UW

Random Variable & Probability Review

Econ 422: Investment, Capital & Finance University of Washington Fall 2005 August 2, 2007

R.W. Parks/L.F. Davis 2004

Why Probability Concepts Matter to Finance

- Financial values based on future cash flows
- Intertemporal decision-making
- Future cash flows uncertain
- Probability theory helps us to understand the set of possible outcomes and the likelihood of each occurrence

R.W. Parks/L.F. Davis 2004

Sample Space

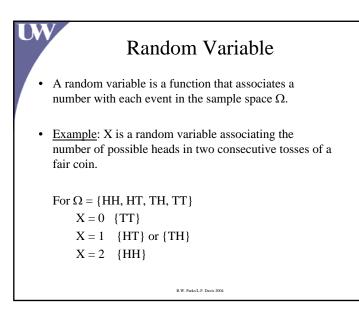
- The *sample space* for a random experiment is the set of all possible events.
- We denote the sample space by $\boldsymbol{\Omega}$

<u>Example</u>: Consider an experiment comprised of a single toss of a fair coin. The possible events or outcomes associated with this experiment are: Heads, Tails.

 $\Omega = \{H,\,T\}$

R.W. Parks/L.F. Davis 2004

1



Random Variable Distribution

- The Distribution of a Random Variable specifies the following:
 - 1. The set of possible values that the random variable can assume.
 - 2. A function or list to associate a probability to each possible value.

R.W. Parks/L.F. Davis 2004

Random Variable Type

- Discrete
 - Countable set of possible values for the random variable
 - Recall the coin toss example
- Continuous
 - The set of possible values for the random variable is not countable
 - The random variable can take values within a continuous interval

R.W. Parks/L.F. Davis 200

Example: Discrete RV Probability Distribution

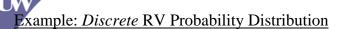
Experiment: Roll of fair die.

<u>Random variable</u>: Let RV X = the number of dots on the top die face that results following the die toss.

RV Distribution:

DAY

Possible values of X	1	2	3	4	5	6
Probability	1/6	1/6	1/6	1/6	1/6	1/6



- Let RV X denote the price of Johnson & Johnson (JNJ) stock tomorrow
- Suppose unrealistically that JNJ can take on only four different values tomorrow
- <u>RV distribution</u>:

Possible values of x	\$40	\$45	\$50	\$60
Probability	0.25	0.30	0.40	0.05
L	R.W.	Parks/L.F. Davis 2004		

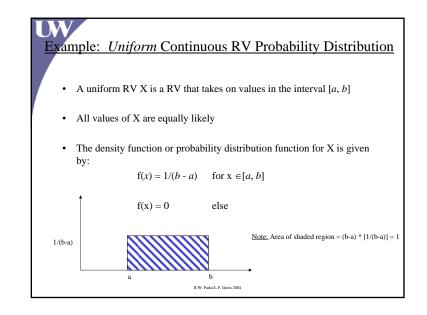
Example: Continuous <u>Normal</u> RV Probability Distribution

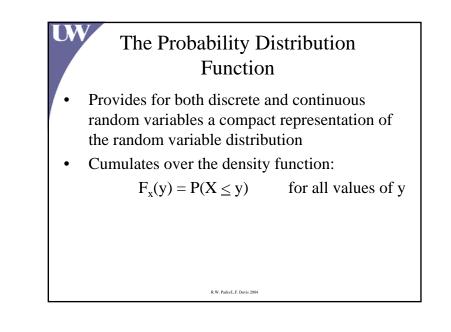
• Let RV X denote the total rate of return on stock ABC over the next month

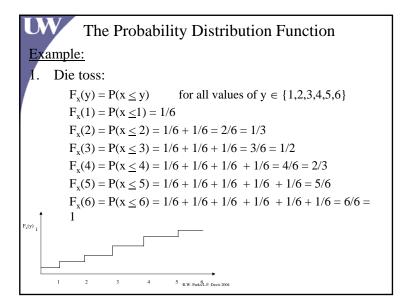
$$X = (P_{t+1} - P_t)/P_t + D_{t+1}/P_t$$

- Assume that X is Normal with mean μ and standard deviation σ
- X takes on the range of all real numbers, from $-\infty$ to $+\infty$
- The probability density function

$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2\right)$$
R.W. Parkal E. Davis 2004





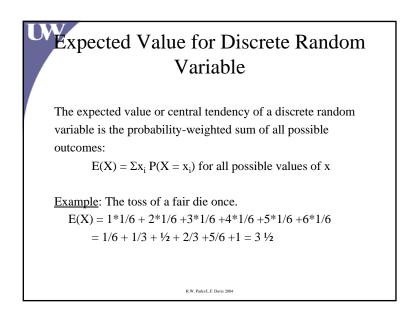


UHow do we describe the distribution of a random variable?

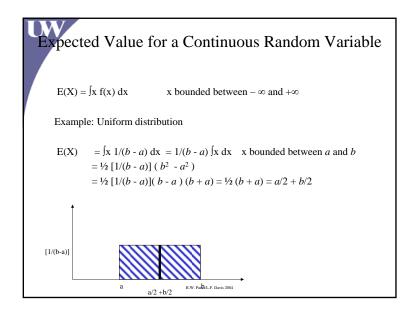
- The various attributes of a random variable are described by 'the moments' or parameters of the random variable distribution
- Two moments are especially useful:
 - First Moment = mean or expected value
 - Second Moment = variance
- These first two moments describe the central tendency and spread of a random variable distribution

Central Tendency or Measure of Location

- Mean or expected value
- Median = center of outcome values
- Mode = the value which occurs with the greatest frequency



(2,2) (4,3)	1), (1,2)), (2,3),), (3,5),), (6,5),	(3,2), (5,3),), (1,3) (2,4), (3,6),	(4,2),	(2,5),	(5,2), (2,6), (6	5,2), (3	,3), (3,	4),	
Possible values of x	2	3	4	5	6	7	8	9	10	11	12
Probability	1/36	2/36	3/36	4/36	5/36	6/36	5/36	4/36	3/36	2/36	1/36



Helpful Algebraic Properties of Expectations Let *a* and *b* be constants and x is a random variable 1. E(a) = a2. E(a + x) = a + E(x)3. E(bx) = bE(x)4. E(a + bx) = a + bE(x)5. $E(x_1 + x_2 + ... + x_n) = E(x_1) + E(x_2) + ... + E(x_n)$ 6. $E(\Sigma a x_i) = a \Sigma E(x_i)$ for i = 1, ..., n

Example

- Let R denote the random return on Microsoft stock over the next year and assume R ~ N(0.10, 0.20^2)
- Let W₀ = \$10,000 denote the initial investment in Microsoft
- Q: What is the expected wealth at the end of the year? That is, what is E[W₁] = E[W₀(1+R)] ?

Measures of Spread or Dispersion

• Variance

- Squared deviation from mean value

- Standard Deviation
 - Square root of variance
 - In same units as the random variable
 - Typical size of deviation from mean value

UW

Helpful Algebraic Properties of Variance

R.W. Parks/L.F. Davis 200

R.W. Parks/L.F. Davis 200

- Let *a* and *b* be constants and let X be a random variable:
- 1. V(a) = 0
- 2. $V(bX) = b^2 V(X)$
- 3. $V(a + bX) = b^2 V(X)$

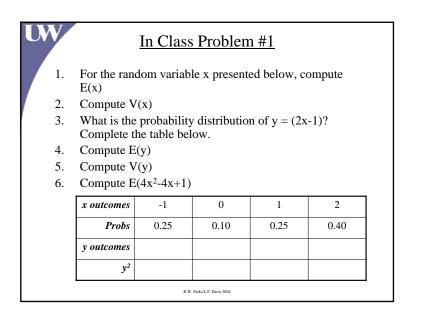
Variance and Standard Deviation • Variance (Second Moment) $V(x) = E[(x-E(x))^2] \ge 0$ $V(x) = \Sigma(x_i - E(x_i))^2 P(x = x_i)$ for all possible values of x • Standard Deviation (on same scale as x) $SD(x) = (V(x))^{1/2} = (E[(x-E(x))^2])^{1/2}$ • Alternative form for Variance: $V(x) = E[x^2 - 2xE(x) + E(x)^2]$ $= E[x^2] - 2E(x)^2 + E(x)^2$ $= E[x^2] - E(x)^2 \ge 0$

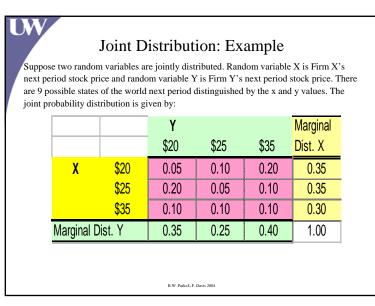
UW

Example Continued

- Let R denote the random return on Microsoft stock over the next year and assume $R \sim N(0.10, 0.20^2)$
- Let $W_0 =$ \$10,000 denote the initial investment in Microsoft
- What is the standard deviation of wealth at the end of the year? That is, what is SD[W₁] = SD[W₀(1+R)] ?
- Sketch the distribution of W₁
- Compute $Pr(W_1 < 10,000)$

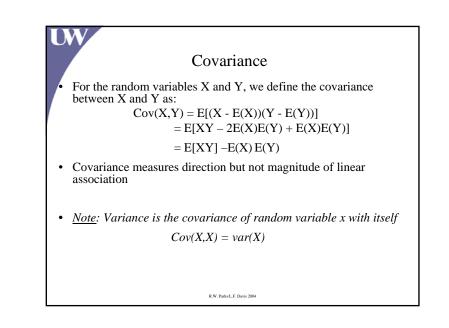
R.W. Parks/L.F. Davis 200-

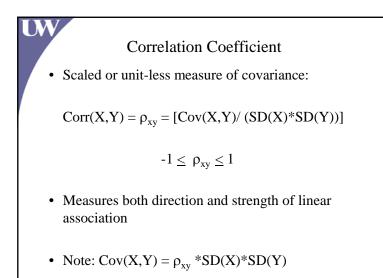




Marginal Distributions

- The <u>marginal probability distribution for X</u> shows for each X value the probability of this occurrence without regard to the value of Y. You can determine the marginal distribution of X by compressing the table in the Y direction, i.e., by adding the row probabilities.
- The <u>marginal probability distribution for Y</u> shows for each Y value the probability of this occurrence without regard to the value of X. You can determine the marginal distribution of Y by compressing the table in the X direction, i.e., by adding the column probabilities.





R.W. Parks/L.F. Davis 2004

UW

Variance of a Sum of Random Variables

- $$\begin{split} V(X+Y) &= V(X) + V(Y) + 2 \operatorname{Cov}(X,Y) \\ &= V(X) + V(Y) + 2 \, \rho_{xy} \, {}^*SD(X) {}^*SD(Y) \end{split}$$
- $Cov(X,Y) = E(XY) E(X)^* E(Y)$
- V(X + Y) = V(X) + V(Y) + 2(E(XY) E(X) * E(Y))
- $V(aX + bY) = a^{2}V(X) + b^{2}V(Y) + 2ab*Cov(X,Y)$ $= a^{2}V(X) + b^{2}V(Y) + 2ab*SD(X)SD(Y)*\rho_{xy}$

R.W. Parks/L.F. Davis 2004

Joint Distribution: Example

Suppose two random variables are jointly distributed. Random variable X is Firm X's next period stock price and random variable Y is Firm Y's next period stock price. There are 9 possible states of the world next period distinguished by the x and y values. The joint probability distribution is given by:

		Y			Marginal
		\$20	\$25	\$35	Dist. X
Х	\$20	0.05	0.10	0.20	0.35
	\$25	0.20	0.05	0.10	0.35
	\$35	0.10	0.10	0.10	0.30
Marginal D	ist. Y	0.35	0.25	0.40	1.00

UW

Example: Portfolio X+ Y

Suppose you own one share of each Firm X and Firm Y stock. Your portfolio value next period is the random variable X + Y.

From the joint distribution there are only 9 possible states of the world next period

The possible portfolio outcomes and the respective portfolio values are provided on the left:

State	X + Y	Probability		X + Y	Probability
1	\$40	0.05		\$40	0.05
2	\$45	0.10		\$45	0.30
3	\$55	0.20		\$50	0.05
4	\$45	0.20		\$55	0.30
5	\$50	0.05		\$60	0.20
6	\$60	0.10	 /	\$70	0.10
7	\$55	0.10			1.00
8	\$60	0.10			
9	\$70	0.10			
		1.00			

Portfolio Distribution

• What is E[X+Y]?

UW

- What is cov(X,Y)?
- What is corr(X,Y)?
- What is V(X+Y)?
- See Excel spreadsheet for computations

	Ī	In Clas	s Proble	<u>m #2</u>		
Supp	ose an investor ca	an choose	between two	assets 1 and 2	2. The probab	bility
distri	butions for the ra	tes of retur	n for each as	set are provid	ed below.	
a.	Compute $E(r_1)$ a	und E(r ₂)				
b.	Compute $V(r_1)$ a	and V(r ₂)				
c.	Based on expect					do
	another?	why? On w	hat other basi	is might you j	prefer one as	set t
d.		d a portfol	io with 50% I	held in asset 1	and 50% he	eld i
d.	another? Assume you hol	d a portfol	io with 50% I	held in asset 1	and 50% he	eld i
d.	another? Assume you hol asset 2. What is	d a portfol the expect	io with 50% I ed return and	held in asset 1 variance of y	l and 50% he our portfolic	eld i