 11 Empirical quantiles of the Microsoft and S&P 500 monthly

returns

The R function quantile() computes empirical quantiles for a single data

series. By default, quantile() returns the empirical quartiles as well as the

minimum and maximum values:

> quantile(msftRetS)

0% 25% 50% 75% 100%

-0.343450 -0.048561 0.008377 0.057303 0.407878

> quantile(sp500RetS)

0% 25% 50% 75% 100%

-0.16942 -0.02094 0.00809 0.03532 0.10772

5There is no unique way to determine the empirical quantile from a sample of size 

for all values of . The R function quantile() can compute empirical quantile using one

of seven different definitions.
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The left (right) quantiles of the Microsoft monthly returns are smaller (larger)

than the respective quantiles for the S&P 500 index.

To compute quantiles for a specified  use the probs argument. For

example, to compute the 1% and 5% quantiles of the monthly returns use

> quantile(msftRetS,probs=c(0.01,0.05))

1% 5%

-0.1892 -0.1371

> quantile(sp500RetS,probs=c(0.01,0.05))

1% 5%

-0.12040 -0.08184

Here we see that 1% of the Microsoft cc returns are less than -18.9% and 5%

of the returns are less than -13.7%, respectively. For the S&P 500 returns,

these values are -12.0% and -8.2%, respectively.

To compute the median and IQR values for monthly returns use the R

functions median() and IQR(), respectively

> apply(msftSp500RetS, 2, median)

MSFT SP500

0.008377 0.008090

> apply(msftSp500RetS, 2, IQR)

MSFT SP500

0.10586 0.05626

The median returns are similar (about 0.8% per month) but the IQR for

Microsoft is about twice as large as the IQR for the S&P 500 index. ¥

Historical/Empirical VaR

Recall, the × 100% value-at-risk (VaR) of an investment of $ is VaR =

$ ×  where 

 is the ×100% quantile of the probability distribution of

the investment simple rate of return  The × 100% historical VaR (some-
times called empirical VaR or Historical Simulation VaR) of an investment

of $ is defined as

VaR
 = $ × ̂ 

where ̂ is the empirical  quantile of a sample of simple returns {}=1
For a sample of continuously compounded returns {}=1 with empirical 
quantile ̂,

VaR
 = $ × (exp(̂)− 1) 
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Historical VaR is based on the distribution of the observed returns and

not on any assumed distribution for returns (e.g., the normal distribution).

Example 12 Using empirical quantiles to compute historical Value-at-Risk

Consider investing  = $100 000 in Microsoft and the S&P 500 over a

month. The 1% and 5% historical VaR values for these investments based

on the historical samples of monthly returns are:

> W = 100000

> msftQuantiles = quantile(msftRetS, probs=c(0.01, 0.05))

> sp500Quantiles = quantile(sp500RetS, probs=c(0.01, 0.05))

> msftVaR = W*msftQuantiles

> sp500VaR = W*sp500Quantiles

> msftVaR

1% 5%

-18923 -13711

> sp500VaR

1% 5%

-12040 -8184

Based on the empirical distribution of the monthly returns, a $100,000 monthly

investment in Microsoft will lose $13,711 or more with 5% probability and

will lose $18,923 or more with 1% probability. The corresponding values for

the S&P 500 are $8,184 and $12,040, respectively. The historical VaR values

for the S&P 500 are considerable smaller than those for Microsoft. In this

sense, investing in Microsoft is a riskier than investing in the S&P 500 index.

1.1.4 QQ-plots

Often it is of interest to see if a given data sample could be viewed as a random

sample from a specified probability distribution. One easy and effective way

to do this is to compare the empirical quantiles of a data sample to those

from a reference probability distribution. If the quantiles match up, then

this provides strong evidence that the reference distribution is appropriate

for describing the distribution of the observed data. If the quantiles do not

match up, then the observed differences between the empirical quantiles and

the reference quantiles can be used to determine a more appropriate reference
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Figure 1.12: Normal QQ-plots for GWN, Microsoft returns and S&P 500

returns.

distribution. It is common to use the normal distribution as the reference

distribution, but any distribution can, in principle be used.

The quantile-quantile plot (QQ-plot) gives a graphical comparison of the

empirical quantiles of a data sample to those from a specified reference distri-

bution. The QQ-plot is an xy-plot with the reference distribution quantiles

on the x-axis and the empirical quantiles on the y-axis. If the quantiles ex-

actly match up then the QQ-plot is a straight line. If the quantiles do not

match up, then the shape of the QQ-plot indicates which features of the data

are not captured by the reference distribution.

Example 13 Normal QQ-plots for GWN, Microsoft and S&P 500 returns

The R function qqnorm() creates a QQ-plot for a data sample using the

normal distribution as the reference distribution. Figure 1.12 shows nor-



24CHAPTER 1DESCRIPTIVE STATISTICS FORFINANCIALDATA

mal QQ-plots for the simulated GWN data, Microsoft returns and S&P 500

returns created using

> par(mfrow=c(2,3))

> qqnorm(gwnMonthly, main="GWN Monthly", col="cornflowerblue")

> qqline(gwnMonthly)

> qqnorm(msftRetS, main="MSFT Monthly Returns", col="cornflowerblue")

> qqline(msftRetS)

> qqnorm(sp500RetS, main="SP500 Monthly Returns", col="cornflowerblue")

> qqline(sp500RetS)

> qqnorm(gwnDaily, main="GWN Daily", col="cornflowerblue")

> qqline(gwnDaily)

> qqnorm(msftDailyRetS, main="MSFT Daily Returns", col="cornflowerblue")

> qqline(msftDailyRetS)

> qqnorm(sp500DailyRetS, main="SP500 Daily Returns", col="cornflowerblue")

> qqline(sp500DailyRetS)

> par(mfrow=c(1,1))

The normal QQ-plot for the simulated GWN data is very close to a straight

line, as it should be since the data are simulated from a normal distribution.

The qqline() function draws a straight line through the points to help de-

termine if the quantiles match up. The normal QQ-plots for the Microsoft

and S&P 500 monthly returns are linear in the middle of the distribution but

deviate from linearity in the tails of the distribution. In the normal QQ-plot

for Microsoft monthly returns, the theoretical normal quantiles on the x-axis

are too small in both the left and right tails because the points fall below the

straight line in the left tail and fall above the straight line in the right tail.

Hence, the normal distribution does not match the empirical distribution of

Microsoft monthly returns in the extreme tails of the distribution. In other

words, the Microsoft returns have fatter tails than the normal distribution.

For the S&P 500 monthly returns, the theoretical normal quantiles are too

small only for the left tail of the empirical distribution of returns (points fall

below the straight line in the left tail only). This reflect the long left tail

(negative skewness) of the empirical distribution of S&P 500 returns. The

normal QQ-plots for the daily returns on Microsoft and the S&P 500 index

both exhibit a pronounced tilted S-shape with extreme departures from lin-

earity in the left and right tails of the distributions. The daily returns clearly

have much fatter tails than the normal distribution. ¥
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Example 14 Student’s t QQ-plot for Microsoft returns

The function qqPlot() from the R package car can be used to create a

QQ-plot against any reference distribution that has a corresponding quantile

function implemented in R. For example, a QQ-plot for the Microsoft returns

using a Student’s t reference distribution with 5 degrees of freedom can be

created using

> library(car)

> qqPlot(coredata(msftRetS), distribution="t", df=5,

+ ylab="MSFT quantiles", envelope=FALSE)

In the function qqPlot(), the argument distribution="t" specifies that

the quantiles are to be computed using the R function qt().6 Figure 1.13

shows the resulting graph. Here, with a reference distribution with fatter

tails than the normal distribution the QQ-plot for Microsoft returns is closer

to a straight line. This indicates that the Student’s t distribution with 5

degrees of freedom is a better reference distribution for Microsoft returns

than the normal distribution. ¥

1.1.5 Shape Characteristics of the Empirical Distribu-

tion

Recall, for a random variable  the measures of center, spread, asymmetry

and tail thickness of the pdf are:

center:  = []

spread : 2 = var() = [( − )
2]

spread :  =
p
var()

asymmetry : skew = [( − )
3]3

tail thickness : kurt = [( − )
4]4

The corresponding shape measures for the empirical distribution (e.g., as

measured by the histogram) of a data sample {}=1 are the sample statis-
6The coredata() function is used to extract the data as a “numeric” object because

qqPlot() does not work correctly with “zoo” objects.
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Figure 1.13: QQ-plot of Microsoft returns using Student’s t distribution with

5 degrees of freedom as the reference distribution.

tics:7

̂ = ̄ =
1



X
=1

 (1.1)

̂2 = 2 =
1

 − 1
X
=1

( − ̄)2 (1.2)

̂ =

q
̂2 (1.3)

[skew =

1
−1

P

=1( − ̄)3

3
 (1.4)

dkurt = 1
−1

P

=1( − ̄)4


 (1.5)

7Values with hats “b” denote sample estimates of the corresponding population quantity.
For example, the sample mean ̂ is the sample estimate of the population expected value

 
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The sample mean, ̂  measures the center of the histogram; the sample

standard deviation, ̂, measures the spread of the data about the mean

in the same units as the data; the sample skewness, [skew measures the

asymmetry of the histogram; the sample kurtosis, dkurt measures the tail-
thickness of the histogram. The sample excess kurtosis, defined as the sample

kurtosis minus 3
[ekurt = dkurt − 3 (1.6)

measures the tail thickness of the data sample relative to that of a normal

distribution.

Notice that the divisor in (1.2)-(1.5) is  − 1 and not  This is called a
degrees-of-freedom correction. In computing the sample variance, skewness

and kurtosis, one degree-of-freedom in the sample is used up in the computa-

tion of the sample mean so that there are effectively only  − 1 observations
available to compute the statistics. 8

Example 15 Sample shape statistics for the returns on Microsoft and S&P

500

The R functions for computing (1.1) - (1.5) are mean(), var() and sd(),

respectively. There are no functions for computing (1.4) and (1.5) in base R.

The functions skewness() and kurtosis() in the PerformanceAnalytics

package compute (1.4) and the sample excess kurtosis (1.6), respectively.9

The sample statistics for the Microsoft and S&P 500 monthly returns are:

> statsMat = rbind(apply(msftSp500RetS, 2, mean),

+ apply(msftSp500RetS, 2, var),

+ apply(msftSp500RetS, 2, sd),

+ apply(msftSp500RetS, 2, skewness),

+ apply(msftSp500RetS, 2, kurtosis))

> rownames(statsMat) = c("Mean", "Variance", "Std Dev",

+ "Skewness", "Excess Kurtosis")

> round(statsMat, digits=4)

MSFT SP500

8If there is only one observation in the sample then it is impossible to create a measure

of spread in the sample. You need at least two observations to measure deviations from

the sample average. Hence the effective sample size for computing the sample variance is

 − 1
9Similar functions are available in the moments package.
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Mean 0.0092 0.0028

Variance 0.0103 0.0023

Std Dev 0.1015 0.0478

Skewness 0.4853 -0.5631

Excess Kurtosis 1.9150 0.6545

The mean and standard deviation for Microsoft monthly returns are 0.9% and

10%, respectively. Annualized, these values are approximately 10.08% (.009

×12) and 34.6% (.10 × √12), respectively. The corresponding monthly and
annualized values for S&P 500 returns are .3% and 4.7% and 3.6% and 16.3%,

respectively. Microsoft has a higher mean and volatility than S&P 500. The

lower volatility for the S&P 500 reflects risk reduction due to diversification.

The sample skewness for Microsoft, 0.485, is slightly positive and reflects

the approximate symmetry in the histogram in Figure 1.7. The skewness

for S&P 500, however, is moderately negative at -0.563 which reflects the

somewhat long left tail of the histogram in Figure 1.7. The sample excess

kurtosis values for Microsoft and S&P 500 are 1.915 and 0.654, respectively,

and indicate that the tails of the histograms are slightly fatter than the tails

of a normal distribution.

The sample statistics for the daily returns are

> statsMatDaily = rbind(apply(msftSp500DailyRetS, 2, mean),

+ apply(msftSp500DailyRetS, 2, var),

+ apply(msftSp500DailyRetS, 2, sd),

+ apply(msftSp500DailyRetS, 2, skewness),

+ apply(msftSp500DailyRetS, 2, kurtosis))

> rownames(statsMatDaily) = rownames(statsMat)

> round(statsMatDaily, digits=4)

MSFT SP500

Mean 0.0005 0.0002

Variance 0.0005 0.0002

Std Dev 0.0217 0.0135

Skewness 0.2485 0.0012

Excess Kurtosis 7.3824 6.9971

For a daily horizon, the sample mean for both series is zero (to three dec-

imals). As with the monthly returns, the sample standard deviation for

Microsoft, 2.2%, is about twice as big as the sample standard deviation for
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Figure 1.14: Illustration of an “outlier” in a data sample.

the S&P 500 index, 1.4%. Neither daily return series exhibits much skew-

ness, but the excess kurtosis values are much larger than the corresponding

monthly values indicating that the daily returns have much fatter tails and

are more non-normally distributed than the monthly return series.

The daily simple returns are very close to the daily cc returns so the

square-root-of-time rule can be applied to the sample mean and standard

deviation of the simple returns:

> 12*statsMatDaily["Mean", ]

MSFT SP500

0.005597 0.002069

> sqrt(12)*statsMatDaily["Std Dev", ]

MSFT SP500

0.07518 0.04670

Comparing these values to the corresponding monthly sample statistics shows

that the square-root-of-time-rule underestimates both the monthly mean and

standard deviation. ¥
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Statistic GWN GWN with Outlier %∆

Mean -0.0054 -0.0072 32%

Variance 0.0086 0.0101 16%

Std. Deviation 0.0930 0.1003 8%

Skewness -0.2101 -1.0034 377%

Kurtosis 2.7635 7.1530 159%

Median -0.0002 -0.0002 0%

IQR 0.1390 0.1390 0%

Table 1.1: Sample statistics for GWN with and without outlier.

1.1.6 Outliers

Figure 1.14 nicely illustrates the concept of an outlier in a data sample.

All of the points are following a nice systematic relationship except one -

the “outlier”. Outliers can be thought of in two ways. First, an outlier

can be the result of a data entry error. In this view, the outlier is not a

valid observation and should be removed from the data sample. Second,

an outlier can be a valid data point whose behavior is seemingly unlike the

other data points. In this view, the outlier provides important information

and should not be removed from data sample. For financial market data,

outliers are typically extremely large or small values that could be the result

of a data entry error (e.g. price entered as 10 instead of 100) or a valid

outcome associated with some unexpected bad or good news. Outliers are

problematic for data analysis because they can greatly influence the value of

certain sample statistics.

Example 16 Effect of outliers on sample statistics

To illustrate the impact of outliers on sample statistics, the simulated monthly

GWN data is polluted by a single large negative outlier:

> gwnMonthlyOutlier = gwnMonthly

> gwnMonthlyOutlier[20] = -sd(gwnMonthly)*6
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Figure 1.15: Monthly GWN data polluted by a single outlier.

Figure 1.15 shows the resulting data. Visually, the outlier is much smaller

than a typical negative observation and creates a pronounced asymmetry

in the histogram. Table 1.1 compares the sample statistics (1.1) - (1.5) of

the unpolluted and polluted data. All of the sample statistics are influenced

by the single outlier with the skewness and kurtosis being influenced the

most. The mean decreases by 32% and the variance and standard deviation

increase by 16% and 8%, respectively. The skewness changes by 377% and

the kurtosis by 159%. Table 1.1 also shows the median and the IQR, which

are quantile-based statistics for the center and spread, respectively. Notice

that these statistics are unaffected by the outlier. ¥
The previous example shows that the common sample statistics (1.1) -

(1.5) based on the sample average and deviations from the sample average

can be greatly influenced by a single outlier, whereas quantile-based sample

statistics are not. Sample statistics that are not greatly influenced by a single

outlier are called (outlier) robust statistics.
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Defining Outliers

A commonly used rule-of-thumb defines an outlier as an observation that

is beyond the sample mean plus or minus three times the sample standard

deviation. The intuition for this rules comes from the fact that if  ∼
( 2) then Pr( − 3 ≤  ≤  + 3) ≈ 099 While the intuition for

this definition is clear, the practical implementation of the rule using the

sample mean, ̂ and sample standard deviation, ̂ is problematic because

these statistics can be heavily influenced by the presence of one or more

outliers (as illustrated in the previous sub-section). In particular, both ̂

and ̂ become larger (in absolute value) when there are outliers and this may

cause the rule-of-thumb rule to miss identifying an outlier or to identify a

non-outlier as an outlier. That is, the rule-of-thumb outlier detection rule is

not robust to outliers!

A natural fix to the above outlier detection rule-of-thumb is to use outlier

robust statistics, such as the median and the IQR, instead of the mean and

standard deviation. To this end, a commonly used definition of a moderate

outlier in the right tail of the distribution (value above the median) is a data

point  such that

̂75 + 15 ·     ̂75 + 3 ·  (1.7)

To understand this rule, recall that the IQR is where the middle 50% of the

data lies. If the data were normally distributed then ̂75 ≈ ̂+067× ̂ and

 ≈ 134× ̂ Then (1.7) is approximately

̂+ 267× ̂    ̂+ 467× ̂

Similarly, a moderate outlier in the left tail of the distribution (value below

the median) is a data point such that

̂25 − 3 ·     ̂25 − 15 · 
Extreme outliers are those observations  even further out in the tails of the

distribution and are defined using

  ̂75 + 3 · 
  ̂25 − 3 · 

For example, with normally distributed data an extreme outlier would be an

observation that is more than 467 standard deviations above the mean.
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1.1.7 Box Plots

A boxplot of a data series describes the distribution using outlier robust

statistics. The basic boxplot is illustrated in Figure. The middle of the

distribution is shown by a rectangular box whose top and bottom sides are

the first and third quartiles, ̂25 and ̂75 respectively. The line roughly in the

middle of the box is the sample median, ̂5 The top whisker is a horizontal

line that represents either the largest data value or ̂75+15 ·, whichever
is smaller. Similarly, the bottom whisker is located at either the smallest data

value or ̂25 − 3 ·  whichever is larger.

Example 17 Boxplots of return distributions

Box plots are a great tool for visualizing the return distribution of one

or more assets. Figure 1.16 shows the boxplots of the monthly continuously

compounded and simple returns on Microsoft and the S&P500 index com-

puted using10

> boxplot(coredata(msftRetS), coredata(msftRetC),

+ coredata(sp500RetS), coredata(sp500RetC),

+ names=c("msftRetS", "msftRetC",

+ "sp500RetS", "sp500RetC"),

+ col="cornflowerblue")

The Microsoft returns have both positive and negative outliers whereas the

S&P 500 index returns only have negative outliers. The boxplots also clearly

show that the distributions of the continuously compounded and simple re-

turns are very similar except for the extreme tails of the distributions. ¥

1.2 Time Series Descriptive Statistics

In this section, we consider graphical and numerical descriptive statistics for

summarizing the linear time dependence in a time series.

10The coredata() function is used to extract the data from the zoo object because

boxplot() doesn’t like zoo objects.
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Figure 1.16: Boxplots of the continuously compounded and simple monthly

returns on Microsoft stock and the S&P 500 index.

1.2.1 Sample Autocovariances and Autocorrelations

For a covariance stationary time series process {}, the autocovariances
 = cov(−) and autocorrelations  = cov( −)

p
var()var(−) =


2 of a describe the linear time dependences in the process. For a sam-

ple of data {}=1 , the linear time dependences are captured the sample
autocovariances and autocorrelations:

̂ =
1

 − 1
X

=+1

( − ̄)(− − ̄)  = 1 2      −  + 1

̂ =
̂

̂2
  = 1 2      −  + 1

where ̂2 is the sample variance (1.2). The sample autocorrelation function

(SACF) is a plot of ̂ vs. , and gives a graphical view of the liner time
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dependences in the observed data.

Example 18 SACF for the Microsoft and S&P 500 returns.

The R function acf() computes and plots the sample autocorrelations ̂
of a time series for a specified number of lags. For example, to compute ̂
for  = 1     5 for the monthly and daily returns on Microsoft use

> acf(coredata(msftDailyRetS), lag.max=5, plot=FALSE)

Autocorrelations of series ‘coredata(msftDailyRetS)’, by lag

0 1 2 3 4 5

1.000 -0.044 -0.018 -0.010 -0.042 0.018

> acf(coredata(msftRetS), lag.max=5, plot=FALSE)

Autocorrelations of series ‘coredata(msftRetS)’, by lag

0 1 2 3 4 5

1.000 -0.193 -0.114 0.193 -0.140 -0.023

> acf(coredata(msftDailyRetS), lag.max=5, plot=FALSE)

Autocorrelations of series ‘coredata(msftDailyRetS)’, by lag

0 1 2 3 4 5

1.000 -0.044 -0.018 -0.010 -0.042 0.018

None of these sample autocorrelations are very big and indicate lack of linear

time dependence in the monthly and daily returns.

Sample autocorrelations can also be visualized using the function acf().

Figure 1.17 shows the SACF for the monthly and daily returns on Microsoft

and the S&P 500 created using

> par(mfrow=c(2,2))

> acf(coredata(msftRetS), main="msftRetS", lwd=2)

> acf(coredata(sp500RetS), main="sp500RetS", lwd=2)

> acf(coredata(msftDailyRetS), main="msftDailyRetS", lwd=2)

> acf(coredata(sp500DailyRetS), main="sp500DailyRetS", lwd=2)

> par(mfrow=c(1,1))
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Figure 1.17: SACFs for the monthly and daily returns on Microsoft and the

S&P 500 index.

None of the series show strong evidence for linear time dependence. The

monthly returns have slightly larger sample autocorrelations at low lags than

the daily returns. The dotted lines on the SACF plots are 5% critical values

for testing the null hypothesis that the true autocorrelations  are equal to

zero. If ̂ crosses the dotted line then the null hypothesis that  = 0 can

be rejected at the 5% significance level.

1.2.2 Time Dependence in Volatility

The daily and monthly returns of Microsoft and the S&P 500 index do not

exhibit much evidence for linear time dependence. Their returns are essen-

tially uncorrelated over time. However, the lack of autocorrelation does not

mean that returns are independent over time. There can be nonlinear time
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Figure 1.18:

dependence. Indeed, there is strong evidence for a particular type of nonlin-

ear time dependence in the daily returns of Microsoft and the S&P 500 index

that is related to time varying volatility. This nonlinear time dependence,

however, is less pronounced in the monthly returns.

Example 19 GWN and Time Independence

Let  ∼ GWN(0 2) Then  is, by construction, independent over

time. This implies that any function of  is also independent over time.

To illustrate, Figure 1.18 shows  
2
 and || together with their SACFs

where  ∼ (0 1) for  = 1     500. Notice that all of the sample

autocorrelations are essentially zero which confirms the lack of linear time

dependence in  
2
 and || ¥
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Figure 1.19: Daily returns, absolute returns, and squared returns on the S&P

500 index.

Nonlinear Time Dependence in Asset Returns

Figures 1.5 and 1.2 show that the daily and monthly returns on Microsoft

and the S&P 500 index appear to exhibit periods of volatility clustering.

That is, high periods of volatility tend to be followed by periods of high

volatility and periods of low volatility appear to be followed by periods of

low volatility. In other words, the volatility of the returns appears to exhibit

some time dependence. This time dependence in volatility causes linear time

dependence in the absolute value and squared value of returns.

Example 20 Nonlinear time dependence in the S&P 500 returns

To illustrate nonlinear time dependence in asset returns, Figure 1.19shows

the daily returns, absolute returns and squared returns for the S&P 500 index
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Figure 1.20: SACFs of daily and monthly absolute and squared returns on

the S&P 500 index.

and Figure shows the SACFs for these series. Notice how the absolute and

squared returns are large (small) when the daily returns are more (less)

volatile. Figure 1.20 shows the SACFs for the absolute and squared daily

and monthly returns. There is clear evidence of time dependence in the daily

absolute and squared returns while there is some evidence of time dependence

in the monthly absolute and squared returns. Since the absolute and squared

daily returns reflect the volatility of the daily returns, the SACFs show a

strong positive linear time dependence in daily return volatility.
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1.3 Bivariate Descriptive Statistics

In this section, we consider graphical and numerical descriptive statistics for

summarizing two or more data series.

1.3.1 Scatterplots

The contemporaneous dependence properties between two data series {}=1
and {}=1 can be displayed graphically in a scatterplot, which is simply an
xy-plot of the bivariate data.

Example 21 Scatterplot of Microsoft and S&P 500 returns

Figure 1.21 shows the scatterplot between the Microsoft and S&P 500 returns

created using

> plot(sp500RetS,msftRetS,

+ main="Monthly cc returns on MSFT and SP500",

+ xlab="S&P500 returns", ylab="MSFT returns",

+ lwd=2, pch=16, cex=1.25, col="blue")

> abline(v=mean(sp500RetS))

> abline(h=mean(msftRetS))

The S&P 500 returns are put on the x-axis and the Microsoft returns on the

y-axis because the “market”, as proxied by the S&P 500, is often thought as

an independent variable driving individual asset returns. The upward sloping

orientation of the scatterplot indicates a positive linear dependence between

Microsoft and S&P 500 returns. ¥

Exercise 22 Pair-wise scatterplots for multiple series

For more than two data series, the R function pairs() plots all pair-wise

scatterplots in a single plot. For example, to plot all pair-wise scatterplots

for the GWN, Microsoft returns and S&P 500 returns use:

> pairs(cbind(gwnMonthly,msftRetS,sp500RetS), col="blue",

+ pch=16, cex=1.25, cex.axis=1.25)

The top row of Figure 1.22 shows the scatterplots between the pairs (MSFT,

GWN) and (SP500, GWN), the second row shows the scatterplots between

the pairs (GWN, MSFT) and (SP500, MSFT), the third row shows the scat-

terplots between the pairs (GWN, SP500) and (MSFT, SP500). ¥
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Figure 1.21: Scatterplot of Monthly returns on Microsoft and the S&P 500

index.

1.3.2 Sample Covariance and Correlation

For two random variables  and  the direction of linear dependence is

captured by the covariance,  = [( − )( −  )] and the direction

and strength of linear dependence is captured by the correlation,  =

   For two data series {}=1 and {}=1 the sample covariance,

̂ =
1

 − 1
X
=1

( − ̄)( − ̄) (1.8)

measures the direction of linear dependence, and the sample correlation,

̂ =
̂

̂̂
 (1.9)
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Figure 1.22: Pair-wise scatterplots between simulated GWN, Microsoft re-

turns and S&P 500 returns.

measures the direction and strength of linear dependence. In (1.9), ̂ and

̂ are the sample standard deviations of {}=1 and {}=1 respectively,
defined by (1.3).

When more than two data series are being analyzed, it is often convenient

to compute all pair-wise covariances and correlations at once using matrix

algebra. Recall, for a vector of  random variables X = (1     )
0 with

mean vector μ = (1     )
0 the  ×  variance-covariance matrix is
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defined as

Σ = var(X) = cov(X) = [(X−μ)(X− μ)0] =

⎛⎜⎜⎜⎜⎜⎜⎝
21 12 · · · 1

12 22 · · · 2
...

...
. . .

...

1 2 · · · 2

⎞⎟⎟⎟⎟⎟⎟⎠ 

For  data series {}=1 where  = (1     )
0 the sample covariance

matrix is computed using

Σ̂ =
1

 − 1
X
=1

(x − μ̂)(x − μ̂)0 =

⎛⎜⎜⎜⎜⎜⎜⎝
̂21 ̂12 · · · ̂1

̂12 ̂22 · · · ̂2
...

...
. . .

...

̂1 ̂2 · · · ̂2

⎞⎟⎟⎟⎟⎟⎟⎠  (1.10)

where μ̂ is the ×1 sample mean vector. Define the × diagonal matrix

D̂ =

⎛⎜⎜⎜⎜⎜⎜⎝
̂1 0 · · · 0

0 ̂2 · · · 0
...
...
. . .

...

0 0 · · · ̂

⎞⎟⎟⎟⎟⎟⎟⎠ 

Then the  × sample correlation matrix R̂ is computed as

R̂ = D̂−1Σ̂D̂
−1
=

⎛⎜⎜⎜⎜⎜⎜⎝
1 ̂12 · · · ̂1

̂12 1 · · · ̂2
...

...
. . .

...

̂1 ̂2 · · · 1

⎞⎟⎟⎟⎟⎟⎟⎠  (1.11)

Example 23 Sample covariance and correlation between Microsoft and S&P

500 returns
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The scatterplot of Microsoft and S&P 500 returns in Figure 1.21 suggests a

positive linear relationship in the data. We can confirm this by computing the

sample covariance and correlation using the R functions cov() and cor():

> cov(sp500RetS, msftRetS)

[1] 0.002979

> cor(sp500RetS, msftRetS)

[1] 0.6139

Indeed, the sample covariance is positive and the sample correlation shows a

moderately strong linear relationship.

When passed a matrix of data, the cov() and cor() functions can also

be used to compute the sample covariance and correlation matrices Σ̂ and

R̂, respectively:

> cov(msftSp500RetS)

MSFT SP500

MSFT 0.010311 0.002979

SP500 0.002979 0.002284

> cor(msftSp500RetS)

MSFT SP500

MSFT 1.0000 0.6139

SP500 0.6139 1.0000

The function cov2cor() transforms a sample covariance matrix to a sample

correlation matrix using (1.11):

> cov2cor(cov(msftSp500RetS))

MSFT SP500

MSFT 1.0000 0.6139

SP500 0.6139 1.0000

¥

Example 24 Visualizing correlation matrices

The R package corrplot contains functions for visualizing correlation

matrices. This is particularly useful for summarizing the linear dependencies

among many data series. For example, Figure 1.23 shows the correlation plot

from the corrplot function corrplot.mixed() created using
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Figure 1.23:

> dataToPlot = merge(gwnMonthly, msftRetS, sp500RetS)

> cor.mat = cor(dataToPlot)

> corrplot.mixed(cor.mat, lower="number", upper="ellipse")

The color scheme shows the magnitudes of the correlations (blue for positive

and red for negative) and the orientation of the ellipses show the magnitude

and direction of the linear associations.

1.3.3 Stylized Facts for Daily and Monthly Asset Re-

turns

A stylized fact is something that is generally true but not always. From the

data analysis of the daily and monthly returns on Microsoft and the S&P

500 index we observe a number of stylized facts that tend to be true for other
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individual assets and portfolios of assets. For monthly data we observe the

following stylized facts:

M1. Prices appear to be random walk non-stationary and returns appear to

be mostly covariance stationary. There is evidence that return volatility

changes over time.

M2. Returns appear to approximately normally distributed. There is some

negative skewness and excess kurtosis.

M3. Assets that have high average returns tend to have high standard devi-

ations (volatilities) and vice-versa. This is the no free lunch principle.

M4. Returns on individual assets (stocks) have higher standard deviations

than returns on diversified portfolios of assets (stocks).

M5. Returns on different assets tend to be positively correlated. It is un-

usual for returns on different assets to be negatively correlated.

M6. Asset returns are approximately uncorrelated over time. That is, there

is little evidence of linear time dependence in asset returns.

Daily returns have some features in common with monthly returns and

some not. The common features are M1 and M3-M6 above. The stylized

facts that are specific to daily returns are :

D2. Returns are not normally distributed. Empirical distributions have

much fatter tails than the normal distribution (excess kurtosis).

D7. Returns are not independent over time. Absolute and squared returns

are positively autocorrelated and the correlation dies out very slowly.

Volatility appears to be autocorrelated and, hence, predictable.

These stylized facts of daily and monthly asset returns are the main fea-

tures of returns that models of assets returns should capture. A good model

is one that can explain many stylized facts of the data. A bad model does

not capture important stylized facts.

1.4 Further Reading

To be completed
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1.5 Problems

Exercise 25 Histogram for returns with different number of bins

Exercise 26 Smoothed density with different bandwidth parameters

Exercise 27 Histogram overlaid with normal density

Show PerformanceAnalytics function chart.Histogram().

Exercise 28 Extracting unique covariance elements from covariance matrix

Exercise 29 Visualizing correlation with heatmaps
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