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Mathematical Foundations of Neuroscience. By G. Bard Ermentrout and David Terman.
Springer, New York, 2010. $74.95. xvi+422 pp., hardcover. ISBN 978-0-387-87707-5.

Mathematics for Neuroscientists. By Fabrizio Gabbiani and Steven Cox. Academic Press,
San Diego, CA, 2010. $99.95. 498 pp., hardcover. ISBN 978-0-12-374882-9.

Like many other fields of biology, neuroscience is at a crossroads. Spectacular new
technologies are generating unprecedented observations. Multielectrode neural record-
ings, voltage-sensitive dyes, and optogenetic techniques now allow us to observe and
even dynamically manipulate the activity of hundreds of individual cells within large
neural networks. Meanwhile, functional magnetic resonance imaging (fMRI) and elec-
trocorticography (eCOG)—together with EEG and MEG—are revealing large-scale
brain activity. These measurements of population-wide dynamics are joined by “con-
nectomics,” new high-resolution anatomical techniques which seek to map the archi-
tecture of the underlying neuronal networks.

However, interpreting the resulting multivariate, multiscale, and highly interde-
pendent data to extract principles of neural dynamics and computation is a formidable
challenge. Fortunately, mathematics has a strong track record of success in neuro-
science. Many of the key contributions are tied most closely to either dynamics or
statistical inference: Nonlinear PDEs were famously used by Hodgkin and Huxley to
describe the mechanisms of the spike, the fundamental unit of neural computation.
The propagation of allied signals in dendritic trees began yielding, with surprising
grace, to mathematical theories in the decades that followed. Dynamical systems
theory has been fundamental in the analysis and reduction of models of cell behav-
ior. This has lead to critical insights into the behavior of single cells, as well as the
dynamics produced by random and structured cell networks. Stochastic dynamical
systems have also played an important role, as the activity of neurons and networks is
irregular and varies considerably between different presentations of the same stimulus.
Continuous-time Markov chains coupled to nonlinear PDEs and ODEs can describe
single cells, while “population density” continuum equations have been used to model
asynchronous collections of neurons [11].

Neuroscience has also been driven forward by key insights and techniques from
statistics. Estimation and information theory have been used to analyze how close
biological circuits come to theoretically optimal computation and to quantify deci-
sion making and signal detection by the nervous system as a whole [15, 7]. Methods
of Bayesian inference explain how information from multiple sources, including prior
expectations, are best combined—leading to successful predictions of complex behav-
iors [4]. Moreover, allied system identification methods extract optimal statistical
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models of single neurons and circuits, identifying spatiotemporal filtering and nonlin-
ear stages that have become the lingua franca of neural signal processing.

While open problems remain within the fields of neural dynamics and statistical
inference, many exciting opportunities lie at their interface. What combinations of
single-neuron dynamics, coupling kinetics, and network architecture enable efficient
information transfer and flexible computation? Profound results on the power of
abstract computing networks sparked an explosion of work in the 1980s (reviewed
in [8]), and rich mathematical findings continue to emerge. For example, coupled
point-process systems appear to capture and predict a wide range of neural dynam-
ics and can be directly linked to underlying stochastic differential equations. At the
same time, such models allow for efficient fitting, inference, and “decoding” of neu-
ronal activity [14, 13]. New results suggest that the dynamics of interconnected,
spiking networks might directly perform Bayesian inference under certain coupling
schemes [12].

Still, we believe the majority of connections between neural dynamics and neu-
ral statistics awaits discovery. What is the role of network-driven synchrony (see,
e.g., [10]) in the encoding of information about sensory inputs? When do dynam-
ical instabilities and apparent chaos impede such encoding (see, e.g., [17])? What
dynamics allow adaptation of networks to changing statistics of sensory scenes (see,
e.g., [6])? Is the architecture of biological networks optimized for information flow
and computation? When does random-seeming “synaptic bombardment” [3] actually
serve to usefully modulate neural dynamics? In sum—faced with nonlinear dynamics
on an incredible range of spatial and temporal scales, how can we determine (in the
words of [1]) which processes matter for neural computation, and which do not?

Regardless of the future of dynamical and statistical methods in neuroscience,
mathematical scientists will delight in their elegance, depth, and power. Two new
books put this in sharp relief, while offering an excellent introduction to the math-
ematics that is at the heart of present-day neuroscience, as well as many techniques
that are driving emerging research.

Mathematics for Neuroscientists by Fabrizio Gabbiani and Steven Cox (GC) was
developed over 8 years of teaching courses on the topic. This experience, as well as
the wide-ranging research contributions of the authors, clearly shines through—the
text is a landmark for the field in its scope, rigor, and accessibility.

The book opens with dynamical models of single neurons. The strategy is to
begin with the simplest possible descriptions of cells and then build the requisite
mathematics in tandem with increasing model complexity. The narrative progresses
rapidly to describe numerical ODEmethods by p. 27 (including in-context overviews of
stability and accuracy) and on to numerics and analytics for multivariable, nonlinear
branched cable equations by Chapters 8 and 9. Along the way, a clear treatment
of Fourier transforms translates into interesting analyses of the filtering properties
of spatially extended, “quasi-active” cells. Chapter 10 gives a brief overview of the
types of reduced dynamical models that are a mainstay of the book by Ermentrout
and Terman reviewed next.

Chapters 11–18 give an introduction to probability theory and stochastic pro-
cesses. Also discussed is a mathematical description of variability in neural dynam-
ics, such as stochastic synaptic transmission and trial-to-trial differences in spike
trains elicited by identical sensory stimuli. An excellent chapter on the singular
value decomposition includes a beautiful demonstration of model reduction via “bal-
anced truncation” ideas with links to control theory. The reader sees these tech-
niques in action, readily participating in the reduction of a very complex and high-
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dimensional model of a dendritic tree to a handful of relevant dynamical variables
(see below).

The following chapters cover important statistical models, starting with influ-
ential signal processing models in the visual system. The authors explain how the
ubiquitous method of reverse correlation, in which white noise stimuli are used for
system identification, leads to “cascade” point-process models of the form

ν(t) = g(K ∗ I(x, t)).

Here the cell’s spiking is described as an inhomogeneous Poisson process with rate ν(t).
This rate is determined by a convolution with kernelK of the spatiotemporal stimulus
I, passed through a static nonlinearity g. After they are fit to neural data—or, as
in emerging studies mentioned above, a dynamical systems model—such statistical
representations are often used with great success for signal estimation and detection.
The latter is often referred to as decoding, as it involves transformations of spike
patterns into optimized approximations of the signals most likely to have elicited
them. The multivariate version of this problem, in which many cells represent the
same stimulus, is tackled in a fascinating chapter on population coding. This chapter
is notable for clearly illustrating topics of major current interest and debate, such as
the role of cooperative (or correlated) activity among multiple cells.

The final chapter, on neural network dynamics, is remarkable for its range of
deeply interesting and diverse topics that are covered in a comprehensible fashion
in only 20 pages or so. These range from abstract models of associative memory to
spiking networks with plastic synapses.

This is a hallmark of the book: elegance, completeness, and economy that leave
the reader with much more mathematics and science than one might expect even in
a work of this size. The book further benefits from the availability of MATLAB code
provided to regenerate almost every figure. The narrative also invites readers to run
short MATLAB scripts as they progress. For instance, an introductory code illustrates
instability in elementary numerical schemes, then incrementally adds to both the
algorithm and the model, leading to interesting “hybrid” methods for the Hodgkin–
Huxley equations. Later, the reader can download code that will reconstruct a highly
complex branched model of a pyramidal neuron and simulate it with widely dispersed,
synaptic inputs. After a few exercises the reader is then invited to investigate the role
of loss of myelination (segmented insulation) in signal propagation, motivated by
diseases such as multiple sclerosis. The final stage appears to be a challenging but
doable endeavor for keen students. This integration of code and text is by far the best
we’ve seen. It brings alive the science, the mathematical tools, the models, and their
implementation.

The text Mathematical Foundations of Neuroscience by G. Bard Ermentrout and
David Terman (ET) gives an engaging, detailed, and truly authoritative treatment of
neural dynamics; the authors were at the heart of the development of many important
topics inside. As in GC, the book starts with the theory that describes changes
in the membrane voltage of single cells, leading to the Hodgkin–Huxley equations.
Together with the second chapter that focuses on the modeling of dendrites using
the cable equation, this provides a concise overview of many classical models used in
neuroscience.

Chapters 3 through 6 are some of the strongest in the book. They build on an
extremely influential chapter by Bard Ermentrout and John Rinzel that introduced
many of us to the applications of bifurcation and singular perturbation theory to
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neural dynamics [16]. In ET this winning approach is developed further. Along with
the theory of normal forms, these ideas have been fundamental in understanding
and categorizing neuronal dynamics at the single cell and network level and thus
frequently recur in the remainder of the book. They are also explored in the beautifully
illustrated book by Eugene Izhikevich [9] which may serve to complement Chapter 3
of ET, especially for those wishing for an extensive introduction to bifurcation theory
and single neuron dynamics.

A newcomer to the field will likely be bewildered by the zoo of ion channels that
drive the electrical activity in single cells. Chapters 4 and 7 make it clear that we are
dealing with biological systems. While an overarching framework for modeling chan-
nel dynamics is provided, the differences between channel types are clearly explained.
Some of these differences may be inconsequential, while others may profoundly af-
fect neuron dynamics. ET provides an excellent demonstration of the importance of
mathematical modeling in deciding their role. The reader is also invited to explore
their effect with the XPP code that accompanies the book.

Both authors have contributed significantly to our understanding of bursting (the
firing of short sequences of action potentials) in single cells, and Chapter 5 presents
a thorough overview of the subject. Bursting systems can exhibit complex dynamics,
and ET does an admirable job of introducing the rich mathematical theory used in
the analysis of such systems.

The careful review of the analysis of action potential propagation in Chapter
6 is a real highlight, and is the most complete we know. The mathematical ideas
introduced here—like the Evans function— are sophisticated, but are explained clearly
and accessibly. This pattern of concise introductions to the main ideas of rich and
useful mathematical constructs repeats throughout the book and, when taken together
with the references provided, will offer great value to many readers.

Following an informative discussion of synaptic (coupling) dynamics that is cen-
tral to the sections that follow, Chapter 8 gives a comprehensive treatment of the
dynamics of neural oscillators. The topics here include phase locking, circle maps,
weak coupling, and averaging. Starting with limit cycle oscillators, we are led to the
famous Kuramoto model

θ̇i = ωi +
∑

j

hij(θi − θj).

Here, each oscillator has intrinsic frequency ωi and the dynamics of its phase, θi, is
modulated by the coupling functions hij(·). The core question is: What combination
of internal and coupling dynamics determines whether the network will synchronize
or desynchronize? ET describe how averaging, together with normal form models
for the underlying oscillators, provides surprisingly strong and general results that
remain highly influential in mathematical neuroscience.

While weakly coupled oscillators can be studied using averaging methods, an
alternative approach is available for networks of cells that can individually be modeled
as fast–slow systems:

v̇i = f(vi, wi) +
∑

j

hij(vi, vj),

ẇi = ε g(vi, wi).

Here, geometric singular perturbation yields strong results with interesting, construc-
tive proofs. A beautiful example is provided on p. 260, where network activity is
described using discrete dynamics on a graph. Overall, it is an interesting challenge
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to connect the insights from singular perturbation theory and neural oscillator ap-
proaches to network dynamics into a unified view—at least at the places in “model
space” where the underlying sets of assumptions (almost) meet.

The following Chapter 10 gives a concise and intuitive introduction to stochastic
differential equations and classical results on their application to neural systems, as
well as a brief treatment of stochastic, discrete-state systems. We note that this is also
a topic of a recent book [11]. ET closes with a discussion of reduced models of averaged
neural activity. Lyapunov functions for such reduced models, extremely influential in
literature on artificial neural nets, are presented in a very readable manner. The book
concludes with a discussion of spatially structured dynamics in application to working
memory, bringing it to an exciting and interesting close.

As mentioned, ET includes a host of models that are available at the first author’s
website, ranging from single-cell to model networks. Similarly, XPP code accompanies
many of the central examples and analyses in the text. While XPP is less widely used
than MATLAB, it provides an intuitive graphical interface which allows for efficient
yet sophisticated exploration of dynamical models [5]. The excellent interface between
XPP and AUTO continuation software is a major asset which significantly simplifies
bifurcation analysis.

So what is the best audience for these two books? Many pedagogical aspects of GC
are exemplary on multiple levels, making it very suitable for an advanced undergrad-
uate or beginning graduate course for any student with a mathematical inclination
and drive. Nevertheless, some prior exposure to linear algebra, ordinary differential
equations, and probability will make for a smoother journey. Likewise, those new to
some aspects of the material will probably find it difficult to appreciate certain sec-
tions without outside reading or significant time spent on the well-structured exercises.
While a few results (e.g., on Gramians) are stated without extensive development, the
reader is rapidly shown how these concepts enable powerful progress in the analysis
of neural systems (e.g., rather spectacular reductions in the dimension of large “com-
partmental” neuronal models). Moreover, these sections are duly marked and can
be easily saved for a second read. Overall, the level of detail and completeness with
which calculations are carried out in the text, and the beauty and utility with which
they are explained, are exemplary. Thus, the title Mathematics for Neuroscientists is
well deserved.

Does GC also offer “neuroscience for mathematicians”? We think the answer
is a resounding yes. A more mathematically advanced reader will want to flip past
some—but, we’d expect, not all—sections where mathematical concepts are intro-
duced (though we found ourselves learning from the elegant presentations in many
places). Rich mathematics abounds. Moreover, the discussions of key mathematical
and biological results, even down to careful discussion of units, make this not only
a great book to teach from but also a key learning and reference text for new and
practicing theoretical neuroscientists and applied mathematicians.

ET is ideally suited for mathematicians at the advanced undergraduate and be-
ginning graduate level, and beyond, who wish to enter the field. The book provides
expert perspective on many fundamental areas in mathematical neuroscience, and will
be a valuable and often-consulted text for researchers. It is also an excellent resource
for instructors of intermediate to advanced courses: we are both looking forward to
using a number of sections in our upcoming graduate classes! This role is strengthened
by the varied levels at which material is presented. A direct and intuitive approach
is frequently provided, together with detailed pointers to the literature where proofs
are developed more fully. As a result, the text is very readable, even with its impres-
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sively wide scope. In addition, many subsections give short, independent reviews of
mathematical topics that will be very useful in the classroom.

The exercises in the two books also highlight the difference in the audience for
whom they were intended. In GC, many exercises cover mathematical topics in depth
(for example, the introduction and derivation of matched filters in Chapter 14). The
problems in ET are excellent, and many are closer to the form of small projects (this
is intentional, and the exercises are marked as such). These are clearly conceived from
deep experience with the underlying material, and they frequently ask the student to
go well beyond what has been discussed in a given chapter. While all readers will
appreciate the challenges and insights that these exercises offer, many new students
would benefit from guidance as they tackle them.

With these two books in hand, few readers will be able to resist engaging with
the numerous open, but increasingly tractable, questions that connect neural dynam-
ics, statistics, and computation; the list we offer above is just a short segment of an
expanding frontier. Throughout, these books also attest to a dialogue between experi-
mental and theoretical neuroscientists that is ever increasing in vibrancy and scope—a
sign that theoretical neuroscience is maturing to a position held by theoretical work
in fields such as physics [1].

It has been suggested that a mechanistic understanding of biological processes
based on experimentally inspired models is becoming obsolete, and that the process
of discovery can be automated [2]. We feel that the opposite is the case. Rather than
a shift to data mining alone, creative and mathematically sound theoretical principles
will be even more important in the future than they have been heretofore. The two
books we have reviewed are both first-class introductions and companions for those
who will show the way.
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