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The Extreme Value Analysis Employing Statistical Copula Estimation (EVANESCE) 

library for S-PLUS FinMetrics module provides a set of functions for bivariate extreme 

value analyses using parametric and non-parametric copula estimation methods.  It is 

contributed by Rene Carmona and described in Carmona (2001) and Carmona and 

Morrison (2001).  Some of the original functions are renamed and model objects 

restructured when the library is incorporated into FinMetrics to be consistent with the 

other extreme value theory library in the package (EVIS by Alexander McNeil).   This 

document gives an overview of the copula concept and their implementation.   The 

detailed function documentation is available both in S-PLUS FinMetrics Reference 

Manual and the product online help. 

 

1. About Copulas 

Suppose we are interested in modeling the stochastic behavior of two random variables X 

and Y based on a set of n independent observations of the couple (X, Y ), say {(x1, y1), 

(x2, y2), . . . , (xn, yn)}.  Furthermore, suppose we have estimated their respective marginal 

distributions, G1(x) and G2(y), using standard statistical techniques. We are then 

interested to know how we test to know whether X and Y are independent, and how we 

describe their dependence structure if they are not independent. 

 

One way to describe the dependence structure between two random variables is to 

estimate and use their joint distribution function 
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A test of independence between X and Y is simply to test whether F(x, y) is a product of 

the respective marginal distributions.   

 

To construct a measure of dependence structure we introduce two uniform distribution 

random variables G1(X) and G2(Y), and their joint distribution is  

 

where and are the quantile functions of X and Y respectively  

.     

If we can estimate the function C, we have F, i.e.  

 

C is a two-dimensional copula, i.e. a cumulative distribution function of two random 

variables with uniform (0, 1) marginals.  Nelsen [1999] and Joe [1997] are the two 

recently published textbooks on the subject. 

 

Note that if X and Y are continuous random variables, the function C satisfying the above 

definition is unique. If X and Y are not continuous random variables, C is uniquely 

determined on RangeG1 × RangeG2 (this result is known as Sklar’s theorem [Sklar, 

1959], see also Nelsen [1999], p. 15).  In order to estimate F, we can transform the 

observations of X and Y , (x1, y1), (x2, y2), . . . , (xn, yn), into observations of U = G1(X) 

and V = G2(Y ), (u1, v1), (u2, v2), . . . , (un, vn), where ui = G1(xi) and vi = G2(yi), i = 1, 2, . 

. . , n, and C may then be estimated as the joint distribution of U and V . Then we have an 
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estimate of F.   There are a few non-parametric methods developed to estimate the copula 

[Deheuvels, 1978; Genest and Rivest, 1993; Genest et al., 1995; Cap´era`a et al., 1997]. 

One can also assume that the copula has a particular parametric form and estimate its 

parameters using, for example, the method of maximum likelihood.    

 
 
C is a two-dimensional copula if and only if it is a function  
 

 
 
that satisfies the following two conditions: 
 
•  

 
 

 
 
•

 
 

 
 
If C is considered to be a distribution function of two random variables U and V, the first 

condition ensures that U and V have uniform marginal distributions. The second 

condition, often referred to as the rectangular inequality, simply requires that C is a valid 

distribution function, i.e.  

  

A variety of parametric copula families are supported in EVANESCE.  The most popular 

measures of dependence structure of copulas, for example Kendall’s tau and Spearman’s 

rho, and tail dependence index are implemented in EVANESCE.  Algorithms suggested 

by Genest and Mackay [1986] and Cap´era`a et al. [2000] for the generation of random 

pairs from certain parametric copulas are implemented in EVANESCE too. 
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2. Parametric Copula Classes and Empirical Copulas 

There are 16 parametric copula families and an empirical copula class implemented in 

EVANESCE library.  Users can use these to construct joint cumulative and probability 

density functions, generate random variables, compute Kendall’s tau, Spearman’s rho, 

and the tail index parameter, or use the maximum likelihood method to estimate 

parameters of any of these copulas. 

 

1) normal copula (normal.copula) 

One of the most frequently used copulas (especially for financial modeling) is the copula 

of a bivariate Gaussian distribution with correlation δ.  It is defined by 

 

where Φ-1 is the quantile function of the standard univariate Gaussian distribution, and Φδ 

is the joint cumulative distribution function of a standard bivariate Gaussian distribution 

with correlation coefficient δ (0<δ<1).  Since this copula is a very familiar object to most  

researchers (especially when used with Gaussian marginals), it has been incorporated in a 

number of applications simply because it was the only tool available for quite some time 

[Embrechts et al., 2000b].  In fact, J. P. Morgan’s RiskMetrics [1995] has been using this 

copula for portfolio risk management by Monte Carlo simulations long before it was 

related that one were dealing with copulas. 
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2) normal mixture copula (normal.mix.copula) 

Suppose two pairs of random variables (U1, V1) and (U2, V2) independent of each other.  

The joint distribution of the two pairs are given by normal copulas with parameter δ1 and 

δ2 respectively.  Let (X,Y) be a random pair, such that it is equal to (U1, V1) with 

probability P, and it is equal to (U2, V2) with probability (1-P).  Note that since marginal 

distributions of U1, V1 , U2, V2 are uniform, so are the marginals of X, and Y.  So the joint 

distribution of (X,Y) is given by the following copula 

 

 ,  is a normal copula with parameter δ 

 

3) The Extreme Value copula class 

An important class of copulas is the Extreme Value class (ev.copula).  A copula is said to 

be an EV copula if for all t>0 the scaling property 

 

holds for all  

 

EV copulas are max-stable, meaning that, if (X1, Y1), (X2, Y2), . . . , (Xn, Yn) are i.i.d. 

random pairs from an EV copula C and Mn =max{X1,X2, . . . ,Xn}, Nn = max{Y1, Y2, . . 

. , Yn}, a copula associated with the random pair (Mn,Nn) is also C. It can be shown [Joe, 

1997, p. 175] that EV copulas can be represented in the form: 
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where A: [0,1]  [1/2,1] is a convex function such that max(t,1-t) < A(t) < 1 for all 

.   The function A(t) is called the dependence function.  As in the case of 

univariate random variables, it can be shown that the limiting copula for the sequence 

{(an + bnMn, cn + dnNn)} is an EV copula, if the sequence converges weakly in 

distribution for some sequence of numbers an , bn , cn and dn   under certain regularity 

conditions [Galambos, 1987]. 

 

4) Gumbel copula (gumbel.copula) 

Well-known Gumbel copula [Gumbel, 1960] (an EV copula as well as an Archimedean 

copula class ) has the following form: 

 

with  and the dependence function of the form: 

 

 

5) Galambos copula (galambos.copula) 

Galambos copula [Galambos, 1975] (an EV copula) has the following form: 

  

and the dependence function is: 

 

 

6) Husler and Reiss copula (husler.reiss.copula) 
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Husler and Reisss copula [Husler and Reiss, 1989] (an EV copula) has the following 

form: 

 

where  is a cdf of a standard 

Gaussian.  The dependence function is 

 

 

7) Tawn copula (tawn.copula) 

Tawn copula [Tawn, 1988, 1997] (an EV copula) is an asymmetric extension of the 

Gumbel copula with the dependence function of the form: 

 

where  

 

8) BB5 copula (bb5.copula) 

BB5 copula [Joe, 1997] (an EV copula) is a two-parameter extension of the Gumbel 

copula and has the form of: 

 

where  

The dependence function is: 
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9) The Archimedean copula class 

Another general class of copulas is the Archimedean copula (archm.copula).  A copula is 

said to be an Archimedean copula if its distribution function can be written in the 

following form: 

 

with some function  which is continuous, strictly decreasing, 

convex, and satisfying .    This function is called the Archimedean 

generator [Nelsen, 1999, chapter 4].   is defined as , and 

 

Notice that Gumbel copula is an EV copula as well as Archimedean copula because it can 

be written in the above standard form of an Archimedean copula with a generator 

function of   

 

10) Frank copula (frank.copula) 

Frank copula [Frank, 1979] (an Archimedean copula) has the following distribution 

function: 

 where 
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and the generator function is given by: 

 

 

11) Kimeldorf and Sampson copula (kimeldorf.sampson.copula) 

Kimeldorf and Sampson copula [Kimeldorf and Sampson, 1975] (an Archimedean 

copula) has the following form: 

 where  and its generator function is 

 

 

 

12) Joe copula (joe.copula) 

Joe copula [Joe, 1993] (an Archimedean copula) has the form of  

 where  and 

the generator function is 

 

 

13) BB1 copula (bb1.copula) 

BB1 copula [Joe, 1997] (an Archimedean copula) is given by 

 with  and the 

generator function is 
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14) BB2 copula (bb2.copula) 

BB2 copula [Joe, 1997] (an Archimedean copula) has the form of 

where  

The generator function has the form of   

 

15) BB3 copula (bb3.copula) 

BB3 copula [Joe, 1997] (an Archimedean copula) has the form of 

 with and 

,  

The generator function  

 

 

 

16) BB6 copula (bb6.copula) 

BB6 copula [Joe, 1997] (an Archimedean copula) has the form of 
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where  and the generator function is  

 

 

17) BB7 copula (bb7.copula) 

BB7 copula [Joe, 1997] (an Archimedean copula) has the form of 

  

where   

The generator function is given by 

 

 

18) The Archimax copula class – BB4 copula (bb4.copula) 

et al. [2000] combined the EV and Archimedean copula classes into a single 

class called Archimax copulas.  The Archimax copulas are copulas which can be 

represented in the following form: 

 

where A(t) is a valid dependence function and a valid Archimedean generator.  

Archimax copulas reduce to Archimedean copulas for A(t) =1 and to EV copulas for 

.  et al. [2000] proved that it is a valid copula for any 

combination of valid function and A(t) 
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BB4 copula [Joe, 1997] is an example of this class of copula with  

 

The distribution function is given by 

  

where  

 

19) Empirical copula (empirical.copula) 

If  are the order statistics of 

the univariate samples, the empirical copula is defined at the point  

by the formula: 

 

An empirical copula can be created by calling the following function 

empirical.copula(x,y) 

where x and y are data points that are assumed to have a uniform (0,1) marginal 

distribution [Nelson, 1999].  They are either a vector, a list, or a matrix. 

                  

 

3.       A List of Major Functions in EVANSCE and Brief Description by Category 
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1) Parameter estimation for GEV and GPD distribution using the method of L-
Moments and method of maximum likelihood 

 
sample.LMOM: 
compute unbiased estimates of mean, second L-moment, L-skewness, and L-kurtosis. 
 
PlotPos.LMOM:  
compute plotting position estimates of sample L-moments 
 
gev.lmom:  
compute L-moment parameter estimates for GEV. 
 
gev.mix1:  
compute MIX1 parameter estimates for GEV. 
 
gev.mix2:  
compute MIX2 parameter estimates for GEV. 
 
gpd.lmom:  
compute L-moment parameter estimates for GPD. 
 
gpd.ml:  
compute MLE parameter estimate for GPD. 
 
 

2) Peak Over Threshold (POT) estimation and CDF & quantile functions of a 
random variable with power decaying tails 

 
gpd.tail:  
fit a GPD to excesses on two tails (standard POT analysis). 
 
gpd.1p:  
semi-parametric estimation of CDF based on a GPD model (one tail) 
 
gpd.2p:  
semi-parametric estimation of CDF based on a GPD model (two tails) 
 
gpd.1q:  
semi-parametric estimation of the quantile based on a GPD model (one tail)   
 
gpd.2q:  
semi-parametric estimation of the quantile based on a GPD model (two tails)   
 
 

3) CDF, PDF, random variable generation from copula objects and exploratory plots 
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dcopula, pcopula, rcopula:  
density, CDF and random number generation of two r.v.s with uniform marginals and 
joint CDF given by a “copula” object respectively. 
 
contour.dcopula, contour.pcopula, persp.dcopula, persp.pcopula: 
generate 2-D contour plots and 3-D perspective plots of the pdf and cdf of a “copula” 
object 
 
 

4) Dependence structure of copula objects 
 
tail.index:  
compute the tail dependence index for a parametric or empirical copula. 
(no method function implemented on Frank copula, Kimeldorf and Sampson copula, Joe 
copula, normal copula, and normal mixture copula) 
 
Spearmans.rho:  
compute Spearman’s rho for a copula. 
 
Kendalls.tau:  
compute Kendall’s tau for a copula. 
 
 

5) Estimation of copula parameters 
 
fit.copula:  
MLE parameter estimates for copulas. 
 
 

6) Functions Specific to Extreme Value copulas and Archimax copulas 
 
Afunc:  
calculate the dependence function for an extreme value copula. 
 
 

7) Functions Specific to Archimedean copulas and Archimax copulas 
 
PHI:  
calculate the Archimedean generator function for an Archimedean copula. 
 
 

8) Functions related to creating and calculating bivariate distributions 
 

bivd:  
create a bivd object representing a child class object of a particular parametric copula 
bivd and a bivariate distribution with 2 arbitrary marginals  
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The syntax of the function: 
bivd(cop, marginX = "unif", marginY = marginX, param.marginX = c(0, 1),   
param.marginY = param.marginX) 
 
pbivd:  
CDF of arbitrary bivariate distribution. 
 
dbivd:  
density of arbitrary bivariate distribution. 
 
rbivd:  
random variable generation of arbitrary bivariate distribution. 
 
 

9) Estimation of a Bivariate Joint CDF 
 
gpdjoint.1p:  
an empirical and semi-parametric estimate of bivariate joint CDF (one tail). 
 
gpdjoint.2p:  
an empirical and semi-parametric estimate of bivariate joint CDF (two tails). 
 
 

10)  Value-at-Risk (VaR) calculation  
 
VaR.exp.portf:  
calculate the Value-at-Risk of a two asset portfolio based on the copula parameters and 
fitted GPD models 
 
VaR.exp.sim:  
calculate the Value-at-Risk and expected shortfall of a two asset portfolio by simulation 
methods. 
 
 

11)  Creating copula objects 
 
archm.copula:  
create an Archimedean copula object 
 
ev.copula:  
create an Extreme Value copula object 
 
empirical.copula:  
create an “empirical.copula” object. 
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12)  Others 
 

shape.plot:  
calculate and plot how shape parameter of a GPD varies with thresholds 
(equivalent to shape function in EVIS library) 
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