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Abstract

This document summarizes the steps for calculating Value-at-Risk (VaR)
for a portfolio of equity assets using S-PLUS 7.0 and S+FinMetrics 2.0. Uncon-
ditional VaR is computed using empirical quantiles, the normal distribution,
and an extreme value theory (EVT) Pareto tail distribution. Conditional VaR
is computed using GARCH models, GARCH+EVT. The VaR models are eval-
uated by examining VaR violations in a backtesting environment.

1 Basic Concepts

This section reviews some basic concepts of asset returns and portfolios, and defines
the market risk concepts value-at-risk (VaR) and expected tail loss (ETL) (which is
also called expected shortfall (ES)).

1.1 Asset Returns

The portfolio consists of i = 1, . . . , N equity assets. Let Pit denote the price of asset
i at time t. The one-period simple return on asset i between times t− 1 and t is

Rt =
Pit − Pit−1

Pit−1

The one-period continuously compounded (log) return is

rit = ln(1 +Rit) = ln

µ
Pit

Pit−1

¶
Note that

Rit = erit − 1
Log returns are often preferred to simple returns for statistical modeling purposes.
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1.2 Portfolios

Let Rt = (R1t, . . . , RNt)
0 and rt = (r1t, . . . , rNt)

0. A portfolio of N assets is character-
ized by a N × 1 vector of portfolio weights w = (w1, . . . , wN)

0 where wi denote the
share of wealth invested in asset i such that

Pn
i=1wi = 1. The one-period simple and

log returns on the portfolio w are

Rw,t = x0Rt =
NX
i=1

wiRit

rw,t = ln(1 +Rw,t)

= ln(1 +w0Rt) ≈ w0rt =
NX
i=1

wirit

Note that the log portfolio return is not exactly equal to the weighted average of the
individual asset log returns.

1.3 Value-at-Risk Defined

Consider a one period investment in an asset with simple return R. Let $W0 denote
the initial dollar amount invested. The value of the investment after one period in
terms of the simple return is

$W1 = $W0(1 +R)

and the value of the investment in terms of the log return is

$W1 = $W0e
r

1.3.1 VaR Based on Simple Returns

For α ∈ (0, 1), let qRα denote the α× 100% quantile of the probability distribution of
the simple return R. Usually, qRα is a low quantile such that α = 0.01 or α = 0.05.
As a result, qRα is typically a negative number. The α × 100% dollar Value-at-Risk
($V aRα) is

$V aRα = −$W0 · qRα
In words, $V aRα represents the dollar loss that could occur with probability α. By
convention, it is reported as a positive number (hence the minus sign). The VaR as
a percentage of the initial portfolio value is simply the (negative) low quantile of the
simple return distribution:

V aRα =
$V aRα

$W0
= −qRα
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1.3.2 VaR Based on Log Returns

Let qrα denote the α×100% quantile of distribution of the log return r = ln(1+R). The
simple return quantile qRα is related to the log return quantile using the relationship

qRα = eq
r
α − 1

Therefore, $V aRα based on log-returns may be computed using

$V aRα = −$W0 ·
¡
eq

r
α − 1¢

and

V aRα =
$V aRα

$W0
= −(eqrα − 1)

1.4 Expected Tail Loss Defined

The α× 100% expected tail loss (ETL), in terms of the log return, is defined as

ETLα = −E[r|r < −V aRα]

In words, the ETL is the expected (negative) return conditional on the return being
less than the α ·100% percentage VaR. If the initial investment is $W0, then the dollar
ETL is

$ETL = $W0 ×ETLα

2 Example Data

VaR and ETL calculations are illustrated using the daily log-returns on the 30
Dow Jones Industrial Average stocks over the period January 2, 1991 through Jan-
uary 2, 2001. The adjusted closing prices are in the S+FinMetrics “timeSeries”
DowJones30. Log returns may be calculated using

> DowJones30.ret = getReturns(DowJones30)

These returns are illustrated in Figure 1.
Summary statistics on these returns are listed below

> summaryStats(DowJones30.ret)

Sample Moments:

mean std skewness kurtosis

AA 0.00066613 0.02027 0.47417262 6.256

AXP 0.00094778 0.02106 0.06744039 5.009

T -0.00002873 0.02011 -1.36496467 27.055

BA 0.00041075 0.01919 -0.31983600 10.532
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Figure 1: Daily log returns on Dow Jones 30 stocks.

CAT 0.00062407 0.02059 0.03768706 6.235

C 0.00130133 0.02228 0.20836742 5.813

KO 0.00071633 0.01690 0.01638419 6.310

DD 0.00050283 0.01821 0.00902287 5.423

EK 0.00019231 0.01856 -1.74461569 29.463

XOM 0.00050993 0.01394 0.16699197 4.986

GE 0.00088443 0.01537 -0.02254540 5.284

GM 0.00037496 0.01996 0.06570330 4.143

HWP 0.00080548 0.02589 -0.25593852 7.800

HD 0.00110341 0.02178 -1.47584163 27.498

HON 0.00080532 0.02058 0.37584235 17.145

INTC 0.00128791 0.02717 -0.54873050 8.072

IBM 0.00043914 0.02098 -0.14767612 9.317

IP 0.00025207 0.01941 0.29212499 5.685

JPM 0.00109663 0.02217 0.30356866 5.492

JNJ 0.00076479 0.01641 0.03577168 4.679

MCD 0.00061517 0.01701 0.11803896 6.200
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MRK 0.00081026 0.01772 0.04197237 5.228

MSFT 0.00120271 0.02314 -0.14975931 7.430

MMM 0.00052147 0.01511 0.08429829 7.075

MO 0.00057575 0.02040 -0.82718665 20.006

PG 0.00051487 0.01798 -3.26960796 68.625

SBC 0.00064105 0.01737 -0.07638044 7.018

UTX 0.00082338 0.01709 0.08530716 5.019

WMT 0.00080274 0.02036 0.00005004 5.105

DIS 0.00050183 0.01910 0.02832071 9.202

The skewness and kurtosis values indicate non-normal distributions for the log-returns.
Testing the null hypothesis that each return series is normally distributed using the
Jarque-Bera statistic gives

> normalTest(DowJones30.ret, method="jb")

Test for Normality: Jarque-Bera

Null Hypothesis: data is normally distributed

Test Statistics:

AA AXP T BA CAT

Test Stat 1211.2450 427.0028 61711.5570 6015.7899 1102.5776

p.value 0.0000 0.0000 0.0000 0.0000 0.0000

C KO DD EK XOM

Test Stat 851.2940 1153.8869 618.1877 75018.2301 427.2389

p.value 0.0000 0.0000 0.0000 0.0000 0.0000

GE GM HWP HD HON

Test Stat 549.5553 139.4029 2453.6285 64109.0577 21126.8931

p.value 0.0000 0.0000 0.0000 0.0000 0.0000

INTC IBM IP JPM JNJ

Test Stat 2835.1289 4211.3738 795.0107 692.5375 297.3126

p.value 0.0000 0.0000 0.0000 0.0000 0.0000

MCD MRK MSFT MMM MO

Test Stat 1084.0272 523.4963 2076.0047 1751.1850 30740.0087

p.value 0.0000 0.0000 0.0000 0.0000 0.0000

PG SBC UTX WMT DIS

Test Stat 457961.0721 1702.1350 432.3921 466.7221 4050.9754
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Figure 2: Daily log returns on equally weighted portfolio of Dow Jones 30 stocks.

p.value 0.0000 0.0000 0.0000 0.0000 0.0000

Dist. under Null: chi-square with 2 degrees of freedom

Total Observ.: 2527

An equally weighted portfolio of the Dow Jones 30 stocks may be computed using

> port.ret.ts = rowSums(DowJones30.ret, weights=rep(1,30)/30)

The daily log-returns are illustrated in Figure 2.
The summary statistics for the portfolio are

> summaryStats(port.ret.ts)

Sample Quantiles:

min 1Q median 3Q max

-0.0738 -0.00441 0.0007142 0.005973 0.05001

Sample Moments:
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mean std skewness kurtosis

0.0006889 0.009707 -0.3138 7.663

Number of Observations: 2527

and the Jarque-Bera test for normality is

> normalTest(port.ret.ts, method="jb")

Test for Normality: Jarque-Bera

Null Hypothesis: data is normally distributed

Test Statistics:

Portfolio

Test Stat 2330.622

p.value 0.000

Dist. under Null: chi-square with 2 degrees of freedom

Total Observ.: 2527

3 Unconditional Models for VaR and ETL

This section reviews common models for computing unconditional estimates of VaR
and ETL. In unconditional models, the multivariate return distribution is assumed
to be covariance stationary and ergodic and, hence, have time invariant moments.
Usually, the moments of the return distribution are estimated from historical data
and are assumed to be fixed over the period in which estimates of VaR and ETL
are required. The models considered are historical simulation, normal approximation
and extreme value theory.

3.1 Historical Simulation

Historical simulation (HS) simply refers to the empirical distribution of the observed
returns. As a result, the α× 100% VaR based on HS is just the α× 100% empirical
quantile of the return distribution. Similarly, the HS estimate of ETLα is simply the
average of the returns below the HS VaRα estimate.

Example 1 VaR.01 for Dow Jones 30 stocks based on historical simulation

In S-PLUS, empirical quantiles may be computed using the quantile or colQuantiles
function. To compute VaR.01 for the equally weighted portfolio of Dow Jones 30 stocks
based on HS use
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> VaR.hs.01 = quantile(port.ret.ts, probs=0.01)

> VaR.hs.01

1%

-0.0247706

With 1% probability the loss is about 2.5% or higher. If there is $1M initially invested
in the portfolio, the 1% dollar VaR is

> 1000000*( exp(VaR.hs.01) - 1 )

1%

-24466.33

To compute the VaR.01 for all of the Dow Jones 30 stocks based on HS use

> unlist(colQuantiles(DowJones30.ret, probs=0.01))

AA.1% AXP.1% T.1% BA.1% CAT.1% C.1%

-0.04692524 -0.05137398 -0.05050954 -0.04699595 -0.04966563 -0.05252321

KO.1% DD.1% EK.1% XOM.1% GE.1% GM.1%

-0.04102243 -0.04533577 -0.04449885 -0.03381674 -0.04063354 -0.04914696

HWP.1% HD.1% HON.1% INTC.1% IBM.1% IP.1%

-0.06547625 -0.05123644 -0.05445059 -0.07176775 -0.05232081 -0.04953661

JPM.1% JNJ.1% MCD.1% MRK.1% MSFT.1% MMM.1%

-0.05121868 -0.03776024 -0.03966271 -0.04359857 -0.05891276 -0.04029453

MO.1% PG.1% SBC.1% UTX.1% WMT.1% DIS.1%

-0.05290309 -0.03873091 -0.04528876 -0.04237849 -0.05424686 -0.04840624

The bootstrap may be used assess the sampling uncertainty associated with the
empirical quantile. The S-PLUS function bootstrap may be used for this purpose.
Alternatively, the bootstrap function from the library S+Resample may be used1.
For example, to compute a bootstrap standard error for the HS estimate of VaR.05

for the first Dow Jones 30 stock use

> VaR.05.boot = bootstrap(port.ret.ts, statistic=quantile,

+ args.stat=list(probs=0.05))

> summary(VaR.05.boot)

Call:

bootstrap(data = port.ret.ts, statistic = quantile, args.stat = list(probs

= 0.05))

1The library S+Resample may be downloaded from the Insightful research page. This library
greatly extends the boostrapping and resampling functionality in S-PLUS.

8



Number of Replications: 1000

Summary Statistics:

Observed Bias Mean SE

5% -0.01466 -0.00009937 -0.01476 0.0005054

Empirical Percentiles:

2.5% 5% 95% 97.5%

5% -0.01588 -0.01561 -0.01403 -0.01388

BCa Confidence Limits:

2.5% 5% 95% 97.5%

5% -0.01588 -0.01561 -0.01403 -0.01388

The bootstrap standard error estimate is 0.0005 and a 95% bootstrap confidence
interval is [−0.0159, −0.0139].The boostrap distribution may be visualized using
> plot(VaR.05.boot)

Example 2 ETL.01 for Dow Jones 30 stocks based on historical simulation

The HS estimate of ETL.01 is simply the average of the returns below the HS
VaR.01 estimate. For the equally weighted portfolio, the HS estimate of ETL.01 is

> mean(port.ret.ts[port.ret.ts < VaR.hs.01])

[1] -0.03496077

The average loss in portfolio value when the return is less than the 1% VaR is about
3.5%.
To compute the HS estimate of ETL.01 for all of the Dow Jones 30 stocks use

> ETL.hs.01 = function(x) { mean(x[x < quantile(x, probs=0.01)]) }

> apply(DowJones30.ret, 2, ETL.hs.01)

AA AXP T BA CAT C

-0.06058743 -0.06734013 -0.08510645 -0.07228072 -0.0703473 -0.06861809

KO DD EK XOM GE GM

-0.05804336 -0.05913512 -0.07994174 -0.04177331 -0.05104979 -0.06092251

HWP HD HON INTC IBM IP

-0.09570858 -0.07645151 -0.07704453 -0.104592 -0.07876983 -0.06014644

JPM JNJ MCD MRK MSFT MMM
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-0.06735523 -0.04954164 -0.05503747 -0.05697714 -0.08095875 -0.05277178

MO PG SBC UTX WMT DIS

-0.08194002 -0.07168527 -0.05853913 -0.05536674 -0.06888778 -0.06691007

3.2 Normal Distribution

Assume the N ×1 vector of log-returns r has a multivariate normal distribution with
mean vector µ and covariance matrix Σ

r ∼ N(µ,Σ)

where µ has elements µi (i = 1, . . . , N) and Σ has elements σij (i, j = 1, . . . , N). For
an individual asset,

ri ∼ N(µi,σii)

The α× 100% quantile of the normal distribution for ri is

qiα = µi + σiq
z
α

where qzα is the α × 100% quantile of the standard normal distribution. The distri-
bution of ri given that ri ≤ qiα is truncated normal. The mean of this distribution is
the normal ETLα. Greene (2004) shows that

2

E[ri|ri ≤ qiα] = µi + σi × φ(ziα)

Φ(ziα)

where ziα = (µi−V aRα)/σi, φ(z) is the standard normal pdf and Φ(z) is the standard
normal CDF.
Given a random sample of size T of observed returns on N assets from the mul-

tivariate normal distribution, the mean vector µ and covariance matrix Σ may be
estimated using the sample statistics

µ̂ = T−1
TX
t=1

rt, Σ̂ = T−1
TX
t=1

(rt − µ̂)(rt − µ)0

The normal quantile may then be estimated using the plug-in method

q̂iα = µ̂i + σ̂iq
z
α

where µ̂i is the ith element of µ̂, and σ̂i is the square root of the ith diagonal element
of Σ̂. Similarly, the estimate of normal ETLα is

Ê[ri|ri ≤ qiα] = µ̂i + σ̂i × φ(ẑiα)

Φ(ẑiα)

where ẑiα = (µ̂i−[V aRα)/σ̂i, and[V aRα = µ̂i+σ̂iq
z
α. Standard errors for these estimates

may be conveniently computed using the bootstrap.

2See Greene (2004) page xxx for properties of the truncated normal distribution.
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3.2.1 Active versus Passive Portfolio Risk Measurement

In a passive portfolio, the portfolio weight vector w stays fixed over time. The
portfolio return is normally distributed

rw = w
0r ∼ N(µw, σ

2
w)

with time invariant mean and variance

µw = w
0µ, σ2w = w

0Σw

The α× 100% quantile of the normal distribution for rw is

qwα = µw + σwq
z
α

and the α× 100% ETL is

E[rw|rw ≤ qwα ] = µw + σw × φ(zwα )

Φ(zwα )

In a passive portfolio, the portfolio mean and variance may be estimated from ob-
served returns by first computing the portfolio return rw,t = w

0rt, and then computing
the sample mean and variance from the portfolio returns

µ̂w = T−1
TX
t=1

w0rt, σ̂2w = T−1
TX
t=1

(rw,t − µ̂w)
2

In an active portfolio, the weights on the individual assets may change over time
as the portfolio manager reballances the portfolio. Let wt denote the N × 1 vector of
portfolio weights at time t. Then the portfolio return is normally distributed

rw,t = w
0
tr ∼ N(µw,t, σ

2
w,t)

with period specific mean and variance

µw,t = w
0
tµ, σ

2
w,t = w

0
tΣwt

In an active portfolio, the portfolio mean and variance at time t are usually estimated
with

µ̂w,t = w
0
tµ̂, σ̂

2
w,t = w

0
tΣ̂wt

3.2.2 S-PLUS Functions

Simple S-PLUS functions for computing VaR and ETL based on the normal distri-
bution are
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norm.quantile = function(x, p=0.01, mu=NULL) {

## required arguments:

## x timeSeries of returns (simple or continuous)

## optional arguments:

## p scalar probability level

## mu vector of mean values.

## value:

## numeric value giving quantile estimate from estimated normal

## distribution

if(is.null(mu))

q = colMeans(x) + colStdevs(x)*qnorm(p)

else

q = mu + colStdevs(x)*qnorm(p)

q

}

Example 3 VaR.01 for Dow Jones 30 stocks based on normal distribution

The normal estimate of VaR.01 for the (passive) equally weighted portfolio is

> norm.quantile(port.ret.ts)

Portfolio

-0.02189391

A 95% confidence interval for VaR.01 based on the bootstrap may be computed using

> VaR.01.boot = bootstrap(port.ret.ts, statistic=norm.quantile)

> limits.emp(VaR.01.boot)

2.5% 5% 95% 97.5%

Portfolio -0.02320047 -0.02299066 -0.02088363 -0.0207183

For an active portfolio, the 1% quantile may be estimated using

> mu.hat = colMeans(DowJones30.ret)

> Sigma.hat = var(DowJones30.ret)

> w = rep(1,30)/30

> t(w)%*%mu.hat + sqrt( t(w)%*%Sigma.hat%*%w )*qnorm(.01)

[,1]

[1,] -0.02189391

The normal estimates of VaR.01 for all of the Dow Jones 30 stocks are

> norm.quantile(DowJones30.ret)

AA AXP T BA CAT C

-0.04649377 -0.04803599 -0.04681135 -0.04423398 -0.04728698 -0.05053085
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KO DD EK XOM GE GM

-0.03861008 -0.04186347 -0.04298664 -0.03193052 -0.0348732 -0.04604977

HWP HD HON INTC IBM IP

-0.05941707 -0.04955317 -0.04707859 -0.06192249 -0.04836213 -0.04489961

JPM JNJ MCD MRK MSFT MMM

-0.05046832 -0.03740214 -0.03896121 -0.04041834 -0.05262862 -0.03462914

MO PG SBC UTX WMT DIS

-0.04688573 -0.04131749 -0.0397562 -0.0389281 -0.04655835 -0.04393198

Example 4 ETL.01 for Dow Jones 30 stocks based on the normal distribution

3.3 Extreme Value Theory

Extreme value theory (EVT) is concerned with modeling the tails of a probability
distribution F. To illustrate, let X1, X2, . . . be a sequence of iid random variables
representing risks or losses with an unknown CDF F. A natural measure of extreme
events are values of the Xi that exceed a high threshold u. Define the excess distri-
bution above the threshold u as the conditional probability:

Fu(y) = Pr{X − u ≤ y|X > u} = F (y + u)− F (u)

1− F (u)
, y > 0 (1)

it can be shown that for large enough u there exists a positive function β(u) such that
the excess distribution (1) is well approximated by the generalized Pareto distribution
(GPD)

Gξ,β(u)(y) =

(
1−

³
1 + (ξy/β(u))−1/ξ

´
for ξ 6= 0

1− exp(−y/β(u)) for ξ = 0
, β(u) > 0 (2)

defined for y ≥ 0 when ξ ≥ 0 and 0 ≤ y ≤ −β(u)/ξ when ξ < 0. The parameter ξ
is determines the tail shape of the distribution of exceedences over the threshold u.
If ξ < 0 then F is in the thin-tailed Weibull family and Gξ,β(u) is a Pareto type II
distribution; if ξ = 0 then F is in the Gumbell family and Gξ,β(u) is an exponential
distribution; and if ξ > 0 then F is in the fat-tailed Fréchet family and Gξ,β(u) is a
Pareto distribution. For ξ > 0, the most relevant case for risk management purposes,
it can be shown that E[Xk] = ∞ for k ≥ α = 1/ξ. For example, if ξ = 0.5 then
E[X2] =∞ and the distribution of losses, X, does not have finite variance. If ξ = 1
then E[X] =∞.

13



The threshold parameter u = u0 may be determined by computing the empirical
mean excess function

en(u) =
1

nu

nuX
i=1

(x(i) − u) (3)

where x(i) (i = 1, . . . , nu) are the values of xi such that xi > u, and then plotting
en(u) against u. The plot should be linear in u for u > u0. An upward sloping
plot indicates heavy-tailed behavior. In particular, a straight line with positive slope
above u0 is a sign of Pareto behavior in tail. A downward trend shows thin-tailed
behavior, whereas a line with zero slope shows an exponential tail.
Once the threshold parameter u = u0 is chosen, the remaining parameters ξ and

β(u) may be estimated by maximum likelihood. Given the ML estimates ξ̂ and β̂(u),
the tails of the loss distribution F may be estimated using

F̂ (x) = 1− k

n

Ã
1 + ξ̂ · x− u

β̂(u)

!
(4)

where k denotes the number of exceedences over the threshold u. Then, an estimate
of VaRα based on inverting F̂ (x) is

[V aRα = u+
β̂(u)

ξ̂

µ³n
k
(1− q)

´−ξ̂
− 1
¶

(5)

An estimate of ETLα is

[ETLα =
[V aRα

1− ξ̂
+

β̂(u)− ξ̂u

1− ξ̂
. (6)

Remarks:

1. EVT methods are easily applied to passive portfolios.

2. EVT methods are difficult to apply to active portfolios. This usually requires
building an EVT model for the full multivariate distribution of returns. The
most promising methodology for doing this is based on copulas.

Example 5 VaR.01 and ETL.01 for equally weighted portfolio based on EVT

Consider estimating VaR.01 and ETL.01 based on EVT for the equally weighted
portfolio of Dow Jones 30 stocks. The first step is to determine the threshold pa-
rameter u using empirical mean excess function. This may be computed using the
S+FinMetrics function meplot

> tmp = meplot(-port.ret.ts)
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Figure 3: Mean excess plot (top panel) and MLEs of GPD shape parameter for
equally weighted portfolio.

which produces the graph in the top panel of Figure 3. The negative returns are
used as an input to meplot to investigate the low tail of the distribution. The plot
becomes linear with positive slope near u = 0.015 suggesting fat tailed behavior in
the lower tail. To better pin down the threshold, the S+FinMetrics shape.plot may
be used to see how the MLEs of the GPD shape parameter varies with the selected
threshold u. For example

> shape.plot(-port.ret.ts, from=0.9, to=0.98)

computes the MLEs of ξ using threshold values from the 90th quantile through the
98th quantile. These values are illustrated in the lower panel of Figure 3. The two
plots suggest a threshold value around u = 0.015.
Given the threshold u = 0.015, the MLEs of the GPD parameters ξ and β(0.015)

may be computed using the S+FinMetrics function gpd

> gpd.fit = gpd(-port.ret.ts, threshold=0.015)

> gpd.fit

Generalized Pareto Distribution Fit --
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Total of 2527 observations

Upper Tail Estimated with ml --

Upper Threshold at 0.015 or 4.788 % of the data

ML estimation converged.

Log-likelihood value: 480.9

Parameter Estimates, Standard Errors and t-ratios:

Value Std.Error t value

xi 0.2109 0.1066 1.9792

beta 0.0056 0.0008 7.2066

The MLE for ξ is 0.211, with an estimated standard error of 0.107, indicating fat
tailed behavior. Since α̂ = 1/ξ̂ = 4.74 the fitted GPD suggests that the equally
portfolio return distribution has about four moments finite. The fit of the GPD
to the tails of negative returns may be visualized using the S+FinMetrics function
tailplot

> tailplot(gpd.fit)

which is illustrated in Figure 4. The GPD appears to be a good fit.
From the fitted GPD, estimates of VaR.01 and ETL.01 may be computed using the

S+FinMetrics function riskmeasures

> riskmeasures(gpd.fit, p=0.99)

p quantile sfall

beta 0.99 0.02539038 0.03526328

The estimate of VaR.01 is−0.0254 and the estimate of ETL.01 is−0.0353. These values
are quite close to the HS estimates. 95% confidence intervals for these estimates may
be computed using the S+FinMetrics functions gpd.q and gpd.sfall

> gpd.q(pp=0.99, ci.p = 0.95, plot=F)

Lower CI Estimate Upper CI

0.02345692 0.02539038 0.02792725

> gpd.sfall(pp=0.99, ci.p = 0.95, plot=F)

Lower CI Estimate Upper CI

0.03084265 0.03526328 0.04554279

4 Conditional Models for VaR and ETL

In conditional models, it is recognized that the moments of the multivariate return
distribution may change over time
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Figure 4: Fit of GDP to the lower tail of the equally weighted portfolio return dis-
tribution.

17



4.1 EWMA Estimates

JP Morgan’s RiskMetrics system for market risk management utilizes the follow-
ing exponentially weighted moving average (EWMA) model for time-varying return
variances

σ2t+1 = (1− λ)
∞X
τ=1

λτ−1rt+1−τ , 0 < λ < 1

which may be re-written as

σ2t+1 = λσ2t + (1− λ)r2t

In the RiskMetrics system λ is set at 0.94 for forecasting daily variances.

4.2 GARCH Models

to be completed

4.3 GARCH+EVT

to be completed

5 Backtesting VaR

to be completed
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