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Abstract

We describe the dynamical and bifurcational behavior of two mu-
tually inhibitory, leaky, neural units subject to external stimulus, ran-
dom noise, and ‘priming biases.’ The model describes a simple forced
choice experiment and accounts for varying levels of expectation and
control. By projecting the model’s dynamics onto slow manifolds, us-
ing judicious linear approximations, and solving for one-dimensional
(reduced) probability densities, analytical estimates are developed for
reaction time distributions and shown to compare satisfactorily with
‘full’ numerical data. A sensitivity analysis is performed and the effects
of parameters assessed. The predictions are also compared with behav-
ioral data. These results may help correlate low-dimensional models of
stochastic neural networks with cognitive test data, and hence assist
in parameter choices and model building.

1 Introduction and motivation

In this paper we examine the dynamics of two inhibitory neural units. Our
motivation is the correlation of low-dimensional neural models with behav-
ioral observables of cognition, such as such reaction time (RT) and error rate
(ER) in simple decision tasks. We assume that there are dedicated popu-
lations of neurons, modeled as parallel distributed processing (PDP) units
[23], that are selectively responsive to different stimuli. Each unit accumu-
lates ‘activation’ (a population-averaged analogy to membrane voltage) in

1



response to external stimuli, loses activation through a decay term, and may
gain and lose it due to connections with itself and with the other units in
the network. The units are also subjected to additive noise.

Our connectionist [1, 23] model is based on that of Usher and McClelland
[28], and builds on their analysis. We adopt a logistic activation function
and modifications due to Botvinick [6] and R. Cho [7] that add control
parameters modelling the effects of conflict and expectation. There are
ten parameters in the trial dynamics model, three of which (biases) are in
turn updated by rules based on previous trial outcomes, involving three time
constants and three reference levels. The resulting 10−3+6 = 13-parameter
family of dynamical systems displays a rich behavioral repertoire which is
difficult to characterize by simulation. Here we perform analyses to assist in
parameter choices and in understanding the resulting dynamics. A related
(noise-free) ‘multivibrator’ system is discussed in [2].

The paper proceeds as follows. Section 2 introduces the stochastic ODEs
describing the network model, which are analyzed in Section 3. Section 3.1
provides a preliminary analysis of the noise-free problem, including bifur-
cation behavior. Section 3.2 introduces the Komolgorov (Fokker-Planck)
formulation of the problem, and Sections 3.3-3.5 develop numerical and
analytical methods for its solution. In particular, we derive closed form
approximate expressions for statistics of reaction time distributions and
demonstrate their general validity. Section 4 contains a discussion of the
effects of parameters in determining predicted reaction time statistics, and
comparisons of our analytical predictions to experimental data. We draw
conclusions in Section 5, and (as in [28]) in doing so relate the model to
diffusion models from the psychological literature [21, 22].

2 Description of the model

The model involves two mutually-inhibiting, leaky, neural units character-
ized by state variables xj , subject to external stimuli ρj (normalized so that,
when ρj 6= 0, ρ2 = 1 − ρ1), additive noises modeled by independent, scaled
Wiener processes σWt,j , and ‘priming biases’ i0 + bj , including an overall
level i0 and separate unit biases bj . Each unit inhibits the other via an acti-
vation function f(x; g, b) = 1/[1+ exp(−g(x− b))] with gain g that achieves
half level at x = b. (We generally omit explicit reference to g, b below and
simply write f(x).) The equations are:

dx1 = (−kx1 − βf(x2) + i0 + b1 + ρ1) dt+ σdWt,1
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4
= X1(x1, x2)dt+ σdWt,1 ,

dx2 = (−kx2 − βf(x1) + i0 + b2 + ρ2) dt+ σdWt,2

4
= X2(x1, x2)dt+ σdWt,2 , (1)

where k denotes the leak (time constant 1/k) and β the inhibition level.
These are examples of Ito diffusion equations. Following each trial the units
are allowed to respond to the bias and noise inputs for a preparatory phase

or response-to-stimulus interval (RSI) of duration τP, with ρj ≡ 0, thus
establishing the initial state for the next trial trial period during which they
integrate the inputs including the stimuli ρ2 = 1− ρ1.

Two distinct classes of cognitive choice task may be modelled by Eqn.
(1): (i) the free-response protocol, in which subjects respond to stimulus
presentations as soon as a decision has been reached, and (ii), the forced-
response protocol, in which they are required to respond at a fixed time tr
following stimulus presentation. In the former, a decision is declared when
one of the unit activations f(xj) crosses a preset threshold θ; the instant at
which this crossing occurs is the reaction time (RT) for the trial. Under the
forced-response protocol any threshold crossings while t < tr are ignored,
and the relative values of the activations xj(tr) determine the decision at
interrogation time tr. In both protocols, xj may continue to evolve and be
monitored for a period following the decision itself. After this period, which
in the free-response protocol may depend on the time taken for the winning
unit to reach threshold, the xj are either reset to xj = 0 or otherwise relaxed
prior to initiation of the following preparatory phase.

Modelling the forced-response protocol requires (Monte Carlo) solution
of Eqns. (1), or, equivalently, of the corresponding Komolgorov equation,
leading to expressions for the probability that trajectories have crossed
threshold, and, in turn, for time-dependent probability fluxes. In contrast,
reaction times under the free-response protocol are described by first passage
or hitting time distributions of the stochastic processes xj . Such distribu-
tions can be found via boundary value techniques in the backward Komol-
gorov formulation [20, 13]. However, we will see in Section 3.4.3 that in
many cases probability fluxes also provide good approximations for hitting
time densities. Thus, the forward Komolgorov formulation is useful for both
protocols.

Between each trial and the following preparatory period the overall bias
is updated according to a discrete rule with fading memory, characterized
by a time constant 1/λi0 :

i0(n+ 1) = λi0i0(n) + (1− λi0)[imax − aC(n)] , (2)
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where

C(n) =

∫ t(n)+τT

t(n)
f(x1(t))f(x2(t)) dt (3)

denotes the conflict experienced on the n’th trial, estimated as the integrated
product of the unit activations. Here, τT is the duration of the trial phase.
Following [6], conflict is taken proportional to the product of unit activations
and, via Eqn. (2), i0 decreases (resp. increases) following episodes of high
(resp. low) conflict. In Eqn. (3), conflict is integrated only over the trial
itself; preparatory and post trial periods could also be included, the latter
reflecting the fact that processing continues after choices have been made.
Note that conflict is not normalized by trial length or preparatory periods,
but rather increases monotonically with τT.

Individual biases may be held at bj = 0, or updated depending upon prior
stimuli. Such history effects have been documented in eg. [5, 25]. History-
based updates depend on two factors. The first concerns the number of

neural units which detect patterns: here, combinations of simple repetitions
or alternations in unambiguous stimuli (a stimulus ρj will be assumed to be
unambiguous, or salient, if it differs from the completely ambiguous value of
1/2 by at least some margin φ > 0). We consider the different implications
of: (i) assuming there to be a total of four pattern detection units, one to
detect repetitions and one to detect alternations for each of the decision units
j = 1, 2; and (ii) assuming only two repetition and alternation detectors,
shared between the decision units.

In the first case, the independent units determine biases through the
terms bAj and bRj as follows:

bj(n+ 1) = αAb
A
j (n+ 1) + αRb

R
j (n+ 1), where

bAj (n+ 1) = min
[

λbb
A
j (n) + (1− λb)fAj (n), bmax

]

bRj (n+ 1) = min
[

λbb
R
j (n) + (1− λb)fRj (n), bmax

]

, (4)

and αA, αR are weights accorded to alternation and repetition respectively.
In the second case the shared units determine bj(n+ 1) via:

bj(n+ 1) =











αAb
A(n+ 1) if ρj(n) < 1/2− φ

αRb
R(n+ 1) if ρj(n) > 1/2 + φ

0 otherwise











, where

bA(n+ 1) = min
[

λbb
A(n) + (1− λb)fA(n), bmax

]

;

bR(n+ 1) = min
[

λbb
R(n) + (1− λb)fR(n), bmax

]

. (5)
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Here the functions fAj (n) and f
R
j (n) in Eqn. (4) (resp. fA(n) and fR(n) in

Eqn. (5)) are pattern detectors for alternating and repeating stimuli respec-
tively, which take the values 0 or 1 for each trial. λb represents the decay of
influence of prior stimuli.

The second choice concerns the definitions of fA,Rj . Detectors may ex-
amine two previous timesteps to determine whether the most recent stimulus
represents an alternation, a repetition, or neither. Then the four- and two-
unit rules are, respectively:

fAj (n) =

{

1 if ρj(n− 1) > 1/2 + φ and ρj(n) < 1/2− φ
0 otherwise ,

(6)

fRj (n) =

{

1 if ρj(n− 1) > 1/2 + φ and ρj(n) > 1/2 + φ
0 otherwise ,

(7)

and

fA(n) =











1 if ρj(n− 1) > 1/2 + φ and ρj(n) < 1/2− φ ,
j = 1 or 2 ,

0 otherwise ,
(8)

fR(n) =











1 if ρj(n− 1) > 1/2 + φ and ρj(n) > 1/2 + φ ,
j = 1 or 2 ,

0 otherwise .
(9)

Alternatively, the functions fAj (n), f
R
j (n), f

A(n), and/or fR(n) may ‘auto-
prime’ the biases toward repetition or alternation based on the most recent
stimulus alone, without regard to earlier history. In this case we have

fAj (n) =

{

1 if ρj(n) < 1/2− φ
0 otherwise ,

(10)

fRj (n) =

{

1 if ρj(n) > 1/2 + φ
0 otherwise ,

(11)

and

fA(n) =











1 if ρj(n) > 1/2 + φ or ρj(n) < 1/2− φ,
j = 1 or 2

0 otherwise ,
(12)

fR(n) ≡ fA(n) . (13)

The full range of possibilities for bias update procedures includes all
combinations of the alternatives represented by the rules grouped under
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Figure 1: Mean reaction times (RTs) for all sequence types (of stimulus
length 5). R = same stimulus (repetition); A = different stimulus (alterna-
tion); letters are ordered from least (top) to most recent (bottom). For ex-
ample, “RRAA” represents two repeats followed by two alternations (11121
or 22212). (a) Data adapted and replotted from [25] (Fig. 2) for 1 sec.
response-to-stimulus intervals, ms. time units; (b) results of Monte-Carlo
simulations, arbitrary units.

Eqns. (4) and (5) for bias updating, and Eqns. (6-7), (8-9) or (10-11), (12-13)
for pattern detection. If different bias update rules are chosen for alternation
and for repetition, Eqns. (4) and (5) must be modified accordingly.

To constrain the many possibilities, R. Cho et al. [7] compared sequences
of reaction times generated by numerical integration of Eqns. (1). Since
the past four elements of a stimulus history generally play the dominant
role in determining the outcome of a current trial [25], we set λb = 0.5
(then λ4b = 0.0625). The 24 = 16 resulting possibilities are represented by
strings of A’s and R’s representing alternations and repetitions, with the
most recent stimulus pattern on the right or bottom (eg. AAAR stands
for alternations on three previous trials and repetition on the current one).
Data from Monte-Carlo simulations of Eqns. (1) subject to random salient
(ρj = 0.85) stimulus sequences was analyzed to produce mean RTs for each
stimulus sequence. In preliminary work, a reasonable match to experimental
data from the quantitative literature [25] was obtained with independent
neural units registering alternations and repetitions depending on the prior
two stimuli (Eqn. (4) with Eqns. (6-7)) [7]. Fig. 1 displays these results
for parameters given in Table 1 below, excepting i0 = 0 (fixed), σ = .152,
g = 4, ρ2 = .75, and τP = 6. The forthcoming paper [7] will further examine
stimulus history effects on reaction times and error rates.
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In our preliminary analysis we found it useful to solve the difference
equations (4-5) explicitly for each of the sixteen histories, again using the fact
that for λb ≈ 1/2 memory fades sufficiently rapidly that stimuli preceding
the (n − 4)’th have negligible effect on bj(n + 1). Plotting the resulting
pairs (b1(n + 1), b2(n + 1)) on the (x1, x2) phase plane reveals the relative
importance of different choices on the weights accorded to repetition and
alternation detection. The model may be put in approximate accordance
with experiments by scaling time so that reaction times are comparable: see
Section 4.3. Meanwhile, note the good qualitative agreement between the
mean reaction times of Figs. 1 (a) and (b).

3 Analysis of the model

3.1 The phase plane and bifurcations

We give an outline of the system’s behavior, followed by more detailed qual-
itative and quantitative studies (cf. [2]). To gain an initial understanding,
we first consider Eqn. (1) without noise (σ = 0), in which case it is a dissipa-
tive system possessing a Liapunov function [14, 16, 17]. Thus, released from
an initial (non-equilibrium) state, typical solutions approach asymptotically
stable fixed points (sinks). Fixed points lie at intersections of nullclines, the
curves on which the components’ rates of change vanish:

x1 =
1

k
[i0 + b1 + ρ1 − βf(x2)] , x2 =

1

k
[i0 + b2 + ρ2 − βf(x1)] . (14)

There may be one, two, or three equilibria, depending upon parameter
values. If there is one, it is stable; if three, two are stable and the other
“central” one is an unstable saddle. Since the maximum slope of the (scaled)
activation function βf(x) in (14) is βg/4 (occurring at x = b), if βg ≤ 4k
the nullclines intersect exactly once for any i0, bj , ρj ; if βg > 4k they may
intersect in three points when i0 + bj + ρj − β < bk < i0 + bj + ρj ; j = 1, 2.
For equal bias and stimulus γ = i0 + bj + ρj , j = 1, 2, the bistability region
is delimited by the condition that the symmetric fixed point (x̄, x̄) occur
where the nullclines both have slope −1. Solving

x̄ =
1

k
[γ − βf(x̄)] and − β

k
f ′(x̄) = −1 (15)

simultaneously, we obtain γ − kx̄ = β[1±
√

1− (4k/βg)]/2. Thus, for βg >
4k, a pair of fixed points symmetric about the diagonal bifurcate from (x̄, x̄)
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Figure 2: Bifurcation diagrams for varying i0. Ordinate shows value of
x2 − x1 to indicate symmetry breaking. (left) For b1 = b2 = 0 and the
standard parameter set, a pitchfork bifurcation occurs from the symmetry
axis x1 = x2. Results for g = 5 (thick lines) and g = 10 (thin lines); (right)
for g = 5, b1 = .0011, b2 = .1342 (biases representing the AAAA stimulus
history), the pitchfork bifurcation is unfolded in a “cusp catastrophe” and
a saddle-node bifurcation occurs [14].

at

x̄pf =
1

k

[

γ − β

2

(

1±
√

1− 4k

βg

)]

; (16)

as γ varies, the bifurcations occur where

γpf = k



b− 1

g
ln





1±
√

1− 4k
βg

1∓
√

1− 4k
βg







+
β

2

(

1∓
√

1− 4k

βg

)

. (17)

Fig. 2 shows bifurcation diagrams [14] as fixed point loci x2 − x1 in terms
of i0 for ρj = 0, b1 ≥ b2 = 0 and what will be referred to as the standard
parameter set (displayed in Table 1).

Fig. 3(a,b) shows nullclines for two parameter conditions, and also shows
typical system states at the close of the preparatory period (ρj ≡ 0), in the
presence of noise. Solutions move relatively rapidly towards the central re-
gion where the nullclines are close, and thereafter slowly drift and diffuse
under the influence of noise. Increased bias i0 shifts the (unique, stable) equi-
librium of Fig. 3(a) diagonally, changing it into an unstable saddle point, and
creating new stable and unstable asymmetric equilibria closer to threshold
(cf. Eqn. (16) and Fig. 2). As bias continues to increase, the asymmet-
ric equilibria recombine with the symmetric one and monostability returns.
‘Noisy’ solutions therefore spread towards these states, leading in Fig. 3(b)
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β .75

k .2

σ .158

ρ2 .85

b .5

g 5

i0 .1583

τP 1

θ .9

b1(AAAA) .0011

b2(AAAA) .1342

b1(AAAR) .1342

b2(AAAR) .0011

b1(eq) (.1342+.0011)/2

b2(eq) (.1342+.0011)/2

Table 1: The standard parameter set used to demonstrate many of the
methods used in this paper. These parameters were selected from prelim-
inary trial and error efforts to match experimental sequence history data
(cf. Fig. 1) using Monte Carlo simulations of Eqns. (1) with piecewise linear
activation functions. The values of bj(AAAA) and i0 were taken from trial-
to-trial averages performed using the rest of the standard parameter set,
with the former averaged over only those subsequences of trials with the
relevant stimulus history and i0 averaged over all trials. These biases were
used in a natural way to determine bj for the other two stimulus histories.

to a more diffuse sample of initial data for the trial itself. During trial, with
ρj 6= 0, solutions drift towards a ‘new’ stable equilibrium. If the stimulus
is unambiguous (ρ1 exceeds ρ2, or vice versa by a sufficient margin), this is
unique; if not (ρ1 ≈ ρ2), bistability may persist.

The analysis above reveals that parameters should not be varied arbitrar-
ily: the net effect of biases i0, bj and stimuli ρj is to shift equilibria rightward
and upward, and hence thresholds must be set with these values in mind, so
that typical distributions during the preparatory period lie below threshold,
and trial equilibria lie beyond. Hence, reasonable threshold values in xj scale
linearly with i0, bj and ρj . Threshold values themselves, being computed by
inverting the function f(xθ) = θ to give xθ = b + [ln(θ) − ln(1 − θ)]/g ,
are most significantly affected by activation gain and bias g, b. Replacing
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Figure 3: Nullclines and typical distributions of solutions at the end of the
preparatory period, with bj = 0, τP = 2, and other parameters other than
i0 drawn from the standard parameter set. (left) i0 = 0 (following high
conflict); (right) i0 = 0.5 (following low conflict). Results are from Monte-
Carlo numerical solution of the stochastic differential equation (1).

xj by xj − b simply adds the term kb to each right hand side of Eqn. (1);
thus b effectively specifies an ‘origin’ for the state space and we may keep
it constant without loss of generality (here we take b = 0.5). Increases in g
cause decreases in xθ, and (more modest) increases in distance between trial
equilibria and the diagonal x1 = x2: cf. Fig. 2.

The essential picture is that gain variations primarily affect the distance
solutions must travel from stimulus onset to cross threshold, hence increases
in g reduce reaction time (RT) means and vice versa. In contrast, increases
in conflict i0 and uniform increases in biases b1,2 near the bifurcation point
in Eqn. (17) cause both a shift towards threshold and spread of solution
distributions prior to stimulus onset, and thus reduce RT means but increase
RT variances. The extent of this spread depends on the time τP allotted to
the preparatory cycle. We now describe how these effects can be quantified.

3.2 Probability densities

Eqn. (1) is an example of an Ito diffusion. Let p(x1, x2, t; p0) denote the
transition probability density at time t from initial density p0; then p obeys
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the forward Fokker-Planck or Komolgorov equation [3]:

∂p

∂t
= − ∂

∂x1
(X1p)−

∂

∂x2
(X2p) +

σ2

2

(

∂2p

∂x21
+
∂2p

∂x22

)

, (18)

where Xj(x1, x2) denote the deterministic vectorfield and σ scales the (in-
dependent) Wiener processes in Eqn. (1). During a trial p evolves, first in
response to the preparatory vectorfield (ρj ≡ 0) and then to the stimuli. If
p can be computed or approximated, we may integrate the probability mass
which has crossed threshold at any given time and hence find the probability
that a particular decision will be made at a particular time t in the forced-
response protocol. We will see in Section 3.4.3 how this may be related to
free-choice RT distributions. Below we sometimes drop explicit reference to
p0 and write p(x1, x2, t).

3.3 Numerical solutions

The variable coefficient linear PDE (18) cannot generally be solved explic-
itly, but numerical solutions are routine. Fig. 4 (a,b) shows p(x1, x2; t) at
preparatory cycle end and during trial. The initial distribution for the sim-
ulation was a symmetric Gaussian with variance .04 centered at (x1, x2) =
(0, 0). Computations were done with an adaptive-grid finite element algo-
rithm (FlexPDE [4]) and the standard parameter set of Table 1.

Fig. 4(c) shows the threshold crossing fluxRf2 (t) of probability, which was

computed as the flux J = pX− σ2

2 ∇p of probability numerically integrated
across the relevant decision thresholds (xθ, x2 ≤ xθ) and (x1 ≤ xθ, xθ).
These thresholds were used for simulation of salient stimuli, and motivated
by the notion of hitting times, do not include post-threshold segments (in the
forced-response protocol, these segments could be relevant for trajectories
that move between post-threshold regions without crossing first into the
region xj < xθ, j = 1, 2). Hence, the numerical results for threshold crossing
fluxes presented here are valid under the assumption that, as in the case
shown in Fig. 4, this type of recrossing event does not occur with significant
probability. Finally, Fig. 4(d) shows the probability P f

2 (t) that the correct
choice would have been made at time t = tr after the start of the trial in the
forced-response protocol, obtained by numerical integration of the FlexPDE
results over the region x2 ≥ xθ.
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Figure 4: Computations of (a) p(x1, x2, t = τp; p0 ≈ δ(0, 0)) and (b)
p(x1, x2, t = 3) during a trial with the standard parameter set for the AAAA

stimulus history, computed using FlexPDE ; (c) flux distribution Rf2 (t); (d)
integral of p(x1, x2, t = τp) over region past threshold 2. Irregular back-
grounds away from the main peaks in (a) and (b) are graphical artefacts
due to low probability values.

3.4 Analytical approximations

3.4.1 General method

Here we outline an approximation developed from Stone and Holmes [26];
also see Chapter 8 of [15]. As Fig. 3 indicates, the two nullclines are close
in the central region of phase space, and the deterministic vectorfield is di-
rected relatively strongly, parallel to the diagonal, towards this region. We
therefore assume that, after an initial transient, the bulk of the prepara-
tory cycle involves evolution in response to the component of the vectorfield
projected onto a curve lying between the nullclines and passing through the
fixed point(s). This in turn may be reasonably approximated by the vector-
field linearized at the central, stable or unstable, equilibrium and projected
onto its weak stable or unstable eigenvector; in the latter case, we implicitly
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assume that the preparatory period is short enough that solutions cannot
spread too far from the saddle point, and bimodal distributions do not have
time to develop (cf. Figs. 3(a,b) and 4(a)).

Since any sum of independent processes of the form aW1,t+
√
1− a2W2,t

is again Wiener, random forcing along the relevant eigenvector may be rep-
resented by the single Wiener process Wt. We take the initial distribution
to be the delta function δ(0, 0); the results can be generalized to Gaussian
initial data of given mean and variance. Our reduced problem therefore
becomes the Ornstein-Uhlenbeck (OU) process

duP =
(

λPu
P
)

dt+ σdWt , (19)

with corresponding forward Komolgorov equation

∂p

∂t
= − ∂

∂uP
(λPu

Pp) +
σ2

2

∂2p

(∂uP)2
, p(uP; t = 0) = δ(u0

P) , (20)

where λP is the weak stable or unstable eigenvalue for the preparatory cycle
(P denotes preparatory), u defines the distance along the corresponding
eigenvector uP, with u = 0 at the fixed point (x1

P, x2
P), and we allow

u0
P 6= 0 to include asymmetric biases b1 6= b2, for which the initial condition

(x1, x2) = (0, 0) does not coincide with the fixed point. The OU process also
arises (in a different manner) in [28]. Eqn. (20) is solved by

p(u; t) = N
(

u0
PeλPt,

σ2

2λP

(

e2λPt − 1
)

)

, (21)

where

N (µ, ν2) =
1√
2πν2

exp

(

−(x− µ)2
2ν2

)

(22)

denotes the Gaussian (normal) density with mean µ and variance ν2. In
the monostable case (λP < 0), µ → 0 and p converges on the equilibrium
distribution N (0,−σ2/2λP); in the bistable case (λP > 0), µ increases expo-
nentially and p ‘flattens out.’ The resulting density at stimulus presentation
pT(v) (T denotes trial) may be estimated from p(u, τP) as described below.

With stimuli present (ρj 6= 0), the equilibrium shifts and one may ap-
proximate the dynamics by considering the evolution of pT(v + v0) under
the drift field established by projection of the trial vectorfield onto the weak
stable or unstable eigenvector v of the unique stable (corresponding to the
decision for unambiguous stimuli) or central unstable (for ambiguous stim-
uli) equilibrium, with eigenvalue λT. Here the additional shift v0 accounts
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for the fact that the origin of the new (v) coordinate coincides with the trial
fixed point (x1

T, x2
T), which differs from the preparatory phase equilibrium.

Thus we must solve

∂p

∂t
= − ∂

∂v
(λTvp) +

σ2

2

∂2p

∂u2
, p(v; t = 0) = pT(v + v0) . (23)

Letting vθj denote the points where the eigenvector intersects the thresholds
xθ, we compute the probabilities Pj(t) that the j

th threshold has been passed
at time t as

P f1 (t) =

∫ ∞

vθ1

p(v; t) dv , P f2 (t) =

∫ vθ2

−∞
p(v; t) dv , (24)

where we have used the convention that v increases as x1 increases. The
associated fluxes of probability across decision thresholds, Rfi (t) (the super-
script standing for flux), is found from

Rfi (t) =
d

dt
(P fi (t)) . (25)

In making this one-dimensional reduction, we implicitly assume that the
slow manifolds (relevant eigenvectors) contain phase space regions below
the threshold x2 = xθ (resp. to the left of x1 = xθ).

These functions may be computed as follows, for both the bistable (am-
biguous stimulus, λT > 0) and the monostable (unambiguous stimulus,
λT < 0) cases. The initial condition for Eqn. (23) derives from the so-
lution (21) at the close of the preparatory cycle; if we assume that the
relevant preparatory and trial eigenvectors uP and v may be approximated
as parallel, we have

pT(v + v0) = N
(

u0e
λPτP + v0,

σ2

2λP

(

e2λPτP − 1
)

)

≡ N (µ0, ν
2
0) , (26)

and Eqn. (23) is solved by

p(v, t) = N
(

µ0e
λTt, ν20e

2λTt +
σ2

2λT

(

e2λTt − 1
)

)

≡ N
(

µ(t), ν2(t)
)

. (27)

Using (27) in (24) and performing the changes of variables

ξ =
v − µ(t)
√

2ν2(t)
and ∆j(t) =

vθj − µ(t)
√

2ν2(t)
, (28)
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we find

P f1 (t) =
1√
π

∫ ∞

∆1(t)
e−ξ

2

dξ

=
1

2
[1− sign (∆1(t)) erf(|∆1(t)|)] . (29)

Similarly, cf. [28],

P f2 (t) =
1√
π

∫ ∆2(t)

−∞
e−ξ

2

dξ

=
1

2
[1 + sign (∆2(t)) erf(|∆2(t)|)] . (30)

Putting these results into Eqn. (25), we obtain

Rf1 (t) = −
1√
π

(

−e−∆1(t)
2

∆′1(t)
)

; Rf2 (t) =
1√
π

(

e−∆2(t)
2

∆′2(t)
)

, (31)

which reduce to

Rf1 (t) = −

(

σ2µ(t)− vθ1e2λT t(2λT ν20 + σ2)
)

√
π(2ν2(t))3/2

exp

(

− [vθ1 − µ(t)]2
2ν2(t)

)

Rf2 (t) =

(

σ2µ(t)− vθ2e2λT t(2λT ν20 + σ2)
)

√
π(2ν2(t))3/2

exp

(

− [vθ2 − µ(t)]2
2ν2(t)

)

v

‖v‖ ,(32)

with µ(t) and ν(t) given as in Eqn. (27), and mean and variance:

〈Rf (t)〉 =
∫ ∞

0
tRf (t) dt and var(Rf (t)) =

∫ ∞

0
t2Rf (t) dt . (33)

Fig. 5 shows an example of these distributions. Here, we replace the
unambiguous stimulus specified in the standard parameter set with the am-
biguous values .55 = ρ2 > ρ1 = .45 to produce nonzero curves P fj (t), R

f
j (t)

for j both 1 and 2 and also set bj = i0 = 0. Note that the analytical ap-

proximations generally capture the correct form of P f
j (t) and R

f
j (t), but are

significantly shifted from the results of the 2-D simulations; this is largely
due to our assumption that solutions collapse in negligible time onto uP.
Corrections developed in the next section address this and other shortcom-
ings.

15



P

2 4 6 8
t

0.2

0.4

0.6

0.8

1

1.2

R

2 4 6 8
t

0.2

0.4

0.6

0.8

1

1.2

Figure 5: Numerical simulations (solid lines) and analytical approximations
(dashed lines) for ambiguous stimulus .55 = ρ2 > ρ1 = .45. (left) proba-

bilities P fj (t) and (right) crossing fluxes Rfj (t). Upper curves correspond to
j = 2 (ambiguously correct decision), lower curves to j = 1.

3.4.2 Modifications to general method for salient stimuli

In this section, we develop modifications appropriate for the case of strongly
salient stimuli (e.g. |ρ2 − ρ1| ≥∼ .25), a situation treated in the remain-
der of the paper. We restate three of the assumptions used in developing
Eqns. (32): (i) the linearization of Eqn. (1) about the relevant fixed point
adequately approximates the vector field in the regions affecting the deci-
sion dynamics, (ii) computing the evolution of p(x1, x2, t; p0) only along the
eigenvectors uP and v is sufficient to characterize the two-dimensional dis-
tribution and (iii) orthogonal projection of the distribution p(u, τP) from
uP onto the (not necessarily parallel) eigenvector v introduces only a small

error into Rfi (t).
To simplify the resulting expressions, we chose to accept (iii) under the

assumption that the salient trial dynamics are dominated by the vectorfield
linearized at the trial fixed point, which is generally a stable ‘star’ node (cf.,
Eqn. (36) below). This implies that p(x1, x2, t) should contract onto v as
its mean progresses along this eigenvector toward the decision threshold, so
that if the contraction is sufficiently strong the mass of p(x1, x2, τP) in “bins”
perpendicular to v would cross the threshold roughly simultaneously. Fig. 6
shows a comparison of the (numerically computed) values of p(x1, x2, τP)
along v with the orthogonal projection of this distribution onto v at equally
spaced points. The similarity between the curves in Fig. 6 supports our
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Figure 6: Similarity of the values of p(x1, x2, τP) along v (solid line) with
orthogonal projections of the distribution onto v (dashed line). To facilitate
comparison, the curves were scaled to have the same maximum.

acceptance of assumption (iii) as a reasonable approximation.
In the presence of a salient stimulus, assumptions (i) and (ii) do not

generally hold. In particular, (i) may be violated when the relevant evolution
during the trial phase occurs far away from the fixed point (i.e. if the fixed
point is far outside of the decision thresholds). This is generally the case
for strongly salient stimuli, but not for ambiguous stimuli, when the central
unstable fixed point is generally near the main diagonal of the phase plane
(cf. Figs. 2 and 4). Moreover, (ii) may be false when τP is small, as further
explained below.

The first modification to the general method involves the choice of the
eigenvector v in Eqn. (23), and accounts for fact that the mean of p(x1, x2, t)
approaches but does not completely reach uP during the finite period τP of
the preparatory phase. Fig. 7 illustrates this for various values of τP up to
τP = 1 (which represents a preparatory period of approximately the same
duration as a typical RT in model time units). If τP is sufficiently small, the
resulting effects on the RT distributions calculated in Eqn. (31) and other
measures may be significant.

This can be partially corrected for by calculating the linearized two-
dimensional prediction (x̃1

P, x̃2
P) for the position of the mean at τP. First,

we define the following terms: when the central unstable or single stable
fixed point for the preparatory phase is (x1

P, x2
P), the initial condition

(x1(0), x2(0)) = (0, 0) at t = 0 corresponds to uQ0 and uP0 along uP and the
stable eigenvector uQ for the preparatory phase respectively. These values
are given by:

uQ0 =
√

1 + (mQ)2

(

mPx1
P − x2P

mQ −mP

)

17
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Figure 7: A plot of the mean of p(x1, x2; t = τP) for various values of τP.
The asymptotic approach of the mean approach to the unstable preparatory
cycle eigenvector is addressed by the “first” improvement to the analytical
model detailed in the text. Consecutive dots are separated by timesteps
δt = .2, out to a maximum of τP = 1, and the standard parameter set with
stimulus history AAAA is used.

uP0 =
√

1 + (mP)2

(

x2
P −mQx1P
mQ −mP

)

, (34)

where mP and mQ are the slopes of uQ and uP in the (x1, x2) phase plane.
At the end of the preparatory cycle, the mean of the distribution is then
located at the point

x̃1
P =

(

x2
P −mQx1P

)

eτPλP +
(

mPx1
P − x2P

)

eτPλQ

mQ −mP + x1
P

x̃2
P =

mP
(

x2
P −mQx1P

)

eτPλP +mQ
(

mPx1
P − x2P

)

eτPλQ

mQ −mP + x2
P .(35)

In the case of unambiguous stimuli, the Jacobian of Eqns. (1) for the trial
phase evaluated at the unique stable fixed point (x1

T, x2
T) is approximately

given by:

JT '
[

−k 0
0 −k

]

= −kI, (36)

so under this approximation any nonzero vector in <2 is a stable eigenvector
with eigenvalue λT = −k for the trial phase. Hence, v may be chosen as the
eigenvector connecting (x1

T, x2
T) with (x̃1

P, x̃2
P); this generally results in

an improvement in accuracy over the eigenvector connecting (x1
T, x2

T) with
(x1

P, x2
P). In this case, the initial condition (26) for Eqn. (23) is replaced
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by

p(v; t = 0) = N
(

ṽ0,
σ2

2λP

(

e2λPt − 1
)

)

, (37)

where

ṽ0 =
[

(x1
T − x̃1P)2 + (x2

T − x̃2P)2
]

1
2 (38)

and we retain the variance predicted in Eqn. (26). Denoting by (xθ, x2
θ)

and (xθ1, xθ) the intersections of the stable eigenvector with the thresholds
xj = xθ (j = 1, 2 respectively), we obtain the threshold values along v

vθ1 =
[

(x1
T − xθ)2 + (x2

T − x2θ)2
] 1

2 (39)

vθ2 =
[

(x1
T − x1θ)2 + (x2

T − xθ)2
] 1

2 . (40)

A second correction addresses the approximation of replacing the pro-
jection of the vector field (X1, X2) onto v by its linearization at (x1

T, x2
T).

Fig. 8 shows a typical projection in the case of salient stimuli, and demon-
strates that the vector field may indeed be approximated as linear in the
‘post-threshold’ region 1. However, in the pre-threshold region 2, a con-
stant vectorfield approximation appears to be more appropriate, with the
constant value V determined by averaging over the relevant region along v
or simply by the value of the projection at an appropriate point along v.
Techniques do exist (e.g. [10]) to compute the approximate evolution for
piecewise linear vectorfields such as that spanning regions 1 and 2; however,
to simplify the analysis here we will consider using one of either the constant
or linearized velocity profiles.

Since the initial distribution pT(v+ v0) for the trial phase is largely sup-
ported between the thresholds (Fig. 8) and we are primarily concerned with
hitting time distributions Rhj (t) (independent of post-threshold dynamics),
a constant vectorfield approximation seems most appropriate for the free
response protocol. For the forced response protocol or the trial-dependent
updating of model parameters (e.g. Eqn.(3)), in which post-threshold dy-
namics may be significant, the linear (1) and constant (2) regions may be
effectively ‘averaged’ by modifying the linear Ornstein-Uhlenbeck formula-
tion via λT → ψλT, ψ > 1. Here, where w.l.o.g. stimulus “2” is assumed
correct, we choose

ψ =
1

λTvθ2

(

X1(x
ψ), X2(x

ψ)
)

· v

‖v‖ , (41)

where xψ is the selected point along v.
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To accommodate a constant vector field approximation with velocity V ,
the results derived above for the Ornstein-Uhlenbeck case may be modified
as follows. Eqn. (19) becomes the equation for constant drift (i.e., uniform
velocity) Brownian motion (CDBM),

dv = V dt+ σ dWt , (42)

and Eqn. (23) becomes

∂p

∂t
= − ∂

∂v
(V p) +

σ2

2

∂2p

∂u2
. (43)

The latter equation is solved by

p(v; t) = N
(

µ(t), ν2(t)
)

, (44)

where
µ(t) = V t+ ṽ0 ν2(t) = ν20 + σ2t . (45)

From these equations, Pj(t) may be computed via Eqns. (29)-(30) and

Rfj (t) via Eqn. (31); this yields, in place of Eqns. (32) :

Rf1 (t) = −σ
2 (ṽ0 − vθ1 − V t)− 2ν20V

2
√
2π
(

ν20 + σ2t
)3/2

exp

[

−(ṽ0 − vθ1 + V t)2

2
(

ν20 + σ2t
)

]

,

Rf2 (t) =
σ2 (ṽ0 − vθ2 − V t)− 2ν20V

2
√
2π
(

ν20 + σ2t
)3/2

exp

[

−(ṽ0 − vθ2 + V t)2

2
(

ν20 + σ2t
)

]

. (46)

We discuss estimates of V and ψ in Section 3.5.
As quantified below, the CDBMmodel is generally a superior approxima-

tion in the case of salient stimuli; other aspects of the relationship between
CDBM and OU models are discussed in [28].

3.4.3 Relationship between fluxes in the forced-response protocol

and reaction times in the free-response protocol

Under appropriate assumptions, the fluxes Rfj (t) found in the previous sec-
tion may be used to represent reaction time densities in the free-response
protocol. Specifically, we assume that (i) the stimuli are sufficiently unam-

biguous so that P f1 (t) and R
f
1 (t) are negligible (assuming again w.l.o.g. that

stimulus 2 is correct) and (ii) the projection of the drift vectorfield normal
to the correct decision threshold is sufficiently positive, where “sufficiently”
will be made precise in what follows.
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Figure 8: Projection of the vectorfield (X1, X2) onto v for standard parame-
ter set with AAAA stimulus history, with the sign switched for plotting and
the regions ‘1’ and ‘2’ discussed in the text indicated. The lefthand of the two
vertical gridlines represents the location of the correct decision threshold,
the righthand gridline that of the incorrect threshold. The superimposed
Gaussian shows the position of p(v; t) at the end of the preparatory phase.
Three horizontal lines show, in decreasing order, the values of X(xV) · v

‖v‖

for xV = (xθ1, xθ), xV = (x̃P1 + xθ1, x̃
P
2 + xθ)/2, and xV = (x̃P1 , x̃

P
2 ) (cf.,

Section 3.5).

The key difference between the forced- and free-response protocols is
that, in the latter, individual realizations of Eqn. (1) must be removed from
calculations of reaction times at first crossing of either threshold. The cor-
responding density of vθj-hitting times for Brownian motion with constant
drift V and initial condition ṽ0 may be computed as

Rh(t) =
σ2 (ṽ0 − vθj)− ν20V√

2π
(

ν20 + σ2t
)3/2

exp

[

−(ṽ0 − vθj + V t)2

2
(

ν20 + σ2t
)

]

, (47)

using the optional sampling theorem (cf., [18]). Comparing this expression
with the time-dependent probability flux calculated in Eqn. (46), we find
explicitly the difference between barrier hitting time distributions and fluxes:

Rf (t)−Rh(t) = −
σ2 (ṽ0 − vθj + V t) exp

(

− (ṽ0−vθj+V t)
2

2(ν2
0+σ

2t)

)

2
√
2π
(

ν20 + σ2t
)3/2

(48)

which for fixed time scales with exp(−V 2t).
A comparison of flux probabilities Rf (t) and hitting time distributions

Rh(t) is given in Fig. 9 for values of ν20 , vθ2, and ṽ0 from the equal bias case
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Figure 9: Comparison of flux probabilities Rf (t) (dashed line) and hitting
time distributions Rh(t) (solid line) for 1-D, constant-drift Brownian motion.
Parameters are drawn from the equal bias case of the standard parameter
set, and a typical value of V ≈ −0.9 was used. a) Overlay of the two
distributions; b) difference Rf (t)−Rh(t).

of the standard parameter set. The L1 norm of Rf − Rh was found to be
approximately .026, or 2.6% of the norm of the probability density. For the
remainder of the paper we will assume that this norm remains small. Hence,
while we continue to compute probability fluxes, we will frequently drop the
superscripts f and h and refer to our results as reaction times of the free-
response protocol, tacitly assuming that R(t) = Rf (t) ≈ Rh(t). Integrating
this relationship, we have

P {Txθ < t} = P {xj(t) > xθ}+O
(

exp(−V 2t)
)

, (49)

where for a particular realization of the processes Wj,t, P {xj(t) > xθ} is the
probability that the activity of the jth unit has exceeded threshold at time
t and P {Txθ < t} is the probability that the hitting time of xj has already
occurred.

To ‘close’ the analytical expressions (32, 46), it remains to compute or
approximate the values of ṽ0, vθj , V , and ν20 , to which we now turn.

3.4.4 Approximate closed-form expressions for salient stimuli

Depending on the form of the activation function f(x), the solution to the
fixed point equations (14), and hence the values vθj , v0, λP,Q,T, and u0,
may require numerical techniques. We therefore make the piecewise-linear
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Figure 10: Comparison of logistic and piecewise linear activation functions
for the standard parameter set. The linear function with the smaller slope
(1/2max[f ′]) is used to compute eigenvalues: see text following Eqn. (57).

approximation

f(x; g, b) ≈ f̂(x; g, b) =















0 if x < b− 2
g

g
4

(

x+ 2
g − b

)

if b− 2
g ≤ x ≤ b+ 2

g

1 if x > b+ 2
g

. (50)

Note that f̂(x; g, b) has either zero or the maximum slope g/4 of f(x; g, b).
Approximating thresholds by xθ = f̂−1(θ), we obtain xθ = b + (4θ − 2)/g;
since the slope of f̂(x; g, b) is less than that of f(x; g, b) for x < b and greater
than that of f(x; g, b), for x > b, the piecewise linear function typically
overestimates xθ for θ < 1/2 and underestimates xθ for θ > 1/2 . See
Fig. 10. In the symmetric case (b1 = b2), the condition for bistability remains
βg > 4k and the pitchfork bifurcations occur at

γ̂pf = b± 2/g . (51)

We will use Eqn. (50) to obtain closed-form approximations for the quan-
tities calculated in the previous section. Depending on parameter values, the
nullclines may intersect at different sections of the piecewise linear activation
function, so there are several separate cases to consider. For a strongly un-
ambiguous stimulus ρ2 = 0.85 and the standard parameter set, the nullclines
intersect in the region b− 2/g ≤ xj ≤ b+ 2/g, j = 1, 2 during the prepara-
tory phase and x2 > b+ 2/g, x1 < b+ 2/g during the trial phase. While we
only work through this case in detail, the expressions for similar preparatory
cycle parameter values but unambiguous stimuli ρ1 > ρ2 are nearly identical
in form to those calculated below. In other parameter ranges the nullcline
intersection patterns differ, but the same methods apply.
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Introducing the notation γPj = i0 + bj , γ
T
j = i0 + bj + ρj j = 1, 2, the

location of the central saddle point of the preparatory phase dynamics is
given by solving Eqn. (14) with f replaced by f̂ :

x1
P = −2(γP1 − γP2 )

βg − 4k
+

2(γP1 + γP2 ) + β(bg − 2)

βg + 4k
(52)

x2
P =

2(γP1 − γP2 )
βg − 4k

+
2(γP1 + γP2 ) + β(bg − 2)

βg + 4k
. (53)

Under the assumption of salient stimuli, the location of the single stable
fixed point during the trial phase is given by

x1
T =

γT1 − β
k

, x2
T =

γT2
k
. (54)

The Jacobian of Eqns. (1) with activation function f̂(x) for the preparatory
cycle evaluated at (x1

T, x2
T) is

JP =

[

−k −βg
4

−βg
4 −k

]

, (55)

which yields λP = −k+βg/4, λQ = −k−βg/4 with corresponding unstable
and stable eigenvectors (1,−1) and (1, 1). It follows from the fact that the
stable eigenvector of JP has slope one that

uP0 =
1√
2

(

x2
P − x1P

)

=
2
√
2(γP1 − γP2 )
βg − 4k

(56)

and from Eqn. (35) that

x̃1
P =

1

2

[(

x2
P − x1P

)

eτPλP −
(

x1
P + x2

P
)

eτPλQ

]

+ x1
P

x̃2
P =

1

2

[

−
(

x2
P − x1P

)

eτPλP −
(

x1
P + x2

P
)

eτPλQ

]

+ x2
P . (57)

An additional observation is appropriate at this point. Since Eqn. (55)
represents the vectorfield linearized at the maximum slope of the ‘true’ ac-
tivation function f , which is appropriate only for equal biases, λP will be
overestimated for central fixed points that do not occur on the diagonal.
This situation arises for unequal biases b1 and b2; an approximate slope if
|b1− b2| is sufficiently large is the average between maximum and minimum
(zero) slopes of the logistic function, or λP,Q → (1/2)(−k + βg/4). To sim-
plify calculations, this slope averaging was used to calculate eigenvalues for
all parameter sets tested in this paper.
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The Jacobian of Eqns. (1) for the trial phase (ρj 6= 0), evaluated at the

unique stable fixed point (x1
T, x2

T) =
(

(γT1 − β)/k, γT2 /k
)

is:

JT =

[

−k 0
0 −k

]

= −kI, (58)

so any nonzero vector in <2 is a stable eigenvector with eigenvalue λT =
−k during the trial phase. We then project the 1-dimensional distribution
along uQ without distortion onto the eigenvector v in the direction (x̃1

P −
x1
T, x̃2

P − x2T), to obtain

ṽ0 =
(

(x̃1
P − x1T)2 + (x̃2

P − x2T)2
)

1
2 . (59)

Using the expressions for x̃j
P and xj

T derived above, Eqns. (39, 40, 59)
may be used to show that

ṽ0 =

√
A2 +B2

k (β2g2 − 16k2)
(60)

vθ1 = −γ
T
1 − β − kxθ

k

√

1 +

(

B

A

)2

(61)

vθ2 =
γT2 − kxθ

k

√

1 +

(

A

B

)2

, (62)

where

A = 2βgk

[

−DγP1 + (C − 2)γP2 −
E

2
β(bg − 2)

]

(63)

+8k2
[

−CγP1 +DγP2 +
E

2
β(bg − 2)

]

+ β2g2
(

γT1 − β
)

+ 16k2(β − ρ1)

B = 2βgk

[

(C − 2)γP1 +−DγP2 −
E

2
β(bg − 2)

]

+ (64)

8k2
[

DγP1 − CγP2 +
E

2
β(bg − 2)

]

+ β2g2
(

γT2 − β
)

− 16k2ρ2

C = eτPλP + eτPλQ

D = eτPλP − eτPλQ

E = 1− eτPλQ . (65)

For the ‘AAAA’ case introduced above, we compared the values found in
Eqns. (52) - (62) using f̂(x) with those found using f(x); the results are
summarized in Table 2.
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logistic piecewise linear

xP1 0.393 0.372

xP2 0.0771 0.191

xT1 -2.20 -2.20

xT2 5.713 5.713

vθ1 8.20 7.94

vθ2 5.17 5.29

uP0 -.318 -.128

v0 5.86 6.00

λP .361 .369

λQ -.761 -.569

λT -.2 -.2

Table 2: Comparison of input values for the analytical model calculated
using response functions f and f̂ . Note that the piecewise linear estimate
of λP,Q is obtained by taking the slope of f̂ = 1/2max[f ′] as described in
the text following Eqn. (57).

As will be further discussed in Section 3.5, the value of V in Eqn. (46)
is the projection X(xV) · v

‖v‖ , where x
V is the location at which the drift

vectorfield X is to be evaluated. This may be written as

V =
ẋ1(x

V
1 ) + ẋ2(x

V
2 )m̃T

√

1 + m̃T
2

, (66)

where m̃T = A/B is the slope of the relevant trial phase eigenvector. For

example, if we take xV = (x̃P1 , x̃
P
2 ) and assume equal biases b1 = b2 (which

gives x̃P1 = x̃P2 ≡ x̃P ), Eqn. (66) becomes

V =

(

−kx̃P − βf(x̃P)
)

(1 +B/A) + γT1 + γT2 B/A
√

1 + (B/A)2
. (67)

For other parameter sets that may be treated as perturbations from this
symmetric case, a useful approximation may be to hold V constant at this
value.

We now obtain an explicit approximation for the median of the reaction
time distribution in the Ornstein-Uhlenbeck approximation. In the case of
highly salient stimuli with alternative 2 correct, the error rate max{P1(t) :
0 ≤ t ≤ τP + τT} is in general sufficiently low that we can make the ap-
proximation P2(t) → 1 as t → ∞. Hence, the median of R(t) occurs when
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P2(t) = 1/2; Eqn. (30) shows that this occurs where ∆2(t) = 0. In the
Ornstein-Uhlenbeck approximation, this implies

median(R(t)) =
1

λT
ln

(

vθ2
µ0

)

=
1

λT
ln

(

vθ2
uP0 exp(λPτP) + v0

)

. (68)

Using Eqns. (62), (56), and (60), this equation becomes

median(R(t)) =

1

k



ln





√
2k(γP1 − γP2 )eτP(−k+

βg

4 )
√

1 + (A/B)2
+

βB

βg + 4k



− ln[(γT2 − kxθ)(βg − 4k)]



 .(69)

If the correction term ψ discussed in the previous section is included, this
expression is multiplied by 1/ψ. Finally, in the constant-velocity approxi-
mation, ∆2(t) = 0 yields

median(R(t)) =
vθ2 − ṽ0

V

=

√
A2 +B2

V k

[

γT2 − kxθ
B

− 1

β2g2 − 16k2

]

. (70)

We note that closed form expressions for R(t) could also be derived via
Eqn. (32) or Eqn. (46) and used to calculate moments of the RT distribution.

3.5 Accuracy of the analytical approximations

Reaction time distributions obtained using the Ornstein-Uhlenbeck (OU)
and constant-drift Brownian motion (CDBM) approximations with logistic
response functions (Eqns. (32, 46)) to Eqns. (1) were compared with 2-D
numerical simulations for the AAAA, AAAR, and equal bias parameter sets
given in Table 1. For the OU and CDBM models, three different approxima-
tions for the drift vectorfield were examined, each for linear (OU) or constant
(CDBM) vectorfields with projections X(xV) · v

‖v‖ calculated at a different
point along v. Specifically, the approximations were tested with xV equal

to: (i) (x̃P1 , x̃
P
2 ) (the analytically computed maximum of p(x1, x2; τP)), (ii)

(xθ1, xθ) (the point at which the relevant trial phase eigenvector v crosses the

correct decision threshold), and (iii) (x̃P1 +xθ1, x̃
P
2 +xθ)/2 (the intermediate

point).
Analytically computed reaction time distributions (denoted here byRa(t))

were compared with numerical data via several metrics, for all possible com-
binations of drift vector field (i.e. OU or CDBM), specification of xV, and
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Frac. Frac. err.
err., mean variance ‖Ra −Rn‖L1 DKL (R

a, Rn)

CDBM,

xV = (x̃P1 , x̃
P
2 ) -.036 -.36 .34 .23

CDBM,

xV = (x̃P1 + xθ1, x̃
P
2 + xθ)/2 -.13 -.48 .27 .35

CDBM,
xV = (xθ1, xθ) -.17 -.52 .26 .46

OU,

xV = (x̃P1 , x̃
P
2 ) -.12 -.53 .29 .44

OU,

xV = (x̃P1 + xθ1, x̃
P
2 + xθ)/2 -.21 -.62 .30 .75

OU,
xV = (xθ1, xθ) -.25 -.65 .36 1.00

CDBM, PW linear f̂
xV = (xθ1, xθ) -.20 -.49 .27 .46

Table 3: Metrics of difference between analytical approximations Ra(t) and
numerical simulations Rn(t). Here, the fractional error ‘frac. err.’ is the
difference between statistics computed for Ra(t) and Rn(t), normalized by
the values obtained for Rn(t).

stimulus history. The first is the magnitude of differences between means
and variances of the distributions Ra(t) and mean and variance of the corre-
sponding numerically computed distribution Rn(t). The L1 norms and the
Kullback-Leibler distances (or cross entropies) [11] between Ra(t) and Rn(t)
were also computed, where the latter is specified by

DKL (R
a, Rv) =

∫ ∞

−∞
Rn(t)log

(

Rn(t)

Ra(t)

)

dt . (71)

The KL norm effectively emphasizes errors in distributions’ tails, where
absolute values and hence L1 differences are both small.

Averaged over the three cases of stimulus history, the CDBM model with

xV = (x̃P1 , x̃
P
2 ) gave the smallest values of all of these metrics, except for the

L1 norm; xV = (x̃P1 , x̃
P
2 ) was also found to be (here, uniformly) preferable

for the OU model. The best approximation in the L1 sense was given by
CDBM with xV = (xθ1, xθ). These and other values are given in Table 3,
and Figs. 11-13 show the relevant comparisons of reaction time distributions.
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Figure 11: Comparison of R(t) calculated using the 2-D numerical simu-
lations (solid) and the 1-D approximations with logistic response functions

for CDBM model (dashed), with xV = (x̃P1 , x̃
P
2 ). For this and Figs. 12 and

13, results are given for the standard parameter set and, from left to right,
stimulus history AAAA, equal bias, and stimulus history AAAR.
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Figure 12: Comparison of R(t) calculated using the 2-D numerical simula-
tions (solid) and the 1-D approximations with logistic response functions for
CDBM model (dashed), with xV = (xθ1, xθ).

Fig. 8 reveals why the smallest choice of constant drift velocity, calcu-

lated at xV = (x̃P1 , x̃
P
2 ), gives the best values for statistical properties of

Ra(t), and also why these approximations generally fail to reproduce the
long tails of the numerical simulations. The effective one-dimensional vec-
torfield is locally increasing approaching the threshold from region 2. A
linear approximation to such a vectorfield would be equivalent to that ob-
tained from linearization about a fictitious unstable fixed point located to
the right of the domain of Fig. 8. Eqn. (27) shows that such a vectorfield
would result in variance of the Gaussian p(v; t) increasing exponentially in
time, resulting in a lesser slope for the trailing edge of the Gaussian and
hence a longer tail in R(t). Meanwhile the variance of the constant drift
distribution p(v; t) given in Eqn. (45) increases linearly in time, resulting in
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Figure 13: Comparison of R(t) calculated using the 2-D numerical simula-
tions (solid) and the 1-D approximations with logistic response functions for

the OU model (dashed), with xψ = (x̃P1 , x̃
P
2 ).

shorter tails but retaining some of the structure observed in numerical sim-
ulations. By contrast, the Ornstein-Uhlenbeck approximation derived from
linearization about the stable fixed point (xT1 , x

T
2 ) results in a decreasing

variance in time, likely contributing to yet poorer matches for the tails of
Rn(t).

In spite of these shortcomings, the analytical approximations with logis-
tic response functions offer reasonable results. As is suggested by the differ-
ing values of x2

P, λQ, and u0
P in Table 2, approximations to Eqn. (1) using

f̂ are generally less accurate than those using f . The comparison is given

for the best results in the CDBM case, again obtained from xV = (x̃P1 , x̃
P
2 ).

(Since CDBM results were shown to be preferable for f , OU metrics were
not computed in the piecewise linear approximation). The accuracy of the
closed-form expressions derived from the piecewise linear approximation f̂
is sufficient to assist in our discussion of key quantitative and qualitative
effects of parameters on the model’s behavior, to which we now turn.

4 Discussion

4.1 Sensitivity analysis

To determine the sensitivity of reaction time statistics to perturbation around
the standard parameter set, we compared the results of simulations with and
without a perturbation (here 10% of the value of an individual parameter).
For each RT statistic Y , a sensitivity measure Si is assigned to every single-
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Figure 14: Results of the sensitivity analysis for 2-D numerical calculations
(left column) and the piecewise-linear approximations using CDBM with

xV = (x̃P1 , x̃
P
2 ) (right column). 2-D simulation results and the closed-form

Eqn. (46) were numerically integrated to obtain corresponding means and
variances of R(t) for simulation and analytical results and the median for
the simulation results; Eqn. (70) with V given by Eqn. (66) was used to
obtain the median in the analytical approximation. a) Si for the mean of
R(t); b) Si for the median of R(t); c) Si for the variance of R(t).
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parameter perturbation ∆φi from the standard parameter set as follows [12]:

Si =
Y∆φi − Ystandard

Ystandard
× 100% . (72)

Results of this sensitivity analysis are given in Fig. 14 for means and vari-
ances of reaction times. They were calculated using (left column) 2-D nu-
merical solutions for the probability densities (Section 3.3) and (right col-
umn) the closed form expressions for R(t) developed in Section 3.4.4 with

xV = (x̃P1 , x̃
P
2 ). These approximations reproduce many of the trends ob-

served in the numerical solutions, suggesting the usefulness of the closed
form expressions in determining the effects of parameters on reaction time
distributions. The major differences between numerical results and analyti-
cal approximations are in the sensitivity of means and medians to τP and of
all statistics to ρ2. Analytical predictions for the former are incorrect in sign
and magnitude; those for the latter, while qualitatively correct, significantly
underestimate the sensitivities observed numerically.

4.2 Parameter study and relationships to cognitive control

mechanisms

The methods developed above permit analysis of the influence of model pa-
rameters on simulated cognitive experiments. We now describe the dominant
effects, focussing on i0 and g: parameters whose adjustment may represent
cognitive control mechanisms [6, 24, 8].

Reaction time means and medians are mainly determined by the mag-
nitude of the trial vectorfield and the distance to the correct threshold from
the post-preparatory starting point. The former effect may be observed in
Figs. 14(a,b) as sensitivity to ρ2 and b2. Sensitivity to g demonstrates the
latter effect, as the threshold value increases as g decreases, cf. Section 3.1.
To the extent that they determine initial conditions for the trial phase, vari-
ations in i0 also contribute to this effect.

Variances in reaction times are largely determined by the width of the
distribution of initial conditions for trial trajectories. Fig. 2 shows the role of
i0 in determining whether preparatory cycle dynamics are in the monostable
or bistable regimes, and hence the degree to which the relevant distribu-
tion can broaden during the preparatory period; however, this effect is not
present in the parameter range of Fig. 14. Meanwhile, the value of τP deter-
mines how much of this broadening actually occurs, as is demonstrated in
Fig. 14(c). With the notable exceptions of k and g, parameter changes that
cause a decrease in mean and median reaction times also cause decreases in
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eters fixed at the standard values in the equal bias case and under the CDBM

piecewise linear approximation with xV = (x̃P1 , x̃
P
2 ). From Eqns. (70), (67).

variances and vice-versa. This may be interpreted via the time-dependence
of ν2, as discussed in Section 3.5 in reference to Fig. 8.

Fig. 14(c) shows close agreement between 2-D numerical and 1-D piece-
wise linear predictions for the variation of RT medians with g and i0. Under
the latter approximation, Eqns. (70) and (67) may be used to evaluate ef-
fects of these parameters over a range of values. Fig. 15 shows the resulting
variation in median RT; if unit biases remain equal, these equations would
give similar plots for other parameters.

4.3 Relationships to Empirical Studies

The parameter dependencies revealed above are relevant to current cog-
nitive psychology research on the anterior cingulate cortex (ACC) [6] and
locus coeruleus (LC) [27] brain areas. It has been suggested that the ACC
responds to high conflict signals (Eqn. (3)) by decreasing additive inputs i0
to the decision units xj . If the decrease is sufficient to break preparatory
cycle bistability (cf. Fig. 2), it results in controlled response characteristics:
specifically, longer reaction times and decreased error rates. Meanwhile, the
LC’s effects may be incorporated by modulation of gain g, which is thought
to scale with LC-induced release of neuromodulators ([27], see also [24]),
although this requires rapid gain changes during trials: an effect not con-
sidered here. Nevertheless, our analysis quantifies how the suppression of g
and i0 (in response to the presence of conflict) can result in more cautious
response characteristics (Section 3.1 and Figs. 3(a), 15).
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Figure 16: Comparison of R(t) averaged over human subjects in behavioral
trials (triangle datapoints) and R(t) predicted by Eqn. (70) under the PW
linear f̂ and the standard parameter set excepting σ = .24 (solid line). Time
units are msec. Left, for the AAAA stimulus history; center, for AAAR;
right, averaged over all 16 stimulus histories.

To assess the modeling relevance of our standard parameter set, ana-
lytical predictions were compared with data from human subjects. Recent
experimental results [19] for RSIs of 350 msec were chosen, since then RSI
and median reaction times are approximately equal, as for the standard
parameter set. Median reaction times predicted by Eqn. (70) for all six-
teen stimulus histories were used to establish a linear relationship between
model and experimental time units. Biases were predicted using, resp.,
shared and independent pattern detectors to register alternations and repe-
titions (Eqns. (4) and (5)); as per Eqns. (6-9), the detectors were functions
of two prior stimuli. The fit was te = tm × 107.0 + 206.2 msec, where te
and tm are, resp., median experimental and model times. Comparisions of
scaled and normalized R(t)’s from Eqn. (46) and from the experiments are
shown in Fig. 16. To obtain appropriate RT variances, the noise level was
increased by a factor of 1.7 to σ ≈ .27. These results demonstrate that
the model is capable of predicting RT distributions over the full range of
stimulus histories, once the overall timescale has been fitted.

For the increased noise level used in Fig. 16, the maximum probability
of threshold crossing during the preparatory phase is 1 − ∫∞0 R(t)dt ≈ .05,
an acceptably low value. This could be further reduced by choosing a lower
σ and averaging over a distribution of ‘subject’ parameter values, as in
Ratcliff et al. [22]. Alternatively, thresholds xθ could be extended during
the preparatory cycle to decrease 1− ∫∞0 R(t)dt to a negligible level. During
the preparatory period, the new value of xθ could be either retained or
decreased dynamically (see [9] for a related approach); the latter option
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Figure 17: Comparison of RT medians for various stimulus histories. Dashed
line, experimental data. Solid line, closed-form expressions for median of

R(t) (Eqn. (70) in Section 3.4.4 for xV = (x̃P1 , x̃
P
2 )). Time is in msec., with

linear scaling and translation from model units as described in the text.

would induce a nonlinear time-dependence of the vθj (cf. Eqns. (39, 40)).
Next, the ability of the closed form expressions derived in Section 3.4.4 to

reproduce experimentally observed trends in free-response reaction times [25]
was tested. The standard parameter set was replaced by the average biases
and other parameters used in producing Fig. 1 with the exception of τP = 1
(see section 2). To reflect this difference, median RTs from Eqn. (70) were
compared with experimental results [25] for the 500msec RSI. Linear regres-
sion on all sixteen stimulus histories gave the relation te = tm×223.8−129.1
msec. The resulting Fig. 17 shows that the analytical approximations cap-
ture much of the influence of stimulus history on RT medians. However,
there is a clear disparity between experimental and model RT medians be-
tween the eight cases terminating in repeat (R) and the eight terminating
in alternation (A): the model -R’s are too fast and the -A’s too slow. This
might be corrected by redistribution of the repetition/alternation weights
αA,R in Eqns. (4, 5); c.f. [7].

Values of i0, b1, and b2 used in Figs. 1 and 17 and in [7] differ significantly
from the standard parameter set. Consequently, approximations developed
for the standard parameter set were found to be generally less accurate in
this regime. In a preliminary check for stimulus histories AAAA and AAAR,
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setting xV = (xθ1, xθ) and x
V = (x̃P1 , x̃

P
2 ) gave preferable results for the L1

and for the KL metrics of Section 3.5, resp., as for the standard parame-
ter set. These parameters also provided an example of a regime in which
the piecewise linear approximation to the logistic response is quite fragile.
Specifically, the linear approximation exhibits bistability in several cases for
which the logistic response function is monostable, resulting in qualitatively
different dynamics. As γ is varied in the equal bias case, this occurs between
the bifurcation values given by Eqns. (17) (logistic) and (51) (piecewise lin-
ear). For the standard parameter set, the corresponding parameter values
are approximately .02 < γ < .03. Moreover, in the analog of the pitch-
fork bifurcation (Fig. 2) for the piecewise linear case, the asymmetric fixed
points jump discontinuously off the diagonal as g passes through its bifur-
cation value. This extreme sensitivity with respect to g variation appears
unrealistic.

5 Conclusions

This paper developed several methods for studying the relationship between
neural network parameters and behavioral data produced by a simple model
of a forced choice cognitive process. The model was described in Section 2,
where preliminary analyses were performed and bifurcation diagrams drawn.
A finite element solution to the corresponding Kolmogorov equation was
established, and, in Section 3, a method due to Stone and Holmes [26]
was extended to yield analytical estimates for decision probabilities and RT
distributions. In Section 4, a sensitivity analysis of reaction times and error
rates to perturbations around a standard set of parameters was performed,
general conclusions regarding key parameter effects were drawn, and further
comparisons with behavioral data were made.

In the analyses above, the control and bias parameters i0 and bj are re-
garded as constants while preparatory and trial dynamics are studied. In the
Monte-Carlo simulations of [7], i0(n) and bj(n) are directly updated between
trials. We also wish to study more general parameter update procedures in
which i0 and bj depend continuously on time and updating (representing in-
tegration of previous experience) may occur during as well as between trials.
Here, the effect of differing timescales will be crucial. In particular, the data
of Soetens [25] displays significant modulation in RT median dependence
on stimulus history as RSIs change, suggesting that subjects need sufficient
time to “process” prior stimuli before new ones are presented. Further, the
schemes we have examined here involve resetting the initial condition to the
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origin for each trial. As mentioned in Section 2, one could alternatively
continue evolving directly from the point where the trial trajectory crosses
threshold. Work in progress includes studying the effects of these protocols
on RT statistics.

In summary, the model developed above suggests that the dominant
temporal dynamics of the neural network equations (1) can be represented
as Ito diffusion on one-dimensional slow manifolds. Thus, as noted by Usher
and McClelland [28], the drift-diffusion models of Ratcliff [21, 22] emerge
naturally from this (small) connectionist model. Future research will include
generalizing the methods developed here to account for more decision units
and/or the possibility of multiple choices. In this case, a general connection
matrix Tij would be defined, and the model becomes

ẋi = −kxi −
∑

j

Tijf(xj) + i0 + bi + ρi + ηi ; i = 1 . . . n . (73)

A hypothesis we hope to test is that in certain cases the dominant temporal
dynamics of Eqns. (73) can also be represented on slow manifolds, possibly
of higher dimension.
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