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The first model of asset returns we consider is the very simple constant ex-

pected return (CER) model. This model is motivated by the stylized facts for

monthly asset returns. The CER model assumes that an asset’s return (sim-

ple or continuously compounded) over time is independent and identically

normally distributed with a constant (time invariant) mean and variance.

The model allows for the returns on different assets to be contemporane-

ously correlated but that the correlations are constant over time. The CER

model is widely used in finance. For example, it is used in risk analysis

(e.g., computing Value-at-Risk) for assets and portfolios, in mean-variance

portfolio analysis, in the Capital Asset Pricing Model (CAPM), and in the

Black-Scholes option pricing model. Although this model is very simple, it

provides important intuition about the statistical behavior of asset returns

and prices and serves as a benchmark against which more complicated models

can be compared and evaluated. It allows us to discuss and develop several

important econometric topics such as Monte Carlo simulation, estimation,

bootstrapping, hypothesis testing, forecasting and model evaluation.

1.1 CER Model Assumptions

Let  denote the simple or continuously compounded (cc) return on asset 

over the investment horizon between times −1 and  (e.g., monthly returns).
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We make the following assumptions regarding the probability distribution of

 for  = 1      assets for all times 

Assumption 1

(i) Covariance stationarity and ergodicity: {1     } = {}=1 is a
covariance stationary and ergodic stochastic process with [] = 

var() = 2 , cov( ) =  and cor( ) = 

(ii) Normality:  ∼ ( 
2
 ) for all  and  and all joint distributions

are normal.

(iii) No serial correlation: cov( ) = cor( ) = 0 for  6=  and

  = 1     

Assumption 1 states that in every time period asset returns are jointly

(multivariate) normally distributed, that the means and the variances of

all asset returns, and all of the pairwise contemporaneous covariances and

correlations between assets are constant over time. In addition, all of the

asset returns are serially uncorrelated

cor( ) = cov( ) = 0 for all  and  6= 

and the returns on all possible pairs of assets  and  are serially uncorrelated

cor( ) = cov( ) = 0 for all  6=  and  6= 

In addition, under the normal distribution assumption lack of serial correla-

tion implies time indpendence of returns over time. Clearly, these are very

strong assumptions. However, they allow us to develop a straightforward

probabilistic model for asset returns as well as statistical tools for estimating

the parameters of the model, testing hypotheses about the parameter values

and assumptions.

1.1.1 Regression Model Representation

A convenient mathematical representation or model of asset returns can be

given based on Assumption 1. This is the CER regression model. For assets
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 = 1      and time periods  = 1      the CER regression model is

 =  +  (1.1)

{}=1 ∼ GWN(0 2 )

cov( ) =

⎧⎨⎩ 

0

 = 

 6= 


The notation  ∼ GWN(0 2 ) stipulates that the stochastic process {}=1
is a Gaussian white noise process with [] = 0 and var() = 2  In

addition, the random error term  is independent of  for all assets  6= 

and all time periods  6= .

Using the basic properties of expectation, variance and covariance, we

can derive the following properties of returns in the CER model:

[] = [ + ] =  +[] = 

var() = var( + ) = var() = 2 

cov( ) = cov( +   + ) = cov( ) = 

cov( ) = cov( +   + ) = cov( ) = 0  6= 

Given that covariances and variances of returns are constant over time im-

plies that the correlations between returns over time are also constant:

cor( ) =
cov( )p
var()var()

=



= 

cor( ) =
cov( )p
var()var()

=
0


= 0  6=   6= 

Finally, since {}=1 ∼ GWN(0 2 ) it follows that {}=1 ∼  ( 
2
 )

Hence, the CER regression model (1.1) for  is equivalent to the model

implied by Assumption 1.

Interpretation of the CER Regression Model

The CER model has a very simple form and is identical to the measurement

error model in the statistics literature.1 In words, the model states that each

1In the measurement error model,  represents the 
 measurement of some phys-

ical quantity  and  represents the random measurement error associated with the

measurement device. The value  represents the typical size of a measurement error.
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asset return is equal to a constant  (the expected return) plus a normally

distributed random variable  with mean zero and constant variance. The

random variable  can be interpreted as representing the unexpected news

concerning the value of the asset that arrives between time − 1 and time 
To see this, (1.1) implies that

 =  −  =  −[]

so that  is defined as the deviation of the random return from its expected

value. If the news between times  − 1 and  is good, then the realized

value of  is positive and the observed return is above its expected value 

If the news is bad, then  is negative and the observed return is less than

expected. The assumption[] = 0means that news, on average, is neutral;

neither good nor bad. The assumption that var() = 2 can be interpreted

as saying that volatility, or typical magnitude, of news arrival is constant

over time. The random news variable affecting asset ,  is allowed to be

contemporaneously correlated with the random news variable affecting asset

  to capture the idea that news about one asset may spill over and affect

another asset. For example, if asset  is Microsoft stock and asset  is Apple

Computer stock, then one interpretation of news in this context is general

news about the computer industry and technology. Good news should lead

to positive values of both  and  Hence these variables will be positively

correlated due to a positive reaction to a common news component. Finally,

the news on asset  at time  is unrelated to the news on asset  at time  for

all times  6=  For example, this means that the news for Apple in January

is not related to the news for Microsoft in February.

1.1.2 Location-Scale Model Representation

Sometimes it is convenient to re-express the regression form of the CER

model (1.1) in location-scale form

 =  +  =  +  ·  (1.2)

{}=1 ∼ GWN(0 1)

where we use the decomposition  =  ·  In this form, the random

news shock is the  standard normal random variable  scaled by the

“news” volatility  This form is particularly convenient for Value-at-Risk
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calculations because the ×100% quantile of the return distribution has the
simple form


 =  +  × 

where  is the × 100% quantile of the standard normal random distribu-

tion. Let 0 be the initial amout of wealth to be invested from time  − 1
to  If  is the simple return then

VaR =0 × 


whereas if  is the continuously compounded return then

VaR =0 ×
³



 − 1

´
1.1.3 The CER Model in Matrix Notation

Define the  × 1 vectors  = (1     )
0, μ = (1     )

0 ε =
(1     )

0 and the  × symmetric covariance matrix

var(ε) = Σ =

⎛⎜⎜⎜⎜⎜⎜⎝
21 12 · · · 1

12 22 · · · 2
...

...
. . .

...

1 2 · · · 2

⎞⎟⎟⎟⎟⎟⎟⎠ 

Then the regression form of the CER model in matrix notation is

R = μ+ ε (1.3)

ε ∼ iid (0Σ)

which implies that  ∼  (μΣ)

The location-scale form of the CERmodel in matrix notation makes use of

the matrix square root factorization Σ = Σ12Σ120 where Σ12 is the lower-

triangular matrix square root (usually the Cholesky factorization). Then

(1.3) can be rewritten as

R = μ+Σ12Z (1.4)

Z ∼ iid (0 I)

where I denotes the -dimensional identity matrix.
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1.1.4 The CER Model for Continuously Compounded

Returns

The CERmodel is often used to describe cc returns defined as = ln(−1)
where  is the price of asset  at time  This is particularly convenient for

investment risk analysis. An advantage of the CER model for cc returns

is that the model aggregates to any time horizon because multi-period cc

returns are additive. The CER model for cc returns also gives rise to the

random walk model for the logarithm of asset prices. The normal distribu-

tion assumption of the CER model for cc returns implies that single-period

simple returns are log-normally distributed.

A disadvantage of the CER model for cc returns is that the model has

some limitations for the analysis of portfolios because the cc return on a

portfolio of assets is not a weighted average of the cc returns on the individual

securities. As a result, for portfolio analysis the CER model is typically

applied to simple returns.

Time Aggregation and the CER Model

The CER model for cc returns has the following nice aggregation property

with respect to the interpretation of  as news. For illustration purposes,

suppose that  represents months so that  is the cc monthly return on

asset . Now, instead of the monthly return, suppose we are interested in the

annual cc return  = (12). Since multi-period cc returns are additive,

(12) is the sum of 12 monthly cc returns:

 = (12) =

11X
=0

− =  +−1 + · · ·+−11

Using the CER regression model (1.1) for the monthly return  we may

express the annual return (12) as

(12) =

11X
=0

( + ) = 12 ·  +
11X
=0

 = (12) + (12)

where (12) = 12 · is the annual expected return on asset  and (12) =P11

=0 − is the annual random news component. The annual expected

return, (12) is simply 12 times the monthly expected return, . The
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annual random news component, (12) , is the accumulation of news over

the year. As a result, the variance of the annual news component, ((12))
2


is 12 times the variance of the monthly news component:

var((12)) = var

Ã
11X
=0

−

!

=

11X
=0

var(−) since  is uncorrelated over time

=

11X
=0

2 since var() is constant over time

= 12 · 2 = 2 (12)

It follows that the standard deviation of the annual news is equal to
√
12

times the standard deviation of monthly news:

SD((12)) =
√
12× SD() =

√
12× 

Similarly, due to the additivity of covariances, the covariance between (12)

and (12) is 12 times the monthly covariance:

cov((12) (12)) = cov

Ã
11X
=0

−
11X
=0

−

!

=

11X
=0

cov(− −) since  and  are uncorrelated over time

=

11X
=0

 since cov( ) is constant over time

= 12 ·  = 

The above results imply that the correlation between the annual errors (12)

and (12) is the same as the correlation between the monthly errors  and
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 :

cor((12) (12)) =
cov((12) (12))p
var((12)) · var((12))

=
12 · q
122 · 122

=



=  = cor( )

The above results generalize to aggregating returns to arbitrary time hori-

zons. Let  denote the cc return between times  − 1 and  where  rep-

resents the general investment horizon, and let () =
P−1

=0 − denote
the -period cc return. Then the CER model for () has the form

() = () + ()

() ∼ (0 2 ())

where () =  ×  is the -period expected return, () =
P−1

=0 − is
the -period error term, and 2 () =  × 2 is the -period variance. The

-period volatility follows the square-root-of-time rule: () =
√
 × 

This aggregation result is exact for cc returns but it is often used as an

approximation for simple returns.

The Random Walk Model of Asset Prices

The CER model for cc returns (1.1) gives rise to the so-called random walk

(RW) model for the logarithm of asset prices. To see this, recall that the

cc return,  is defined from asset prices via  = ln
³


−1

´
= ln() −

ln(−1) Letting  = ln() and using the representation of  in the CER

model (1.1), we can express the log-price as:

 = −1 +  +  (1.5)

The representation in (1.5) is known as the RW model for log-prices.2 It is

a representation of the CER model in terms of log-prices.

2The model (1.5) is technically a random walk with drift  A pure random walk has

zero drift ( = 0).
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In the RWmodel (1.5),  represents the expected change in the log-price

(cc return) between months  − 1 and  and  represents the unexpected

change in the log-price That is,

[∆] = [] = 

 = ∆ −[∆]

where ∆ = − −1 Further, in the RW model, the unexpected changes

in log-price,  are uncorrelated over time (cov( ) = 0 for  6= ) so

that future changes in log-price cannot be predicted from past changes in

the log-price.3

The RW model gives the following interpretation for the evolution of log

prices. Let 0 denote the initial log price of asset . The RW model says

that the log-price at time  = 1 is

1 = 0 +  + 1

where 1 is the value of random news that arrives between times 0 and 1

At time  = 0 the expected log-price at time  = 1 is

[1] = 0 +  +[1] = 0 + 

which is the initial price plus the expected return between times 0 and 1.

Similarly, by recursive substitution the log-price at time  = 2 is

2 = 1 +  + 2

= 0 +  +  + 1 + 2

= 0 + 2 ·  +
2X

=1



which is equal to the initial log-price, 0 plus the two period expected return,

2 · , plus the accumulated random news over the two periods,
P2

=1  By

repeated recursive substitution, the log price at time  =  is

 = 0 +  ·  +
X
=1



3The notion that future changes in asset prices cannot be predicted from past changes

in asset prices is often referred to as the weak form of the efficient markets hypothesis.
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At time  = 0 the expected log-price at time  =  is

[ ] = 0 +  · 
which is the initial price plus the expected growth in prices over  periods.

The actual price,   deviates from the expected price by the accumulated

random news:

 −[ ] =

X
=1



At time  = 0 the variance of the log-price at time  is

var( ) = var

Ã
X
=1



!
=  · 2

Hence, the RWmodel implies that the stochastic process of log-prices {} is
non-stationary because the variance of  increases with  Finally, because

 ∼  (0 2 ) it follows that (conditional on 0)  ∼ (0+ 
2
 )

The term random walk was originally used to describe the unpredictable

movements of a drunken sailor staggering down the street. The sailor starts

at an initial position, 0 outside the bar. The sailor generally moves in

the direction described by  but randomly deviates from this direction after

each step  by an amount equal to  After  steps the sailor ends up at

position  = 0+ ·+P

=1  The sailor is expected to be at location 

but where he actually ends up depends on the accumulation of the random

changes in direction
P

=1  Because var( ) = 2 the uncertainty about

where the sailor will be increases with each step.

The RW model for log-prices implies the following model for prices:

 =  = 0
·+


=1  = 0




=1 

where  = 0 + +
P

=1  The term  represents the expected ex-

ponential growth rate in prices between times 0 and time  and the term




=1  represents the unexpected exponential growth in prices. Here, con-

ditional on 0  is log-normally distributed because  = ln is normally

distributed.

1.1.5 CER Model for Simple Returns

For simple returns, defined as =
−−1
−1

 the CERmodel is often used for

the analysis of portfolios as discussed in Chapters xxx and xxx. The reason
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is that the simple return on a portfolio of  assets is weighted average of the

simple returns on the individual assets. Hence, the CER model for simple

returns extends naturally to portfolios of assets.

CER Model and Portfolios

Consider the CER model in matrix form (1.3) for the  × 1 vector of sim-
ple returns  = (1     )

0 For a vector of portfolio weights w =

(1     ) such that w
01 =

P
 = 1 the simple return on the portfolio

is

 = w
0R =

X
=1



Substituting in (1.1) gives the CER model for the portfolio returns

 = w
0 (μ+ ε) = w

0μ+w0ε =  +  (1.6)

where  = w0μ =
P

=1 is the portfolio expected return, and  =

w0ε =
P

=1 is the portfolio error. The variance of  is given by

var() = var(w
0R) = w

0Σw = 2

Therefore, the distribution of portfolio returns is normal

 ∼ ( 
2
)

This result is exact for simple returns but is often used as an approximation

for cc returns.

CER Model for Multi-Period Simple Returns

The CER model for single period simple returns does not extend exactly

to multi-period simple returns because multi-period simple returns are not

additive. Recall, the -period simple return has a multiplicative relationship

to single period returns

() = (1 +)(1 +−1)× · · · × (1 +−+1)− 1
=  +−1 + · · ·+−+1
+−1 +−2 + · · ·+−+2−+1
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Even though single period returns are normally distributed in the CER

model, multi-period returns are not normally distributed because the prod-

uct of two normally distributed random variables is not normally distributed.

Hence, the CER model does not exactly generalize to multi-period simple re-

turns. However, if single period returns are small then all of the cross prod-

ucts of returns are approximately zero (−1 ≈ · · · ≈ −+2−+1 ≈ 0)
and

() ≈  +−1 + · · ·+−+1
≈ () + ()

where () =  and () =
P−1

=0 − Hence, the CER model is approxi-
mately true for multi-period simple returns when single period simple returns

are not too big.

Some exact returns can be derived for the mean and variance of multi-

period simple returns. For simplicity, let  = 2 so that

(2) = (1 +)(1 +−1)− 1 =  +−1 +−1

Substituting in (1.1) then gives

(2) = (+ ) + (+ −1) + (+ ) (+ −1)

= 2+  + −1 + 2 +  + −1 + −1
= 2+ 2 + (1 + ) + −1(1 + ) + −1

The result for the expected return is easy

[(2)] = 2+ 2 + (1 + )[] + (1 + )[−1] +[−1]

= 2+ 2 = (1 + )2 − 1
The result uses the independence of  and −1 to get[−1] = [][−1] =
0 The result for the variance, however, is more work

var((2)) = var((1 + ) + −1(1 + ) + −1)

= (1 + )2var() + (1 + )2var(−1) + var(−1)

+2(1 + )2cov( −1) + 2(1 + )cov( −1)

+2(1 + )cov(−1 −1)

Now, var() = var(−1) = 2 and cov( −1) = 0 Next, note that

var(−1) = [2
2
−1]− ([−1])2 = [2 ][

2
−1]− ([][−1])2 = 22
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Finally,

cov( −1) = [(−1)]−[][−1]

= [2 ][−1]−[][][−1]

= 0

Then

var((2)) = (1 + )22 + (1 + )22 + 22

= 22[(1 + )2 + 1]

If  is close to zero then [(2)] ≈ 2 and var((2)) ≈ 22 and so the
square-root-of-time rule holds approximately.

1.2 Monte Carlo Simulation of the CERModel

A simple technique that can be used to understand the probabilistic behavior

of a model involves using computer simulation methods to create pseudo data

from the model. The process of creating such pseudo data is called Monte

Carlo simulation.4 Monte Carlo simulation of a model can be used as a first

pass “reality check” of the model. If simulated data from the model do not

look like the data that the model is supposed to describe, then serious doubt

is cast on the model. However, if simulated data look reasonably close to

the actual data then the first step reality check is passed. Ideally, one should

consider many simulated samples from the model because it is possible for a

given simulated sample to look strange simply because of an unusual set of

random numbers. Monte Carlo simulation can also be used to create “what

if?” type scenarios for a model. Different scenarios typically correspond with

different model parameter values. Finally, Monte Carlo simulation can be

used to study properties of statistics computed from the pseudo data from

the model. For example, Monte Carlo simulation can be used to illustrate

the concepts of estimator bias and confidence interval coverage probabilities.

To illustrate the use of Monte Carlo simulation, consider creating pseudo

return data from the CER model (1.1) for a single asset. The steps to create

a Monte Carlo simulation from the CER model are:

1. Fix values for the CER model parameters  and .

4Monte Carlo refers to the famous city in Monaco where gambling is legal.
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Figure 1.1: Monthly continuously compounded returns on Microsoft. Dashed

lines indicate ̂± ̂

2. Determine the number of simulated values,  to create.

3. Use a computer random number generator to simulate   values

of  from a (0 2) distribution. Denote these simulated values as

̃1     ̃ 

4. Create the simulated return data ̃ = + ̃ for  = 1     

Example 1 Microsoft data to calibrate univariate Monte Carlo simulation

of CER model

To motivate plausible values for  and  in the simulation, Figure 1.1

shows the monthly cc returns on Microsoft stock over the period January

1998 through May 2012. The data is the same as that used in Chapter xxx
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(Descriptive Statistics for Finance Data) and is retrieved from Yahoo! using

the tseries function get.hist.quote() as follows

> msftPrices = get.hist.quote(instrument="msft", start="1998-01-01",

+ end="2012-05-31", quote="AdjClose",

+ provider="yahoo", origin="1970-01-01",

+ compression="m", retclass="zoo")

> colnames(msftPrices) = "MSFT"

> index(msftPrices) = as.yearmon(index(msftPrices))

> msftRetS = Return.calculate(msftPrices, method="simple")

> msftRetS = msftRetS[-1]

> msftRetC = log(1 + msftRetS)

The parameter  = [] in the CER model is the expected monthly return,

and  represents the typical size of a deviation about . In Figure 1.1, the

returns seem to fluctuate up and down about a central value near 0 and the

typical size of a return deviation about 0 is roughly 0.10, or 10% (see dashed

lines in figure). The sample mean turns out to be ̂ = 0004 (0.4%) and the

sample standard deviation is ̂ = 0100 (10%). Figure 1.2 shows three distri-

bution summaries (histogram, boxplot and normal qq-plot) and the SACF.

The returns look to have slightly fatter tails than the normal distribution

and show little evidence of linear time dependence (autocorrelation). ¥

Example 2 Simulating observations from the CER model

To mimic the monthly return data on Microsoft in the Monte Carlo sim-

ulation, the values  = 0004 and  = 010 are used as the model’s true

parameters and  = 172 is the number of simulated values (sample size of

actual data) Let {̃1     ̃172} denote the 172 simulated values of the news
variable  ∼ GWN(0 (010)2)The simulated returns are then computed us-
ing5

̃ = 0004 + ̃  = 1     172 (1.7)

To create and plot the simulated returns from (1.7) use

> mu = 0.004

> sd.e = 0.10

5Alternatively, the returns can be simulated directly by simulating observations from

a normal distribution with mean 00 and standard deviation 010
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Figure 1.2: Graphical descriptive statistics for the monthly cc returns on

Microsoft.

> nobs = 172

> set.seed(111)

> sim.e = rnorm(nobs, mean=0, sd=sd.e)

> sim.ret = mu + sim.e

> sim.ret = zoo(sim.ret, index(msftRetC))

> plot(sim.ret, main="",

+ lwd=2, col="blue", ylab="Monthly CC Return")

> abline(h=0, lwd=2)

> abline(h=(mu+sd.e), lty="dashed", lwd=2)

> abline(h=(mu-sd.e), lty="dashed", lwd=2)

The simulated returns {̃}172=1 (with the same time index as the Microsoft

returns) are shown in Figure ??. The simulated return data fluctuate ran-
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Figure 1.3: Monte Carlo simulated returns from the CER model for Mi-

crosoft.

domly about  = 0004 and the typical size of the fluctuation is approx-

imately equal to  = 010 The simulated return data look somewhat like

the actual monthly return data for Microsoft. The main difference is that

the return volatility for Microsoft appears to have decreased in the latter

part of the sample whereas the simulated data has constant volatility over

the entire sample. Figure 1.4 shows the distribution summaries (histogram,

boxplot and normal qq-plot) and the SACF for the simulated returns. The

simulated returns are normally distributed and show thinner tails than the

actual returns. The simulated returns also show no evidence of linear time

dependence (autocorrelation). ¥

Example 3 Simulating log-prices from the RW model

The RW model for log-price based on the CER model (1.7) calibrated to
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Figure 1.4: Graphical descriptive statistics for the Monte Carlo simulated

returns on Microsoft.

Microsoft log prices is

 = 2592 + 0004 · +
X

=1

  ∼ GWN(0 (010)2)

where 0 = 2592 = ln(1336) is the log of first Microsoft Price. A Monte

Carlo simulation of this RW model with can be created in R using

> sim.p = 2.592 + mu*seq(nobs) + cumsum(sim.e)

> sim.P = exp(sim.p)

Figure 1.5 shows the simulated values. The top panel shows the simulated

log price, ̃ (blue solid line) the expected price [̃] = 2592 + 0004 · 
(green dashed line) and the accumulated random news ̃ −[̃] =

P

=1 ̃
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Figure 1.5:

(dotted red line). The bottom panel shows the simulated price levels ̃ = ̃

(solid black line). Figure 1.6 shows the actual log prices and price levels for

Microsoft stock. Notice the similarity between the simulated random walk

data and the actual data. ¥

1.2.1 Simulating Returns on More than One Asset

Creating a Monte Carlo simulation of more than one return from the CER

model requires simulating observations from a multivariate normal distribu-

tion. This follows from the matrix representation of the CER model given

in (1.3). The steps required to create a multivariate Monte Carlo simulation

are:

1. Fix values for  × 1 mean vector μ and the  × covariance matrix

Σ.
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Figure 1.6:

2. Determine the number of simulated values,  to create.

3. Use a computer random number generator to simulate   values of

the  × 1 random vector ε from the multivariate normal distribution
(0Σ). Denote these simulated vectors as ε̃1     ε̃ 

4. Create the  × 1 simulated return vector ̃ = μ+ ε̃ for  = 1     

Example 4 Microsoft, Starbucks and S&P 500 data to calibrate multivariate

Monte Carlo simulation of CER model

To motivate the parameters for a multivariate simulation of the CER

model, consider the monthly cc returns for Microsoft, Starbucks and the

S&P 500 index over the period January 1998 through May 2012 illustrated

in Figures 1.7 and 1.8. The data is assembled using the R commands
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Figure 1.7:

> sbuxPrices = get.hist.quote(instrument="sbux", start="1998-01-01",

+ end="2012-05-31", quote="AdjClose",

+ provider="yahoo", origin="1970-01-01",

+ compression="m", retclass="zoo")

> sp500Prices = get.hist.quote(instrument="^gspc", start="1998-01-01",

+ end="2012-05-31", quote="AdjClose",

+ provider="yahoo", origin="1970-01-01",

+ compression="m", retclass="zoo")

> colnames(sbuxPrices) = "SBUX"

> colnames(sp500Prices) = "SP500"

> index(sbuxPrices) = as.yearmon(index(sbuxPrices))

> index(sp500Prices) = as.yearmon(index(sp500Prices))

> cerPrices = merge(msftPrices, sbuxPrices, sp500Prices)

> sbuxRetS = Return.calculate(sbuxPrices, method="simple")

> sp500RetS = Return.calculate(sp500Prices, method="simple")
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Figure 1.8:

> cerRetS = Return.calculate(cerPrices, method="simple")

> sbuxRetS = sbuxRetS[-1]

> sp500RetS = sp500RetS[-1]

> cerRetS = cerRetS[-1]

> sbuxRetC = log(1 + sbuxRetS)

> sp500RetC = log(1 + sp500RetS)

> cerRetC = merge(msftRetC, sbuxRetC, sp500RetC)

The multivariate sample descriptive statistics (mean vector, standard devia-

tion vector, covariance matrix and correlation matrix) are

> apply(cerRetC, 2, mean)

MSFT SBUX SP500

0.004127 0.014657 0.001687
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> apply(cerRetC, 2, sd)

MSFT SBUX SP500

0.10026 0.11164 0.04847

> cov(cerRetC)

MSFT SBUX SP500

MSFT 0.010051 0.003819 0.003000

SBUX 0.003819 0.012465 0.002476

SP500 0.003000 0.002476 0.002349

> cor(cerRetC)

MSFT SBUX SP500

MSFT 1.0000 0.3412 0.6173

SBUX 0.3412 1.0000 0.4575

SP500 0.6173 0.4575 1.0000

All returns fluctuate around mean values close to zero. The volatilities of

Microsoft and Starbucks are similar with typical magnitudes around 0.10, or

10%. The volatility of the S&P 500 index is considerably smaller at about

0.05, or 5%. The pairwise scatterplots show that all returns are positively

related. The pairs (MSFT, SP500) and (SBUX, SP500) are the most corre-

lated with sample correlation values around 0.5. The pair (MSFT, SBUX)

has a moderate positive correlation around 0.3. ¥

Example 5 Monte Carlo simulation of CER model for three assets

Simulating values from the multivariate CER model (1.3) requires simulating

multivariate normal random variables. In R, this can be done using the

function rmvnorm() from the package mvtnorm. The function rmvnorm()

requires a vector of mean values and a covariance matrix. Define

R =

⎛⎜⎜⎜⎝




500

⎞⎟⎟⎟⎠  μ =

⎛⎜⎜⎜⎝




500

⎞⎟⎟⎟⎠  Σ =

⎛⎜⎜⎜⎝
2  500

 2 500

500 500 2500

⎞⎟⎟⎟⎠
The parameters μ and Σ of the multivariate CER model are set equal to the

sample mean vector μ and sample covariance matrix Σ

> muVec = apply(cerRetC, 2, mean)

> covMat = cov(cerRetC)
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Figure 1.9:

To create a Monte Carlo simulation from the CER model calibrated to the

month continuously returns on Microsoft, Starbucks and the S&P 500 index

use

> set.seed(123)

> returns.sim = rmvnorm(n.obs, mean=muVec, sigma=covMat)

> colnames(returns.sim) = colnames(cerRetC)

> returns.sim = zoo(returns.sim, index(cerRetC))

The simulated returns are shown in Figures 1.9 and 1.10. They look similar

to the actual returns shown in Figures 1.7 and 1.8. The actual returns show

periods of high and low volatility that the simulated returns do not. The

sample statistics from the simulated returns, however, are close to the sample

statistics of the actual data

> apply(returns.sim, 2, mean)
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MSFT SBUX SP500

0.006709 0.013812 0.005080

> apply(returns.sim, 2, sd)

MSFT SBUX SP500

0.09513 0.10512 0.04601

> cov(returns.sim)

MSFT SBUX SP500

MSFT 0.009051 0.003539 0.002464

SBUX 0.003539 0.011050 0.001942

SP500 0.002464 0.001942 0.002117

> cor(returns.sim)

MSFT SBUX SP500

MSFT 1.0000 0.3539 0.5630

SBUX 0.3539 1.0000 0.4015

SP500 0.5630 0.4015 1.0000

¥

1.3 Conclusions

• Next chapters discuss estimation, hypothesis testing and model valida-
tion.

1.4 Further Reading

To be completed

1.5 Problems

To be completed
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