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Estimation of The CER Model

Date: February 17, 2015

The CERmodel of asset returns presented in the previous chapter gives us

a simple framework for interpreting the time series behavior of asset returns

and prices. At the beginning of time  − 1, R is an  × 1 random vector

representing the returns (simple or continuously compounded) on assets  =

1      to be realized at time . The CER model states that R ∼ 

(μΣ). Our best guess for the return at  on asset  is [] = , our

measure of uncertainty about our best guess is captured by SD() = 

and our measures of the direction and strength of linear association between

 and  are  = cov( ) and  = cor( ) respectively. The

CER model assumes that the economic environment is constant over time so

that the multivariate normal distribution characterizing returns is the same

for all time periods .

Our life would be very easy if we knew the exact values of  
2
   and

 the parameters of the CER model. In actuality, however, we do not know

these values with certainty. Therefore, a key task in financial econometrics

is estimating these values from a history of observed return data.

Suppose we observe returns on  different assets over the sample  =

1      Denote this sample {r1     r} = {r}=1 where r = (r1     r)
0

is the  × 1 vector of returns on  assets observed at time  It is assumed

that the observed returns are realizations of the random variables {R}=1 ,
where R = (1     )

0 is a vector of  asset returns described by the

CER model

R = μ+ ε ε ∼  (0Σ) (1.1)

Under these assumptions, we can use the observed returns {r}=1 to estimate
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the unknown parameters in μ and Σ of the CER model. However, before we

describe the estimation of the CER model in detail, it is necessary to review

some fundamental concepts in the statistical theory of estimation.

In this chapter we use the R packages PerformanceAnalytics, tseries

and zoo. Make sure these packages are installed and loaded prior to running

the examples in the chapter.

1.1 Estimators and Estimates

Let  be the return on a single asset described by the CER model and let 

denote some characteristic (parameter) of the CER model we are interested

in estimating. For simplicity, assume that  ∈ R is a single parameter. For
example, if we are interested in the expected return on the asset, then  = ;

if we are interested in the variance of asset  returns, then  = 2; if we are

interested in the first lag autocorrelation then  = 1 The goal is to estimate

 based on a sample of size  of the observed data.

Definition 1 Let {1     } denote a collection of  random returns from
the CER model, and let  denote some characteristic of the model. An esti-

mator of  denoted ̂ is a rule or algorithm for estimating  as a function

of the random variables {1     } Here, ̂ is a random variable.

Definition 2 Let {1     } denote an observed sample of size  from the
CER model, and let  denote some characteristic of the model. An estimate

of  denoted ̂ is simply the value of the estimator for  based on the observed

sample {1     }. Here, ̂ is a number.

Example 3 The sample average as an estimator and an estimate

Let  be the return on a single asset described by the CER model, and

suppose we are interested in estimating  =  = [] from the sample of

observed returns {}=1. The sample average ̂ = 1


P

=1  is an algorithm

for computing an estimate of the expected return  Before the sample is

observed, we can think of ̂ = 1


P

=1 as a simple linear function of

the random variables {}=1 and so is itself a random variable. After the

sample is observed, the sample average can be evaluated using the observed

data {}=1 which produces the estimate of . For example, suppose  = 5
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and the realized values of the returns are 1 = 01 2 = 005 3 = 0025 4 =

−01 5 = −005 Then the estimate of  using the sample average is

̂ =
1

5
(01 + 005 + 0025 +−01 +−005) = 0005

¥
The example above illustrates the distinction between an estimator and

an estimate of a parameter . However, typically in the statistics literature

we use the same symbol, ̂, to denote both an estimator and an estimate.

When ̂ is treated as a function of the random returns it denotes an estimator

and is a random variable. When ̂ is evaluated using the observed data it

denotes an estimate and is simply a number The context in which we discuss

̂ will determine how to interpret it

1.1.1 Properties of Estimators

Consider ̂ as a random variable. In general, the pdf of ̂ (̂) depends

on the pdf’s of the random variables {}=1 The exact form of (̂) may

be very complicated. Sometimes we can use analytical calculations to deter-

mine the exact form of (̂) In general, the exact form of (̂) is often too

difficult to derive exactly. When (̂) is too difficult to compute we can of-

ten approximate (̂) using either Monte Carlo simulation techniques or the

Central Limit Theorem (CLT). In Monte Carlo simulation, we use the com-

puter the simulate many different realizations of the random returns {}=1
and on each simulated sample we evaluate the estimator ̂ The Monte Carlo

approximation of (̂) is the empirical distribution ̂ over the different sim-

ulated samples. For a given sample size  Monte Carlo simulation gives a

very accurate approximation to (̂) if the number of simulated samples is

very large. The CLT approximation of (̂) is a normal distribution approx-

imation that becomes more accurate as the sample size  gets very large.

An advantage of the CLT approximation is that it is often easy to compute.

The disadvantage is that the accuracy of the approximation depends on the

estimator ̂ and sample size 

For analysis purposes, we often focus on certain characteristics of (̂)

like its expected value (center), variance and standard deviation (spread

about expected value) The expected value of an estimator is related to the

concept of estimator bias, and the variance/standard deviation of an estima-

tor is related to the concept of estimator precision. Different realizations of
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the random variables {}=1 will produce different values of ̂ Some values
of ̂ will be bigger than  and some will be smaller. Intuitively, a good es-

timator of  is one that is on average correct (unbiased) and never gets too

far away from  (small variance). That is, a good estimator will have small

bias and high precision.

Bias

Bias concerns the location or center of (̂) in relation to  If (̂) is centered

away from  then we say ̂ is a biased estimator of . If (̂) is centered at

 then we say that ̂ is an unbiased estimator of . Formally, we have the

following definitions:

Definition 4 The estimation error is the difference between the estimator

and the parameter being estimated:

error(̂ ) = ̂ −  (1.2)

Definition 5 The bias of an estimator ̂ of  is the expected estimation

error:

bias(̂ ) = [error(̂ )] = [̂]−  (1.3)

Definition 6 An estimator ̂ of  is unbiased if bias(̂ ) = 0; i.e., if [̂] =

 or [error(̂ )] = 0

Unbiasedness is a desirable property of an estimator. It means that the

estimator produces the correct answer “on average”, where “on average”

means over many hypothetical realizations of the random variables {}=1.
It is important to keep in mind that an unbiased estimator for  may not

be very close to  for a particular sample, and that a biased estimator may

be actually be quite close to . For example, consider two estimators of

 ̂1 and ̂2 The pdfs of ̂1 and ̂2 are illustrated in Figure 1.1. ̂1 is an

unbiased estimator of  with a large variance, and ̂2 is a biased estimator

of  with a small variance. Consider first, the pdf of ̂1. The center of the

distribution is at the true value  = 0 [̂1] = 0 but the distribution is

very widely spread out about  = 0 That is, var(̂1) is large. On average

(over many hypothetical samples) the value of ̂1 will be close to  but

in any given sample the value of ̂1 can be quite a bit above or below 

Hence, unbiasedness by itself does not guarantee a good estimator of  Now
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Figure 1.1: Distributions of competiting estimators for  = 0 ̂1 is unbiased

but has high variance, and ̂2 is biased but has low variance.

consider the pdf for ̂2 The center of the pdf is slightly higher than  = 0

i.e., bias(̂2 )  0 but the spread of the distribution is small. Although the

value of ̂2 is not equal to 0 on average we might prefer the estimator ̂2 over

̂1 because it is generally closer to  = 0 on average than ̂1

While unbiasedness is a desirable property of an estimator ̂ of , it by

itself, is not enough determine if ̂ is a good estimator. Being correct on

average means that ̂ is seldom exactly correct for any given sample. In

some samples ̂ is less than  and some samples ̂ is greater than  In

addition we need to know how far ̂ typically is from . That is, we need to

know about the magnitude of the spread of the distribution of ̂ about its

average value. This will tell us the precision of ̂

Precision

An estimate is, hopefully, our best guess of the true (but unknown) value of

. Our guess most certainly will be wrong, but we hope it will not be too

far off. A precise estimate is one in which the variability of the estimation
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error is small. The variability of the estimation error is captured by themean

squared error.

Definition 7 The mean squared error of an estimator ̂ of  is given by

mse(̂ ) = [(̂ − )2] = [error(̂ )2] (1.4)

The mean squared error measures the expected squared deviation of ̂ from

 If this expected deviation is small, then we know that ̂ will almost always

be close to  Alternatively, if the mean squared is large then it is possible

to see samples for which ̂ is quite far from  A useful decomposition of

mse(̂ ) is

mse(̂ ) = [(̂ −[̂])2] +
³
[̂]− 

´2
= var(̂) + bias(̂ )2

The derivation of this result is straightforward. Write

̂ −  = ̂ −[̂] +[̂]− 

Then

(̂ − )2 =
³
̂ −[̂]

´2
+ 2

³
̂ −[̂]

´³
[̂]− 

´
+
³
[̂]− 

´2


Taking expectations of both sides gives

mse(̂ ) = 
h³

̂ −[̂]
´i2

+ 2
³
[̂]−[̂]

´³
[̂]− 

´
+

∙³
[̂]− 

´2¸
= 

h³
̂ −[̂]

´i2
+

∙³
[̂]− 

´2¸
= var(̂) + bias(̂ )2

The result states that for any estimator ̂ of  mse(̂ ) can be split into

a variance component, var(̂) and a bias component, bias(̂ )2 Clearly,

mse(̂ ) will be small only if both components are small. If an estimator is

unbiased then mse(̂ ) = var(̂) = [(̂ − )2] is just the squared deviation

of ̂ about  Hence, an unbiased estimator ̂ of  is good, if it has a small

variance.
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The mse(̂ ) and var(̂) are based on squared deviations and so are not

in the same units of measurement as  Measures of precision that are in the

same units as  are the root mean square error

rmse(̂ ) =

q
mse(̂ ) (1.5)

and the standard error

se(̂) =

q
var(̂) (1.6)

If bias(̂ ) ≈ 0 then the precision of ̂ is typically measured by se(̂)

Good Estimators

With the concepts of bias and precision in hand, we can state what defines

a good estimator.

Definition 8 A good estimator ̂ of  has a small bias (1.3) and a small

standard error (1.6).

1.1.2 Asymptotic Properties of Estimators

Estimator bias and precision are finite sample properties. That is, they

are properties that hold for a fixed sample size  Very often we are also

interested in properties of estimators when the sample size  gets very large.

For example, analytic calculations may show that the bias and mse of an

estimator ̂ depend on  in a decreasing way. That is, as  gets very large

the bias and mse approach zero. So for a very large sample, ̂ is effectively

unbiased with high precision. In this case we say that ̂ is a consistent

estimator of  In addition, for large samples the CLT says that (̂) can

often be well approximated by a normal distribution. In this case, we say

that ̂ is asymptotically normally distributed. The word “asymptotic” means

“in an infinitely large sample” or “as the sample size  goes to infinity”. Of

course, in the real world we don’t have an infinitely large sample and so the

asymptic results are only approximations. How good these approximation are

for a given sample size  depends on the context. Monte Carlo simulations

can often be used to evaluate asymptotic approximations in a given context.
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Consistency

Let ̂ be an estimator of  based on the random returns {}=1

Definition 9 ̂ is consistent for  (converges in probability to ) if for any

  0

lim
→∞

Pr(|̂ − |  ) = 0

Intuitively, consistency says that as we get enough data then ̂ will eventually

equal  In other words, if we have enough data then we know the truth.

Theorems in probability theory known as Laws of Large Numbers are

used to determine if an estimator is consistent or not. In general, we have

the following result: an estimator ̂ is consistent for  if

• bias(̂ ) = 0 as  →∞

• se
³
̂
´
= 0 as  →∞

Equivalently, ̂ is consistent for  if mse(̂ ) → 0 as  →∞ Intuitively, if

(̂) collapses to  as  →∞ then ̂ is consistent for 

Asymptotic Normality

Let ̂ be an estimator of  based on the random returns {}=1

Definition 10 An estimator ̂ is asymptotically normally distributed if

̂ ∼ ( se(̂)2) (1.7)

for large enough 

Asymptotic normality means that (̂) is well approximated by a normal

distribution with mean  and variance se(̂)2 The justification for asymptotic

normality comes from the famous Central Limit Theorem.
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Central Limit Theorem There are actually many versions of the CLT

with different assumptions.1 In its simplist form, the CLT says that the sam-

ple average of a collection of iid random variables 1     with [] = 

and () = 2 is asymptotically normal with mean  and variance 2

In particular, the CDF of the standardized sample mean

̄ − 

se(̄)
=

̄ − 


√

=
√


µ
̄ − 



¶


converges to the CDF of a standard normal random variable  as  → ∞

This result can be expressed as

√


µ
̄ − 



¶
∼  ∼ (0 1)

for large enough  Equivalently,

̄ ∼ +
√

×  ∼ 

µ


2



¶
= 

¡
 se(̄)2

¢


for large enough  This form shows that ̄ is asymptotically normal with

mean  and variance 2

Asymptotic Confidence Intervals

For an asymptotically normal estimator ̂ of  the precision of ̂ is measure

by bse(̂) but is best communicated by computing a (asymptotic) confidence
interval for the unknown value of  A confidence interval is an interval

estimate of  such that we can put an explicit probability statement about

the likelihood that the interval covers 

The construction of an asymptotic confidence interval for  uses the as-

ymptotic normality result

̂ − 

se(̂)
=  ∼ (0 1) (1.8)

Then, for  ∈ (0 1) we compute a (1 − ) · 100% confidence interval for 

using (1.8) and the 1−2 standard normal quantile (critical value) (1−2)
to give

Pr

Ã
−(1−2) ≤

̂ − 

se(̂)
≤ (1−2)

!
= 1− 

1White (1984) gives a comprehensive discussion of CLTs useful in econometrics.
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which can be rearranged as

Pr
³
̂ − (1−2) · se(̂) ≤  ≤ ̂ + (1−2) · se(̂)

´
= 1− 

Hence, the interval

[̂ − (1−2) · se(̂) ̂ + (1−2) · se(̂)] = ̂ ± (1−2) · se(̂) (1.9)

covers the true unknown value of  with probability 1− 

In practice, typical values for  are 005 and 001 for which (0975) = 196

and (0995) = 258 Then, approximate 95% and 99% asymptotic confidence

intervals for  have the form ̂ ± 2 · se(̂) and ̂ ± 25 · se(̂) respectively.

1.2 Estimators for the Parameters of the CER

Model

Let {r}=1denote a sample of size  of observed returns on  assets from the

CER model (1.1). To estimate the unknown CER model parameters  
2
 

 and  from {r}=1 we can use the plug-in principle from statistics:

Plug-in-Principle: Estimate model parameters using corresponding sample

statistics.

For the CER model parameters, the plug-in principle estimates are the

following sample descriptive statistics discussed in Chapter xxx (Descriptive

Statistics):

̂ =
1



X
=1

 (1.10)

̂2 =
1

 − 1
X
=1

( − ̂)
2 (1.11)

̂ =

q
̂2  (1.12)

̂ =
1

 − 1
X
=1

( − ̂)( − ̂) (1.13)

̂ =
̂

̂̂
 (1.14)
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The plug-in principle is appropriate because the the CER model parameters

 
2
   and  are characteristics of the underlying distribution of returns

that are naturally estimated using sample statistics.

The plug-in principle sample statistics (1.10) - (1.14) are given for a sin-

gle asset and the statistics (1.13) - (1.14) are given for one pair of assets.

However, these statistics can be computed for a collection of  assets using

the matrix sample statistics

μ̂
(×1)

=
1



X
=1

r =

⎛⎜⎜⎜⎝
̂1
...

̂

⎞⎟⎟⎟⎠  (1.15)

Σ̂
(×)

=
1

 − 1
X
=1

(r − μ̂)(r − μ̂)0 =

⎛⎜⎜⎜⎜⎜⎜⎝
̂21 ̂12 · · · ̂1

̂12 ̂22 · · · ̂2
...

...
. . .

...

̂1 ̂2 · · · ̂2

⎞⎟⎟⎟⎟⎟⎟⎠  (1.16)

Here μ̂ is called the sample mean vector and Σ̂ is called the sample covariance

matrix. The sample variances are the diagonal elements of Σ̂ and the sample

covariances are the off diagonal elements of Σ̂ To get the sample correlations,

define the  × diagonal matrix

D̂ =

⎛⎜⎜⎜⎜⎜⎜⎝
̂1 0 · · · 0

0 ̂2 · · · 0
...
...
. . .

...

0 0 · · · ̂

⎞⎟⎟⎟⎟⎟⎟⎠ 

Then the sample correlation matrix R̂ is computed as

R̂ = D̂−1Σ̂D̂
−1
=

⎛⎜⎜⎜⎜⎜⎜⎝
1 ̂12 · · · ̂1

̂12 1 · · · ̂2
...

...
. . .

...

̂1 ̂2 · · · 1

⎞⎟⎟⎟⎟⎟⎟⎠  (1.17)
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Figure 1.2: Monthly cc returns on Microsoft stock, Starbucks stock, and the

S&P 500 index, over the period January 1998 through May 2012.

Here, the sample correlations are the off diagonal elements of R̂

Example 11 Estimating the CER model parameters for Microsoft, Star-

bucks and the S&P 500 index.

To illustrate typical estimates of the CER model parameters, we use data on

monthly continuously compounded returns for Microsoft, Starbucks and the

S & P 500 index over the period January 1998 through May 2012. The data is

the same as that used in Chapters xxx (Descriptive Statistics & CER Model)

and is retrieved from Yahoo! using the tseries function get.hist.quote()

as follows

> msftPrices = get.hist.quote(instrument="msft", start="1998-01-01",

+ end="2012-05-31", quote="AdjClose",

+ provider="yahoo", origin="1970-01-01",
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+ compression="m", retclass="zoo")

> sbuxPrices = get.hist.quote(instrument="sbux", start="1998-01-01",

+ end="2012-05-31", quote="AdjClose",

+ provider="yahoo", origin="1970-01-01",

+ compression="m", retclass="zoo")

> sp500Prices = get.hist.quote(instrument="^gspc", start="1998-01-01",

+ end="2012-05-31", quote="AdjClose",

+ provider="yahoo", origin="1970-01-01",

+ compression="m", retclass="zoo")

> colnames(msftPrices) = "MSFT"

> colnames(sbuxPrices) = "SBUX"

> colnames(sp500Prices) = "SP500"

> index(msftPrices) = as.yearmon(index(msftPrices))

> index(sbuxPrices) = as.yearmon(index(sbuxPrices))

> index(sp500Prices) = as.yearmon(index(sp500Prices))

> cerPrices = merge(msftPrices, sbuxPrices, sp500Prices)

> msftRetS = Return.calculate(msftPrices, method="simple")

> sbuxRetS = Return.calculate(sbuxPrices, method="simple")

> sp500RetS = Return.calculate(sp500Prices, method="simple")

> cerRetS = Return.calculate(cerPrices, method="simple")

> msftRetS = msftRetS[-1]

> sbuxRetS = sbuxRetS[-1]

> sp500RetS = sp500RetS[-1]

> cerRetS = cerRetS[-1]

> msftRetC = log(1 + msftRetS)

> sbuxRetC = log(1 + sbuxRetS)

> sp500RetC = log(1 + sp500RetS)

> cerRetC = merge(msftRetC, sbuxRetC, sp500RetC)

> colnames(cerRetC) = c("MSFT", "SBUX", "SP500")

These data are illustrated in Figures 1.2 and 1.3.

The estimates of  ( =   500) using (1.10) or (1.15) can be

computed using the R functions apply() and mean()

> muhat = apply(cerRetC,2,mean)

> muhat

MSFT SBUX SP500

0.004127 0.014657 0.001687
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Figure 1.3: Scatterplot matrix of the monthly cc returns on Microsoft stock,

Starbucks stock, and the S&P 500 index.

Starbucks has the highest average monthly return at 1.5% and the S&P 500

index has the lowest at 0.2%.

The estimates of the parameters 2   using (1.11) and (1.12) can be

computed using apply(), var() and sd()

> sigma2hat = apply(cerRetC,2,var)

> sigma2hat

MSFT SBUX SP500

0.010051 0.012465 0.002349

> sigmahat = apply(cerRetC,2,sd)

> sigmahat

MSFT SBUX SP500

0.10026 0.11164 0.04847
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Starbucks has the most variable monthly returns at 11%, and the S&P 500

index has the smallest at 5%.

The scatterplots of the returns are illustrated in Figure 1.3. All returns

appear to be positively related. The covariance and correlation matrix es-

timates using (1.16) and (1.17) can be computed using the functions var()

(or cov()) and cor()

> covmat = var(cerRetC)

> covmat

MSFT SBUX SP500

MSFT 0.010051 0.003819 0.003000

SBUX 0.003819 0.012465 0.002476

SP500 0.003000 0.002476 0.002349

> cormat = cor(cerRetC)

> cormat

MSFT SBUX SP500

MSFT 1.0000 0.3412 0.6173

SBUX 0.3412 1.0000 0.4575

SP500 0.6173 0.4575 1.0000

To extract the unique pairwise values of  and  from the matrix objects

covmat and cormat use

> covhat = covmat[lower.tri(covmat)]

> rhohat = cormat[lower.tri(cormat)]

> names(covhat) <- names(rhohat) <-

+ c("msft,sbux","msft,sp500","sbux,sp500")

> covhat

msft,sbux msft,sp500 sbux,sp500

0.003819 0.003000 0.002476

> rhohat

msft,sbux msft,sp500 sbux,sp500

0.3412 0.6173 0.4575

The pairs (MSFT, SP500) and (SBUX, SP500) are the most correlated.

These estimates confirm the visual results from the scatterplot matrix in

Figure 1.3. ¥
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1.3 Statistical Properties of the CER Model

Estimates

To determine the statistical properties of plug-in principle estimators ̂ ̂
2
  ̂ ̂

and ̂ in the CERmodel, we treat them as functions of the random variables

{R}=1 where R is assumed to be generated by the CER model (1.1).

1.3.1 Bias

Assuming that returns are generated by the CER model (1.1), ̂ ̂
2
 and ̂

are unbiased estimators,

[̂] = 

[̂2 ] = 2 

[̂] = 

but ̂ and ̂ are biased estimators,

[̂] 6= 

[̂] 6= 

It can be shown that the biases in ̂ and ̂ are very small and decreasing in

 such that bias(̂ ) = bias(̂ ) = 0 as  → ∞. The proofs of these
results are beyond the scope of this book and may be found, for example, in

Goldberger (1991). As we shall see, these results about bias can be easily

verified using Monte Carlo methods.

It is instructive to illustrate how to derive the result [̂] =  Using

results about the expectation of a linear combination of random variables, it
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follows that

[̂] = 

"
1



X
=1



#

= 

"
1



X
=1

( + )

#
(since  =  + )

=
1



X
=1

 +
1



X
=1

[] (by the linearity of [·])

=
1



X
=1

 (since [] = 0  = 1      )

=
1


 ·  = 

The derivation of the results [̂2 ] = 2 and [̂] =  are similar but are

considerably more involved and so are omitted.

1.3.2 Precision

Because the CER model estimators are either unbiased or the bias is very

small, the precision of these estimators is measured by their standard errors.

The standard error for ̂ se(̂) can be calculated exactly and is given by

se(̂) =
√

 (1.18)
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The derivation of this result is straightforward. Using the results about the

variance of a linear combination of uncorrelated random variables, we have

var(̂) = var

Ã
1



X
=1



!

= var

Ã
1



X
=1

( + )

!
(since  =  + )

= var

Ã
1



X
=1



!
(since  is a constant)

=
1

 2

X
=1

var() (since  is independent over time)

=
1

 2

X
=1

2 (since var() = 2   = 1      )

=
1

 2
2 =

2



Then se(̂) = SD(̂) =
√

 We make the following remarks:

1. The value of se(̂) is in the same units as ̂ and measures the precision

of ̂ as an estimate. If se(̂) is small relative to ̂ then ̂ is a relatively

precise of  because (̂) will be tightly concentrated around ; if

se(̂) is large relative to  then ̂ is a relatively imprecise estimate

of  because (̂) will be spread out about 

2. The magnitude of se(̂) depends positively on the volatility of returns,

 = SD() For a given sample size  , assets with higher return

volatility have larger values of se(̂) than assets with lower return

volatility. In other words, estimates of expected return for high volatil-

ity assets are less precise than estimates of expected returns for low

volatility assets.

3. For a given return volatility  se(̂) is smaller for larger sample sizes

 In other words, ̂ is more precisely estimated for larger samples.

Moreover, se(̂)→ 0 as  →∞ at rate
√

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The derivations of the standard errors for ̂2  ̂ ̂ and ̂ are compli-

cated, and the exact results are extremely messy and hard to work with.

However, there are simple approximate formulas for the standard errors of

̂2  ̂ and ̂ based on the CLT that are valid if the sample size,  is rea-

sonably large.2 These large sample approximate formulas are given by

se(̂2 ) ≈
√
22√

=

2p
2

 (1.19)

se(̂) ≈ √
2

 (1.20)

se() ≈
(1− 2)√


 (1.21)

where “≈” denotes approximately equal. The approximations are such that
the approximation error goes to zero as the sample size  gets very large.

We make the following remarks:

1. As with the formula for the standard error of the sample mean, the

formulas for se(̂2 ) and se(̂) depend on 
2
  Larger values of 

2
 imply

less precise estimates of ̂2 and ̂

2. The formula for se() does not depend on 2 but rather depends on

2 and is smaller the closer 
2
 is to unity. Intuitively, this makes sense

because as 2 approaches one the linear dependence between  and

 becomes almost perfect and this will be easily recognizable in the

data (scatterplot will almost follow a straight line).

3. The formulas for the standard errors above are inversely related to the

square root of the sample size,
√
 , which means that larger sample

sizes imply smaller values of the standard errors.

4. Interestingly, se(̂) goes to zero the fastest and se(̂
2
 ) goes to zero the

slowest. Hence, for a fixed sample size, these formulas suggest that  is

generally estimated more precisely than 2 and  and  is estimated

generally more precisely than 2 

2The large sample approximate formula for the variance of ̂ is too messy to work

with so we omit it here. In practice, we can use the bootstrap to provide an estimated

standard error for ̂ 
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The above formulas (1.19) - (1.21) are not practically useful, however,

because they depend on the unknown quantities 2   and  Practically

useful formulas replace 2   and  by the estimates ̂
2
  ̂ and ̂ and give

rise to the estimated standard errors:

bse(̂) = b√


(1.22)

bse(̂2 ) ≈ ̂2p
2

 (1.23)

bse(̂) ≈ ̂√
2

 (1.24)

bse() ≈ (1− ̂2)√


 (1.25)

It is good practice to report estimates together with their estimated stan-

dard errors. In this way the precision of the estimates is transparent to the

user. Typically, estimates are reported in a table with the estimates in one

column and the estimated standard errors in an adjacent column.

Example 12 bse(̂) values for Microsoft, Starbucks and the S&P 500 index
For Microsoft, Starbucks and S&P 500, the values of bse(̂) are easily

computed in R using

> n.obs = nrow(cerRetC)

> seMuhat = sigmahat/sqrt(n.obs)

The values of ̂ and bse(̂) shown together are
> cbind(muhat, seMuhat)

muhat seMuhat

MSFT 0.00413 0.00764

SBUX 0.01466 0.00851

SP500 0.00169 0.00370

For Microsoft and Starbucks, the values of bse(̂) are similar because the
values of ̂ are similar, and bse(̂) is smallest for the S&P 500 index. This
occurs because ̂500 is much smaller than ̂ and ̂ Hence, ̂ is

estimated more precisely for the S&P 500 index (a highly diversified portfolio)

than it is for Microsoft and Starbucks stock (individual assets).

It is tempting to compare the magnitude of bse(̂) to the value of ̂ to
evaluate if ̂ is a precise estimate
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> seMuhat/muhat

MSFT SBUX SP500

1.852 0.581 2.191

Here we see that bse(̂) and bse(̂500) are about twice as large as ̂

and ̂500 respectively, whereas bse(̂) is about half the size of ̂.
This seems to indicate that ̂ is most precisely estimated. However,

this comparison is misleading. To see why, consider the range of values

determined by ̂ ± 2× bse(̂)
> upper = muhat + 2*seMuhat

> lower = muhat - 2*seMuhat

> width = upper - lower

> cbind(lower, upper, width)

lower upper width

MSFT -0.01116 0.01942 0.0306

SBUX -0.00237 0.03168 0.0341

SP500 -0.00570 0.00908 0.0148

For normally distributed ̂ this range contains the true value of  with

probability around 0.95. For all assets, this range contains both positive

and negative values but the range is smallest for the S&P 500 index. ¥
Example 13 Computing bse(̂2 ) bse(̂) and bse(̂) for Microsoft, Starbucks
and the S&P 500.

For Microsoft, Starbucks and S&P 500, the values of bse(̂2 ) bse(̂) and bse(̂)
(together with the estimates ̂2  ̂ and ̂) are

> seSigma2hat = sigma2hat/sqrt(n.obs/2)

> seSigmahat = sigmahat/sqrt(2*n.obs)

> cbind(sigma2hat, seSigma2hat, sigmahat, seSigmahat)

sigma2hat seSigma2hat sigmahat seSigmahat

MSFT 0.01005 0.001084 0.1003 0.00541

SBUX 0.01246 0.001344 0.1116 0.00602

SP500 0.00235 0.000253 0.0485 0.00261

Notice that 2 and  for the S&P 500 index are estimated much more pre-

cisely than the values for Microsoft and Starbucks. Also notice that  is

estimated more precisely than  for all assets: the values of bse(̂) relative
to ̂ are much smaller than the values of bse(̂) to ̂
The values of bse(̂) (together with ̂) are
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> seRhohat = (1-rhohat^2)/sqrt(n.obs)

> cbind(rhohat, seRhohat)

rhohat seRhohat

msft,sbux 0.341 0.0674

msft,sp500 0.617 0.0472

sbux,sp500 0.457 0.0603

The values of bse(̂) are moderate in size (relative to ̂) Notice that

̂500 has the smallest estimated standard error because ̂
2
500 is clos-

est to one. ¥

1.3.3 Sampling Distributions and Confidence Intervals

Sampling Distribution for ̂

In the CER model,  ∼  ( 
2
 ) and since ̂ =

1


P

=1 is an

average of these normal random variables, it is also normally distributed.

The mean of ̂ is  and its variance is
2

 Therefore, the exact probability

distribution of ̂ (̂) for a fixed sample size  is the normal distribution

̂ ∼ 
³


2


´
where

(̂) =

µ
22


¶−12
exp

½
− 1

22 
(̂ − )

2

¾
 (1.26)

The probability curve (̂) is centered at the true value  and the spread

about  depends on the magnitude of 
2
  the variability of  and the

sample size,  . For a fixed sample size,  , the uncertainty in ̂ is larger

for larger values of 2  Notice that the variance of ̂ is inversely related to

the sample size  Given 2  var(̂) is smaller for larger sample sizes than

for smaller sample sizes. This makes sense since we expect to have a more

precise estimator when we have more data. If the sample size is very large (as

 →∞) then var(̂) will be approximately zero and the normal distribution
of ̂ given by (1.26) will be essentially a spike at  In other words, if the

sample size is very large then we essentially know the true value of  Hence,

we have established that ̂ is a consistent estimator of  as the sample size

goes to infinity

Example 14 Sampling distribution of ̂ with different sample sizes.
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Figure 1.4: (0 1 ) sampling distributions for ̂ for  = 1 10 and 50

The distribution of ̂, with  = 0 and 
2
 = 1 for various sample sizes is

illustrated in figure 1.4. Notice how fast the distribution collapses at  = 0

as  increases.

Confidence intervals for 

The precision of ̂ is measure by bse(̂) but is best communicated by comput-
ing a confidence interval for the unknown value of  A confidence interval

is an interval estimate of  such that we can put an explicit probability

statement about the likelihood that the interval covers 

The construction of an exact confidence interval for  is based on the

following statistical result (see the appendix for details).

Result: Let {}=1 be generated from the CER model (1.1). Define
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the -ratio as

 =
̂ − bse(̂) = ̂ − 

̂
√

 (1.27)

Then  ∼ −1 where −1 denotes a Student’s  random variable with  − 1
degrees of freedom.

The Student’s  distribution with   0 degrees of freedom is a symmetric

distribution centered at zero, like the standard normal. The tail-thickness

(kurtosis) of the distribution is determined by the degrees of freedom para-

meter  For values of  close to zero, the tails of the Student’s  distribution

are much fatter than the tails of the standard normal distribution. As  gets

large, the Student’s  distribution approaches the standard normal distribu-

tion.

For  ∈ (0 1) we compute a (1 − ) · 100% confidence interval for 
using (1.27) and the 1− 2 quantile (critical value) −1(1− 2) to give

Pr

µ
−−1(1− 2) ≤ ̂ − bse(̂) ≤ −1(1− 2)

¶
= 1− 

which can be rearranged as

Pr (̂ − −1(1− 2) · bse(̂) ≤  ≤ ̂ + −1(1− 2) · bse(̂)) = 1− 

Hence, the interval

[̂ − −1(1− 2) · bse(̂) ̂ + −1(1− 2) · bse(̂)] (1.28)

= ̂ ± −1(1− 2) · bse(̂)
covers the true unknown value of  with probability 1− 

Example 15 Computing 95% confidence intervals for 

Suppose we want to compute a 95% confidence interval for  In this case

 = 005 and 1−  = 095 Suppose further that  − 1 = 60 (e.g., five years
of monthly return data) so that −1(1− 2) = 60(0975) = 2 This can be

verified in R using the function qt()
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Then the 95% confidence for  is given by

̂ ± 2 · bse(̂) (1.29)

The above formula for a 95% confidence interval is often used as a rule of

thumb for computing an approximate 95% confidence interval for moderate

sample sizes. It is easy to remember and does not require the computation

of the quantile −1(1 − 2) from the Student’s  distribution. It is also

an approximate 95% confidence interval that is based the asymptotic nor-

mality of ̂ Recall, for a normal distribution with mean  and variance 2

approximately 95% of the probability lies between ± 2 ¥
The coverage probability associated with the confidence interval for  is

based on the fact that the estimator ̂ is a random variable. Since confidence

interval is constructed as ̂±−1(1−2)· bse(̂) it is also a random variable.
An intuitive way to think about the coverage probability associated with the

confidence interval is to think about the game of “horseshoes”.3 The horse

shoe is the confidence interval and the parameter  is the post at which

the horse shoe is tossed. Think of playing game 100 times (i.e, simulate 100

samples of the CER model). If the thrower is 95% accurate (if the coverage

probability is 0.95) then 95 of the 100 tosses should ring the post (95 of the

constructed confidence intervals should contain the true value ).

Example 16 95% confidence intervals for  for Microsoft, Starbucks and

the S & P 500 index.

Consider computing 95% confidence intervals for  using (1.28) based on

the estimated results for the Microsoft, Starbucks and S&P 500 data. The

degrees of freedom for the Student’s  distribution is  −1 = 171 The 97.5%
quantile, 99(0975) can be computed using the R function qt()

> t.975 = qt(0.975, df=(n.obs-1))

> t.975

[1] 1.97

Notice that this quantile is very close to 2 Then the exact 95% confidence

intervals are given by

3Horse shoes is a game commonly played at county fairs. See

http://en.wikipedia.org/wiki/Horseshoes for a complete description of the game.
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> lower = muhat - t.975*seMuhat

> upper = muhat + t.975*seMuhat

> width = upper - lower

> cbind(lower, upper, width)

lower upper width

MSFT -0.01096 0.01922 0.0302

SBUX -0.00215 0.03146 0.0336

SP500 -0.00561 0.00898 0.0146

With probability 0.95, the above intervals will contain the true mean values

assuming the CERmodel is valid. The 95% confidence intervals for Microsoft

and Starbucks are fairly wide (about 3%) and contain both negative and pos-

itive values. The confidence interval for the S&P 500 index is tighter but also

contains negative and positive values. For Microsoft, the confidence interval

is [−11% 19%] This means that with probability 0.95, the true monthly
expected return is somewhere between -1.1% and 1.9%. The economic im-

plications of a -1.1% expected monthly return and a 1.9% expected return

are vastly different. In contrast, the 95% confidence interval for the SP500 is

about half the width of the intervals for Microsoft or Starbucks. The lower

limit is near -0.5% and the upper limit is near 1%. This result clearly shows

that the monthly mean return for the S&P 500 index is estimated much more

precisely than the monthly mean returns for Microsoft or Starbucks.

Sampling distributions for ̂2  ̂ and ̂

The exact distributions of ̂2  ̂ and ̂ based on a fixed sample size  are

difficult to derive.4 However, approximate normal distributions of the form

(1.7) based on the CLT are readily available:

̂2 ∼ 
¡
2  se(̂

2
 )
2
¢
= 

µ
2 

44


¶
 (1.30)

̂ ∼ 
¡
 se(̂)

2
¢
= 

µ


2
2

¶
 (1.31)

̂ ∼ 
¡
 se(̂)

2
¢
= 

Ã


(1− ̂2)
2



!
 (1.32)

4For example, the exact sampling distribution of ( − 1)̂2 2 is chi-square with  − 1
degrees of freedom.
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These appoximate normal distributions can be used to compute approximate

confidence intervals for 2   and 

Approximate Confidence Intervals for 2   and 

Approximate 95% confidence intervals for 2   and  are given by

̂2 ± 2 · bse(̂2 ) = ̂2 ± 2 ·
̂2p
2

 (1.33)

̂ ± 2 · bse(̂) = ̂ ± 2 · ̂√
2

 (1.34)

̂ ± 2 · bse(̂) = ̂ ± 2 ·
(1− ̂2)√


 (1.35)

Example 17 Approximate 95% confidence intervals for 2   and  for

Microsoft, Starbucks and the S&P 500.

Using (1.33) - (1.34), the approximate 95% confidence intervals for 2 and

 ( = Microsoft, Starbucks, S&P 500) are

> lowerSigma2 = sigma2hat - 2*seSigma2hat

> upperSigma2 = sigma2hat + 2*seSigma2hat

> widthSigma2 = upperSigma2 - lowerSigma2

> cbind(lowerSigma2, upperSigma2, widthSigma2)

lowerSigma2 upperSigma2 widthSigma2

MSFT 0.00788 0.01222 0.00434

SBUX 0.00978 0.01515 0.00538

SP500 0.00184 0.00286 0.00101

> upperSigma = sigmahat + 2*seSigmahat

> widthSigma = upperSigma - lowerSigma

> cbind(lowerSigma, upperSigma, widthSigma)

lowerSigma upperSigma widthSigma

MSFT 0.0894 0.1111 0.0216

SBUX 0.0996 0.1237 0.0241

SP500 0.0432 0.0537 0.0105

The 95% confidence intervals for  and 2 are larger for Microsoft and Star-

bucks than for the S&P 500 index. For all assets, the intervals for  are
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fairly narrow (2% for Microsoft and Starbucks and 1% for S&P 500 index)

indicating that  is precisely estimated.

The approximate 95% confidence intervals for  are

> cbind(lowerRho, upperRho, widthRho)

lowerRho upperRho widthRho

msft,sbux 0.206 0.476 0.269

msft,sp500 0.523 0.712 0.189

sbux,sp500 0.337 0.578 0.241

The 95% confidence intervals for  are not too wide and all contain just

positive values away from zero. The smallest interval is for 500 because

̂500 is closest to 1

1.4 Using Monte Carlo Simulation to Under-

stand the Statistical Properties of Esti-

mators

Let  be the return on a single asset described by the CER model, let 

denote some characteristic (parameter) of the CER model we are interested

in estimating, and let ̂ denote an estimator for  based on a sample of

size  The exact meaning of estimator bias, bias(̂ ) the interpretation

of se(̂) as a measure of precision, the sampling distribution (̂) and the

interpretation of the coverage probability of a confidence interval for  can

all be a bit hard to grasp at first. If bias(̂ ) = 0 so that [̂] =  then over

an infinite number of repeated samples of {}=1 the average of the ̂ values
computed over the infinite samples is equal to the true value  The value

of se(̂) represents the standard deviation of these ̂ values. The sampling

distribution (̂) is the smoothed histogram of these ̂ values. And the 95%

confidence intervals for  will actually contain  in 95% of the samplesWe can

think of these hypothetical samples as different Monte Carlo simulations of

the CER model. In this way we can approximate the computations involved

in evaluating [̂] se(̂) (̂) and the coverage probability of a confidence

interval using a large, but finite, number of Monte Carlo simulations.
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Figure 1.5: Ten simulated samples of size  = 100 from the CER model

 = 005 +   ∼  (0 (010)2)

1.4.1 Evaluating the Statistical Properties of ̂ Using

Monte Carlo Simulation

Consider the CER model

 = 005 +   = 1     100 (1.36)

 ∼ GWN(0 (010)2)
Here, the true parameter values are  = 005 and  = 010 Using Monte

Carlo simulation, we can simulate = 1000 different samples of size  = 100

from (1.36) giving the sample realizations {}100=1 for  = 1     1000 The

first 10 of these simulated samples are illustrated in Figure 1.5. Notice that

there is considerable variation in the appearance of the simulated samples,

but that all of the simulated samples fluctuate about the true mean value of

 = 005 and have a typical deviation from the mean of about 010 For each
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of the 1000 simulated samples we can estimate ̂ giving 1000 mean estimates

{̂1     ̂1000} A histogram of these 1000mean values is illustrated in Figure
??. The histogram of the estimated means, ̂ can be thought of as an

estimate of the underlying pdf, (̂) of the estimator ̂ which we know from

(1.26) is a normal pdf centered at [̂] =  = 005 with se(̂) =
010√
100
= 001.

This normal curve (solid orange line) is superimposed on the histogram in

Figure 1.6. Notice that the center of the histogram (white dashed vertical

line) is very close to the true mean value  = 005 That is, on average over

the 1000 Monte Carlo samples the value of ̂ is about 0.05. In some samples,

the estimate is too big and in some samples the estimate is too small but on

average the estimate is correct. In fact, the average value of {̂1     ̂1000}
from the 1000 simulated samples is

̂ =
1

1000

1000X
=1

̂ = 00497

which is very close to the true value 005. If the number of simulated samples

is allowed to go to infinity then the sample average ̂ will be exactly equal

to  = 005 :

lim
→∞

1



X
=1

̂ = [̂] =  = 005

The typical size of the spread about the center of the histogram represents

se(̂) and gives an indication of the precision of ̂ The value of se(̂) may

be approximated by computing the sample standard deviation of the 1000

̂ values:

̂̂ =

vuut 1

999

1000X
=1

(̂ − 004969)2 = 00104

Notice that this value is very close to se(̂) =
010√
100
= 001. If the number of

simulated sample goes to infinity then

lim
→∞

vuut 1

 − 1
X
=1

(̂ − ̂)2 = se(̂) = 010

The coverage probability of the 95% confidence interval for  can also be

illustrated using Monte Carlo simulation. For each simulation  the interval
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Figure 1.6: Distribution of ̂ computed from 1000 Monte Carlo simulations

from the CER model (1.36). White dashed line is the average of the  values,

and orange curve is the true (̂)

̂±100(0975)×bse(̂) is computed. The coverage probability is approximated
by the fraction of intervals that contain (cover) the true  = 005 For the

1000 simulated samples, this fraction turns out to be 0.931. As the number

of simulations goes to infinity, the Monte Carlo coverage probability will be

equal to 0.95.

Example 18 Monte Carlo simulation to evaluate [̂] se(̂) and 95% con-

fidence intervals for 

The R code to perform the Monte Carlo simulation presented in this section

is

> mu = 0.05
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> sigma = 0.10

> n.obs = 100

> n.sim = 1000

> set.seed(111)

> sim.means = rep(0,n.sim)

> mu.lower = rep(0,n.sim)

> mu.upper = rep(0,n.sim)

> qt.975 = qt(0.975, nobs-1)

> for (sim in 1:n.sim) {

+ sim.ret = rnorm(n.obs,mean=mu,sd=sigma)

+ sim.means[sim] = mean(sim.ret)

+ se.muhat = sd(sim.ret)/sqrt(n.obs)

+ mu.lower[sim] = sim.means[sim]-qt.975*se.muhat

+ mu.upper[sim] = sim.means[sim]+qt.975*se.muhat

+ }

The 1000×1 vectors sim.means, mu.lower and mu.upper contain the values
of ̂ ̂−100(0975)×bse(̂) and ̂+100(0975)×bse(̂) computed from each
of the simulated samples  = 1     1000 The mean and standard deviation

of {̂1     ̂1000} are
> mean(sim.means)

[1] 0.0497

> sd(sim.means)

[1] 0.0104

To evaluate the converage probability of the 95% confidence intervals, we

count the number of times each interval actually contains the true value of 

> in.interval = mu >= mu.lower & mu <= mu.upper

> sum(in.interval)/n.sim

[1] 0.931

¥

1.4.2 Evaluating the Statistical Properties of ̂2 and ̂
Using Monte Carlo simulation

We can evaluate the statistical properties of ̂2 and ̂ byMonte Carlo simula-

tion in the same way that we evaluated the statistical properties of ̂. We use
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the simulation model (1.36) and  = 1000 simulated samples of size  = 100

to compute the estimates {¡̂2¢1      ¡̂2¢1000} and {̂1     ̂1000} The his-
tograms of these values, with the asymptotic normal distributions overlayed,

are displayed in Figure 1.7. The histogram for the ̂2 values is bell-shaped

and slightly right skewed but is centered very close to 2 = 0010 The his-

togram for the ̂ values is more symmetric and is centered near  = 010

The average values of ̂2 and ̂ from the 1000 simulations are

̂2 =
1

1000

1000X
=1

¡
̂2
¢
= 000999

̂ =
1

1000

1000X
=1

̂ = 00997

The Monte Carlo estimate of the bias for ̂2 is 000999 − 001 = −00000,
and the estimate of bias for ̂ is 00997 − 0010 = −00003 This confirms
that ̂2 is unbiased and that the bias in ̂ is extremely small. If the number

of simulated samples,  goes to infinity then ̂2 → [̂2] = 2 = 001 and

̂ → [̂] =  + bias(̂ )

The sample standard deviation values of the Monte Carlo estimates of 2

and  give approximations to se(̂2) and se(̂)

̂̂2 =

vuut 1

999

1000X
=1

((̂2) − 000999)2 = 000135

̂̂ =

vuut 1

999

1000X
=1

(̂ − 00997)2 = 000676

The approximate values for se(̂2) and se(̂) based on the CLT are

se(̂2) =
(010)2p
1002

= 000141

se(̂2) =
010√
2× 100 = 000707

Notice that the Monte Carlo estimates of se(̂2) and se(̂) are a bit different

from the CLT based estimates. The reason is that the CLT based estimates
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Figure 1.7: Histograms of ̂2 and ̂ computed from  = 1000 Monte Carlo

samples from CER model.

are approximations that hold when the sample size  is large. Because

 = 100 is not too large, the Monte Carlo estimates of se(̂2) and se(̂) are

likely more accurate (and will be more accurate if the number of simulations

is larger).

For each simulation  the approximate 95% confidence intervals
¡
̂2
¢ ±

2× bse(¡̂2¢) and ̂ ± 2× bse(̂) are computed. The coverage probabilities
of these intervals is approximated by the fractions of intervals that contain

(cover) the true values 2 = 001 and  = 010 respectively For the 1000

simulated samples, these fractions turn out to be 0.951 and 0.963, respec-

tively. As the number of simulations and the sample size goes to infinity, the

Monte Carlo coverage probability will be equal to 0.95.
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1.4.3 Evaluating the Statistical Properties of ̂ by

Monte Carlo simulation

To evaluate the statistical properties of ̂ = cor( ) we must simu-

late from the CER model in matrix form (1.1). For example, consider the

bivariate CER model⎛⎝ 1

2

⎞⎠ =

⎛⎝ 005
003

⎞⎠+
⎛⎝ 1

2

⎞⎠   = 1     100 (1.37)

⎛⎝ 1

2

⎞⎠ ∼  

⎛⎝⎛⎝ 0
0

⎞⎠ 

⎛⎝ (010)2 (075)(010)(005)

(075)(010)(005) (005)2

⎞⎠⎞⎠ 

(1.38)

where 1 = 005 2 = 003 1 = 010 2 = 005 and 12 = 075 We

use the simulation model (1.37)-(1.38) with  = 1000 simulated samples of

size  = 100 to compute the estimates {̂112     ̂100012 } The histogram of

these values, with the asymptotic normal distribution overlaid, is displayed

in Figure 1.8. The histogram for the ̂12 values is bell-shaped with a mild left

skewness and centered close to 12 = 075 The sample mean and standard

deviation values of ̂12 across the 1000 simulations are, respectively,

̂12 =
1

1000

1000X
=1

̂

12 = 0747

̂̂12 =

vuut 1

999

1000X
=1

(̂

12 − 0747)2 = 0045

There is very slight downward bias in ̂12. The Monte Carlo standard

deviation, ̂̂12  is very close to the approximate standard error se(̂12) =

(1−0752)√100 = 0044 For each simulation  the approximate 95% confi-
dence interval ̂


12±2× bse(̂12) is computed. The coverage probability of this

interval is approximated by the fractions of intervals that contain (cover) the

true values 12 = 075 For the 1000 simulated samples, this fractions turns

out to be 0.952.
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Figure 1.8: Histograms of ̂12 computed from = 1000Monte Carlo samples

from the bivariate CER model (1.37) - (1.38).

1.4.4 Estimating Value-at-Risk in the CER Model

Consider the CER model for the simple return . From the location-scale

representation

 = +  × 

the -quantile of  is

 = +  ×  

where  is the -quantile of  ∼  (0 1) Then, for an initial investment

0 and  ∈ (0 1) the  · 100% value-at-risk (VaR) is given by

VaR =0 ×  =0(+  ×  )
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Given the CER model estimators ̂ and ̂ the plug-in principle estimator

for VaR is dVaR =0 × ̂ =0(̂+ ̂ ×  ) (1.39)

Here dVaR is a linear function of ̂

  which itself is a linear function of ̂

and ̂ The statistical properties of dVaR can then be easily derived from the

statistical properties of ̂ and ̂

If the CER model is applied to the cc return  then

VaR =0 ×
³



 − 1

´
=0

³
+×


 − 1

´


and the estimate of VaR is

dVaR =0 ×
³
̂


 − 1

´
=0

³
̂+̂×


 − 1

´
 (1.40)

Here, dVaR is a nonlinear function of ̂

 (and ̂ and ̂) In this case, the

statistical properties of dVaR cannot be easily derived from the statistical

properties of ̂ and ̂

Statistical Properties of ̂ for Simple Returns

Regarding bias we have

[̂ ] = [] +  ×[̂] ≈ +  ×   (1.41)

Hence, ̂ is approximately unbiased for 

 because ̂ is unbiased for  and

̂ is approximately unbiased for 

To derive results regarding precision and the sampling distribution we

require the following result.

Result. In the CER model⎛⎝ ̂

̂

⎞⎠ ∼ 

⎛⎝⎛⎝ 



⎞⎠ 

⎛⎝ se(̂)2 0

0 se(̂)2

⎞⎠⎞⎠ (1.42)

for large enough  Hence, ̂ and ̂ are (asymptotically) jointly normally

distributed and cov(̂ ̂) = 0 which implies that they are also independent
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Using (1.42) we have

var(̂ ) = var(̂+ ̂ ×  )

= var(̂) +
¡

¢2
var(̂) + 2 cov(̂ ̂)

= var(̂) +
¡

¢2
var(̂) (since cov(̂ ̂) = 0)

=
2


+

¡

¢2
2

2

=
2



∙
1 +

1

2

¡

¢2¸



Then

se(̂ ) =
p
var(̂ ) =

√


∙
1 +

1

2

¡

¢2¸12

 (1.43)

Using the above results, the sampling distribution of ̂ can be approximated

by the normal distribution

̂ ∼ (  se(̂

 )
2) (1.44)

for large enough 

Remarks

1. se(̂ ) increases with  and   and decreases with  In particular,

se(̂ ) increases as  goes to zero (show plot)

2. The formula for se(̂ ) is not practically useful because it depends on

the unknown value  The practically useful estimated standard error

replaces the unknown value of  with the estimate ̂ and is given by

bse(̂ ) = ̂√


∙
1 +

1

2

¡

¢2¸12

 (1.45)

[Insert figure of bse(̂ ) vs.  here]
Example 19 Estimating ̂ for Microsoft, Starbucks and the S&P 500 in-

dex.

The estimates of  and se(̂

 ), for  = 005 and  = 001 from the

simple monthly returns for Microsoft, Starbucks and the S&P 500 index are
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> n.obs = length(msftRetC)

> muhatS = colMeans(cerRetS)

> sigmahatS = apply(cerRetS, 2, sd)

> qhat.05 = muhatS + sigmahatS*qnorm(0.05)

> qhat.01 = muhatS + sigmahatS*qnorm(0.01)

> seQhat.05 = (sigmahatS/sqrt(n.obs))*sqrt(1 + 0.5*qnorm(0.05)^2)

> seQhat.01 = (sigmahatS/sqrt(n.obs))*sqrt(1 + 0.5*qnorm(0.01)^2)

> cbind(qhat.05, seQhat.05, qhat.01, seQhat.01)

qhat.05 seQhat.05 qhat.01 seQhat.01

MSFT -0.1578 0.01187 -0.227 0.01490

SBUX -0.1587 0.01276 -0.233 0.01602

SP500 -0.0758 0.00559 -0.108 0.00702

For Microsoft and Starbucks, the values of bse(̂ ) are about 1.2%, 1.5%
and for  = 005 and  = 001 respectively. For the S&P 500 index, the

corresponding values of bse(̂ ) are only 0.5% and 0.7%, respectively. To see

that these standard errors values are actually fairly large consider the 95%

confidence intervals for 005 and 001

> lowerQhat.05 = qhat.05 - 2*seqhat.05

> upperQhat.05 = qhat.05 + 2*seqhat.05

> widthQhat.05 = upperQhat.05 - lowerQhat.05

> cbind(lowerQhat.05, upperQhat.05, widthQhat.05)

lowerQhat.05 upperQhat.05 widthQhat.05

MSFT -0.197 -0.1181 0.0794

SBUX -0.203 -0.1144 0.0884

SP500 -0.095 -0.0566 0.0384

> lowerQhat.01 = qhat.01 - 2*seqhat.01

> upperQhat.01 = qhat.01 + 2*seqhat.01

> widthQhat.01 = upperQhat.01 - lowerQhat.01

> cbind(lowerQhat.01, upperQhat.01, widthQhat.01)

lowerQhat.01 upperQhat.01 widthQhat.01

MSFT -0.277 -0.1772 0.0996

SBUX -0.289 -0.1775 0.1110

SP500 -0.132 -0.0842 0.0482

For example, the 95% confidences for 005 and 

001 for Microsoft are [−197%−118%]

and [−277%−177%] respectively, which are quite large. Hence, the 5% and
1% simple monthly return quantiles are not estimated very precisely. ¥
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Statistical Properties of ̂ for CC Returns

To be completed

The Delta Method To be completed

Statistical Properties of VaR

First, consider estimated VaR for simple returns (1.39). Then, using (1.41)

- (1.44)

[dVaR] = 0 ×[̂ ] ≈0 ×  = VaR

se(dVaR) = 0 × se(̂ )dVaR ∼ (VaR se(dVaR)
2)

Hence, dVaR is approximately unbiased and normally distributed with

se(dVaR) =0 × √


∙
1 +

1

2

¡

¢2¸12



The practically useful estimated standard error replaces the unknown value

of  with the estimate ̂ and is given by

se(dVaR) =0 × ̂√


∙
1 +

1

2

¡

¢2¸12



Example 20 Estimating VaR for Microsoft, Starbucks and the S&P 500

index.

Consider a $100 000 investment for one month in Microsoft, Starbucks

and the S&P 500 index. The estimates of VaR and se(dVaR), for  = 005

and  = 001 from the simple monthly returns for Microsoft, Starbucks and

the S&P 500 index are

> w0=100000

> VaR.05 = qhat.05*w0

> seVaR.05 = w0*seQhat.05

> VaR.01 = qhat.01*w0

> seVaR.01 = w0*seQhat.01
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> cbind(VaR.05, seVaR.05, VaR.01, seVaR.01)

VaR.05 seVaR.05 VaR.01 seVaR.01

MSFT -15780 1187 -22696 1490

SBUX -15865 1276 -23303 1602

SP500 -7577 559 -10834 702

The 95% confidence intervals for VaR005 and VaR001 are

> lowerVaR.05 = VaR.05 - 2*seVaR.05

> upperVaR.05 = VaR.05 + 2*seVaR.05

> widthVaR.05 = upperVaR.05 - lowerVaR.05

> cbind(lowerVaR.05, upperVaR.05, widthVaR.05)

lowerVaR.05 upperVaR.05 widthVaR.05

MSFT -18154 -13405 4748

SBUX -18418 -13312 5106

SP500 -8695 -6459 2236

> lowerVaR.01 = VaR.01 - 2*seVaR.01

> upperVaR.01 = VaR.01 + 2*seVaR.01

> widthVaR.01 = upperVaR.01 - lowerVaR.01

> cbind(lowerVaR.01, upperVaR.01, widthVaR.01)

lowerVaR.01 upperVaR.01 widthVaR.01

MSFT -25676 -19717 5959

SBUX -26507 -20099 6408

SP500 -12237 -9431 2806

1.5 Further Reading

To be completed
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