Econ 424/Amath 462 Capital Asset Pricing Model

Eric Zivot

August 15, 2013

SI Model and Efficient Portfolios

N assets with returns $R_{it} \sim {\sf iid} \; N(\mu_i, \sigma_i^2)$

$$\mathbf{R} = \begin{pmatrix} R_{1t} \\ \vdots \\ R_{Nt} \end{pmatrix}, \mu = \begin{pmatrix} \mu_1 \\ \vdots \\ \mu_N \end{pmatrix}$$
$$\boldsymbol{\Sigma} = \begin{pmatrix} \sigma_1^2 & \cdots & \sigma_{1N} \\ \vdots & \ddots & \vdots \\ \sigma_{1N} & \cdots & \sigma_N^2 \end{pmatrix}$$

Assume risk-free asset with return r_f

Compute tangency portfolio allowing short sales

$$egin{aligned} \max rac{\mu_{p, ext{tan}} - r_f}{\sigma_{p, ext{tan}}} \ \mu_{p, ext{tan}} = \mathbf{t}' \mu \ \sigma_{p, ext{tan}}^2 = \mathbf{t}' \mathbf{\Sigma} \mathbf{t} \ 1 = \mathbf{t}' \mathbf{1} \end{aligned}$$

For each asset compute "beta" with respect to tangency portfolio using SI model

$$R_{it} = \alpha_i + \beta_{i, \tan} R_{\tan, t} + \varepsilon_{it}$$
$$R_{\tan, t} = \mathbf{t'R}$$
$$\beta_{i, \tan} = \frac{\operatorname{cov}(R_{it}, R_{\tan, t})}{\operatorname{var}(R_{\tan, t})}$$

Result: For any asset i

$$\mu_i = r_f + \beta_{i, tan}(\mu_{p, tan} - r_f)$$

That is, there is an exact linear relationship between μ_i and $\beta_{i,tan}$

Recall, for an efficient portfolio that is a combination of T-Bills and the tangency portfolio that has the same expected return as asset i

$$\mu_i = \mu_p^e = r_f + x_{i, \mathsf{tan}}(\mu_{p, \mathsf{tan}} - r_f)$$

 $x_{i, \mathsf{tan}} + x_{i, f} = 1$

Therefore

$$eta_{i, ext{tan}} = x_{i, ext{tan}}$$
 $1 - eta_{i, ext{tan}} = x_f$

Interpretation: The efficient portfolio with

- $\beta_{i,tan}$ invested in tangency portfolio
- $1 \beta_{i, tan}$ invested in T-Bills

has the same expected return as an investment in asset i, but has lower SD (risk).

Verifying the Proposition with Data

- 1. Collect data on N assets for sample $t = 1, \ldots, T$
- 2. Compute tangency portfolio from N assets assuming value for r_{f}
- 3. Estimate $\beta_{i,tan}$ for $i = 1, \ldots, N$ assets using linear regression

$$\hat{R}_{it} = \hat{\alpha}_i + \hat{\beta}_{i, \mathsf{tan}} R_{\mathsf{tan}, t}$$

4. Compute average returns for $i = 1, \ldots, N$

$$\hat{\mu}_{i} = \frac{1}{T} \sum_{t=1}^{T} R_{it}$$
$$\hat{\mu}_{p,\text{tan}} = \frac{1}{T} \sum_{t=1}^{T} R_{\text{tan},t}$$

5. Plot $\hat{\mu}_i$ vs. $\hat{\beta}_{i,tan}$.

$$\begin{array}{ll} \mbox{intercept} &= r_f \\ \mbox{slope} &= (\hat{\mu}_{p, {\rm tan}} - r_f) \end{array}$$

6a. Estimate the linear regression

$$\hat{\mu}_i = \gamma_0 + \gamma_1 \hat{eta}_{i,\mathsf{tan}} + \eta_{it}$$

and we should see

$$egin{aligned} \hat{\gamma}_0 &= r_f \ \hat{\gamma}_1 &= (\hat{\mu}_{p,\mathsf{tan}} - r_f) \ R^2 &= 1 \end{aligned}$$

6b. Alternatively, estimate the linear regression

$$\hat{\mu}_i - r_f = \delta_0 + \delta_1 \hat{eta}_{i,\mathsf{tan}} + \eta_{it}$$

and we should see

$$egin{aligned} &\hat{\delta}_0 = 0 \ &\hat{\delta}_1 = (\hat{\mu}_{p,\mathsf{tan}} - r_f) \ &R^2 = 1 \end{aligned}$$

Capital Asset Pricing Model (CAPM)

Assumptions

- 1. Many identical investors who are price takers
- 2. All investors plan to invest over the same time horizon
- 3. No taxes or transaction costs
- 4. Can borrow and lend at risk-free rate, r_f

- 5. Investors only care about portfolio expected return and variance
 - (a) like high μ_p but low σ_p^2
- 6. Market consists of all publicly traded assets
 - (a) market portfolio of assets = value weighted index of all publicly traded assets

$$w_i = \frac{P_i S_i}{\sum_{j=1}^N P_j S_j}$$
$$P_i = \text{price of asset } i$$
$$S_i = \text{total shares outstanding}$$

CAPM Conclusions

- 1. All investors use the Markowitz algorithm and hold 2 portfolios
 - T-bills
 - Tangency portfolio
- 2. Risk averse investors hold mostly T-Bills (lend at r_f), risk tolerant investors hold mostly tangency portfolio (borrow at r_f to leverage tangency portfolio).
- 3. In capital market equilibrium

demand = supply \Rightarrow total borrowing = total lending

4. In equilibrium

```
demand for risky assets = tangency portfolio
supply of assets = market portfolio
```

which implies

tangency portfolio = market portfolio \Rightarrow market portfolio is efficient

All efficient portfolios are combinations of T-Bills and the market portfolio

5. In equilibrium

$$E[R_{Mt}] - r_f = (\mu_M - r_f) > 0$$

6. Security Market Line (SML) pricing relationship hold for all assets

$$E[R_{it}] = r_f + \beta_i (E[R_{Mt}] - r_f)$$
$$\beta_i = \frac{\operatorname{cov}(R_{it}, R_{Mt})}{\operatorname{var}(R_{Mt})}$$

or

$$\mu_i = r_f + \beta_i (\mu_M - r_f)$$

Since
$$(\mu_M - r_f) > 0$$

high
$$\beta_i \Rightarrow$$
 high μ_i
low $\beta_i \Rightarrow$ low μ_i

7. Alternative representation of SML

$$\mu_i - r_f = \beta_i (\mu_M - r_f)$$

Relationship between SI Model and CAPM

SI model

$$R_{it} = \alpha_i + \beta_i R_{Mt} + \varepsilon_{it}$$
$$R_{Mt} = \text{return on market index}$$

Steps to convert SI model to CAPM regression

1. Set R_{Mt} = true market portfolio

2. Subtract r_f from both sides of SI model

$$R_{it} - r_f = \alpha_i - r_f + \beta_i R_{Mt} + \varepsilon_{it}$$

3. Add and subtract $\beta_i r_f$ from right-hand-side sides of SI model

$$R_{it} - r_f = \alpha_i - r_f + \beta_i r_f - \beta_i r_f + \beta_i R_{Mt} + \varepsilon_{it}$$

= $\alpha_i - r_f (1 - \beta_i) + \beta_i (R_{Mt} - r_f) + \varepsilon_{it}$
= $\alpha_i^* + \beta_i (R_{Mt} - r_f) + \varepsilon_{it}$

where

$$\alpha_i^* = \alpha_i - r_f (1 - \beta_i)$$

4. CAPM security market line (SML) relationship

$$E[R_{it}] - r_f = \beta_i (E[R_{Mt}] - r_f)$$

implies that

$$\alpha_i^* = \mathbf{0}$$

for every asset i.

Regression Test of the CAPM

Use linear regression to estimate the excess returns SI model

$$R_{it} - r_f = lpha_i^* + eta_i (R_{Mt} - r_f) + arepsilon_{it}$$

 $i = 1, \dots, N$ assets

Test the hypotheses

 $H_0: \alpha_i^* = 0 \text{ (CAPM holds)}$ $H_1: \alpha_i^* \neq 0 \text{ (CAPM does not hold)}$

for all assets $i = 1, \ldots, N$ assets

Q: What happens if you reject $H_0: \alpha_i^* = 0$?

Suppose $\alpha_i^* > 0$ (positive "alpha"). Then

$$\alpha_i^* = \left(E[R_{it}] - r_f \right) - \beta_i (E[R_{Mt}] - r_f) > 0$$

so that expected excess return on asset i is greater than what CAPM predicts.

- Asset is underpriced relative to CAPM (expected return too high ⇒ current price too low)
- If CAPM is true, then expected return should fall soon which implies that current price should rise soon.
- $\alpha^*_i > \mathbf{0} \Rightarrow$ buy asset today; $\alpha^*_i < \mathbf{0} \Rightarrow$ sell asset today

Prediction Test of CAPM

Security Market Line (SML) says

$$\mu_i - r_f = \beta_i (\mu_{Mt} - r_f)$$

$$\mu_{Mt} - r_f > 0$$

Implication:

- High β stocks should have high average returns μ_i
- Low β stocks should have low average returns μ_i

Simple prediction test

- 1. Compute estimates $\hat{\beta}_i$ for a bunch of assets using excess returns SI model
- 2. Compute average excess returns $\hat{\mu}_i r_f$ using sample means
- 3. Plot $\hat{\mu}_i r_f$ against $\hat{\beta}_i$
- 4. Estimate SML using regression

$$\hat{\mu}_i - r_f = \gamma_0 + \gamma_1 \hat{\beta}_i + error_i$$

and test hypotheses

$$egin{aligned} H_0: \gamma_0 = 0 \ ext{and} \ \gamma_1 = \mu_{Mt} - r_f \ H_1: \gamma_0
eq 0 \ ext{or} \ \gamma_1
eq \mu_{Mt} - r_f \ ext{or} \ ext{both} \end{aligned}$$

Prediction Test II

Idea: A true prediction test would use $\beta's$ estimated during one period to predict average returns in another period.

Example: 10 years of monthly data

- 1. Split sample into 2 non-overlapping 5 year sub-samples
- 2. Estimate β_i over first 5 years
- 3. Estimate $\mu_i r_f$ over second 5 years
- 4. Perform prediction test as described above

Survey of Classical Papers that Test CAPM

1. Litner (1965), "Security Prices, Risk and Maximal Gains from Diversification," *Journal of Finance*.

- Uses annual data on 631 NYSE stocks for 10 years: 1954 1963
- Uses In-Sample Prediction Test (2 step process)
 - Compute $\hat{\beta}_1, \ldots, \hat{\beta}_{631}$ and $\hat{\mu}_1 r_f, \ldots, \hat{\mu}_{631} r_f$ using full 10 year sample
 - Estimate SML

$$\hat{\mu}_i - r_f = \gamma_0 + \gamma_1 \hat{\beta}_i + error_i$$

– Test

$$\begin{aligned} H_0 : \gamma_0 &= 0 \text{ and } \gamma_1 = \mu_{Mt} - r_f \\ H_1 : \gamma_0 &\neq 0 \text{ or } \gamma_1 \neq \mu_{Mt} - r_f \text{ or both} \end{aligned}$$

Results:

$$\hat{\mu}_{i} - r_{f} = \underbrace{0.124}_{(0.006)} + \underbrace{0.042}_{(0.006)} \cdot \hat{\beta}_{i}$$

$$\hat{\mu}_{Mt} - r_{f} = 0.165$$

$$t_{\gamma_{0}=0} = \frac{0.124}{0.006} = 21.16$$

$$t_{\gamma_{1}=0.165} = \frac{0.042 - 0.165}{0.006} = -20.5$$

Conclusion: Estimated SML is too flat!

Problem: Measurement error in \hat{eta}_i causes downward bias (toward zero) in $\hat{\gamma}_1$

2. Black, Jensen and Scholes, 1972. "The Capital Asset Pricing Model: Some Empirical Tests," in *Studies in the Theory of Capital Markets*.

3. Fama and MacBeth, 1973 "Risk, Return and Equilibrium: Empirical Tests," *Journal of Political Economy*.

Contributions: Developed method to get around measurement error in $\hat{\beta}_i$

Main idea: Estimate β_i for portfolios

- Diversification \Rightarrow higher % market risk \Rightarrow more precise $\hat{\beta}_i$
- Construct portfolios with broad range of β_i values (low to high) and estimate SML using portfolios

Three step technique: perform Prediction Test II using 3 non-overlapping subsamples:

- 1. 1st sample estimate β_i for individual assets. Sort assets into 10 portfolios based on β_i
- 2. 2nd sample estimate β_i for 10 portfolios
- 3. 3rd sample estimate $\mu_i r_f$ for 10 portfolios, estimate SML

Result: Measurement error in β_i for 10 portfolios is small

 measurement errors for portfolios are independent from measurement error for individual assets Black et. al. results

$$\hat{\mu}_i - r_f = \underbrace{0.0036}_{(0.0006)} + \underbrace{0.0108}_{(0.00052)} \cdot \hat{\beta}_i$$
$$\hat{\mu}_M - r_f = 0.0142$$
$$t_{\gamma_0=0} = \frac{\underbrace{0.0036}_{0.0006}}_{0.0006} = 6$$
$$t_{\gamma_1=0.0142} = \frac{\underbrace{0.0108}_{0.0108} - 0.0142}_{0.006} = 6.54$$

Conclusion: Estimated SML is still too flat, but results look better.

Problems with Prediction Tests

• SML is a relationship between expected returns, $E[R_{it}]$, and true β_i . Both values cannot be observed without error

– Test uses estimates \hat{eta}_i and $\hat{\mu}_i$:

$$\hat{\beta}_{i} = \beta_{i} + error_{i}$$
$$\hat{\mu}_{i} = \mu_{i} + error_{i}$$
$$E[error_{i}] = \mathbf{0}$$

since $\hat{\beta}_i$ and $\hat{\mu}_i$ are unbiased estimates

- β_i is not estimated very precisely for individual assets
 - measurement error in $\hat{\beta}_i$ is large
- Measurement error in \hat{eta}_i creates bias in estimates of γ_0 and γ_1
- β_i and μ_i may change over time

Measurement Error in Regression

Simple regression

$$y_i = eta x_i + arepsilon_i$$

 $\operatorname{cov}(x_i, arepsilon_i) = \mathbf{0}$

Then

$$\frac{\operatorname{cov}(y_i, x_i)}{\operatorname{var}(x_i)} = \frac{\operatorname{cov}(\beta x_i + \varepsilon_i, x_i)}{\operatorname{var}(x_i)}$$
$$= \frac{\operatorname{cov}(\beta x_i, x_i) + \operatorname{cov}(\varepsilon_i, x_i)}{\operatorname{var}(x_i)}$$
$$= \frac{\beta \operatorname{var}(x_i) + 0}{\operatorname{var}(x_i)} = \beta$$

Least square estimation: as T gets large

$$\hat{\beta} = \frac{\widehat{\operatorname{cov}}(y_i, x_i)}{\widehat{\operatorname{var}}(x_i)} \to \frac{\operatorname{cov}(y_i, x_i)}{\operatorname{var}(x_i)} = \beta$$

so that

 $\hat{\beta}$ is consistent for β

Measurement Error in y_i

Suppose y_i is measured with error

$$y_i^* = y_i + u_i$$

= mis-measured y_i
 u_i = measurement error
 $cov(x_i, u_i) = 0$

Regression model with mis-measured y_i^*

$$y_i^* - u_i = \beta x_i + \varepsilon_i$$

Add u_i to both sides

$$y_i^* = \beta x_i + (\varepsilon_i + u_i)$$
$$= \beta x_i + v_i$$

Result: As long as $cov(u_i, x_i) = 0$, measurement error in y_i^* does not cause any bias in least squares estimate of β :

$$egin{aligned} \mathsf{cov}(x_i, v_i) &= \mathsf{cov}(x_i, arepsilon_i + u_i) \ &= \mathsf{cov}(x_i, arepsilon_i) + \mathsf{cov}(x_i, u_i) \ &= \mathsf{0} \end{aligned}$$

Measurement Error in x_i

Suppose x_i is measured with error

$$\begin{aligned} x_i^* &= x_i + u_i \\ &= \text{mis-measured } x_i \\ u_i &= \text{measurement error} \\ \text{cov}(x_i^*, u_i) &= \textbf{0} \end{aligned}$$

Regression model with mis-measured x_i^*

$$y_i = (x_i^* - u_i)\beta + \varepsilon_i$$
$$= x_i^*\beta + \varepsilon_i - \beta u_i$$
$$= x_i^*\beta + \varepsilon_i^*$$
$$\varepsilon_i^* = \varepsilon_i - \beta u_i$$

Note:

$$egin{aligned} \mathsf{cov}(x_i^*,arepsilon_i^*) &= \mathsf{cov}(x_i+u_i,arepsilon_i-eta u_i) \ &= \mathsf{cov}(-eta u_i,u_i) \ &= -eta var(u_i) \end{aligned}$$

Consequently

$$\frac{\operatorname{cov}(y_i, x_i^*)}{\operatorname{var}(x_i^*)} = \frac{\operatorname{cov}(\beta x_i^* + \varepsilon_i^*, x_i^*)}{\operatorname{var}(x_i^*)}$$
$$= \frac{\operatorname{cov}(\beta x_i^*, x_i^*) + \operatorname{cov}(\varepsilon_i^*, x_i^*)}{\operatorname{var}(x_i^*)}$$
$$= \frac{\beta \operatorname{var}(x_i^*)}{\operatorname{var}(x_i^*)} + \frac{-\beta \operatorname{var}(u_i)}{\operatorname{var}(x_i^*)}$$
$$= \beta - \beta \cdot \frac{\operatorname{var}(u_i)}{\operatorname{var}(x_i^*)} \neq \beta$$

Result: If x_i is measured with error then as T gets large

$$\hat{\beta} = \frac{\widehat{\operatorname{cov}}(y_i, x_i)}{\widehat{\operatorname{var}}(x_i)} \to \beta - \beta \cdot \frac{\operatorname{var}(u_i)}{\operatorname{var}(x_i^*)} \neq \beta$$

so that

 $\hat{\beta}$ is not consistent for β

Note that

$$egin{aligned} eta &-eta \cdot rac{\mathsf{var}(u_i)}{\mathsf{var}(x_i^*)} = eta \left(1 - rac{\mathsf{var}(u_i)}{\mathsf{var}(x_i^*)}
ight) \ &rac{\mathsf{var}(u_i)}{\mathsf{var}(x_i^*)} < 1 \end{aligned}$$

so that $\hat{\beta}$ is downward biased (toward zero)