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Neural firing rates are tuned with sensory and/or motor variables

Adrian, 1928 ... Neural basis of sensation
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Today — Glorious mess: Heterogeneous, variable,
simultaneous responses of large neural populations

2P data

Allen Brain Observatory



Population codes are cool and complex ...

and pose rich conceptual and theoretical
questions

(1) Efficient encoding and decoding:
optimal tuning curves and receptive fields

(2) Collective (or correlated) neural activity:

What does it add (or subtract) from population
codes defined by tuning of individual cells?
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What do we mean by correlation?
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T > ~50 ms (cf. Bair et al '01) ...
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Correlation p = 0
ubiquitous:

*Retina: Mastronade 1983.
*LGN: Alonso et al 1996
*V1: Kohn and Smith 2005
see also Ecker et al 2010
IT: Gawne & Richmond 1993
*PF: Constanidis & Goldman-Rakic 2002.
*Parietal Cortex: Lee ef al 1998

*Somatosensory thal.: Bruno & Sakmann
2006

*Al: deCharms & Merzenich 1996
eSI: Romo et al 2003. ...
Motor cortex: Vaadia et al 1995

Motor neurons: Binder and Powers 2001




Why the correlations?  p(n1,n2) 7% p(nq)p(ns)

Common signal input—Common spike response
— SIGNAL CORRELATIONS
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ADDITIONAL CORRELATIONS ARE ...
NOISE CORRELATIONS

p(n1,na|s(t)) # p(ni|s(t))p(nz|s(t))

These describe the population response beyond tuning “curves” of
mean stimulus response.

Our focus today.
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Why the NOISE correlations?
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Why the NOISE correlations?

p(n1,n2|s(t)) # p(m \S(t))P(nz 5(1))
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(1) Corrs from comodulation by behavioral or internal state

(2) Corrs from network interactions

These can be separated from comodulation:

(a) regress out known variable (here, running speed)

(b) regress out unknown “latent variables” [Ecker '14, Yatsenko ’15]
These pose algorithmic questions:
Signatures of computation?

sparse auto encoders (Olshausen/Field, ...)
spike-based predictive coding: (Deneve, cf. Rozell, ...)

These pose population coding questions: Our focus today.



CODING IMPACT OF CORRELATED SPIKING

(a) Signal propagation
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Correlated spiking modulates signal propagation

[Abeles '92; Salinas and Sejnowski,'00; Reid et al '01;
Bruno '11:; Jia, Tanabe, and Kohn, '13;
but see Histed, Maunsell et al ‘14]

Positive correlations

CiTL et e AP0

std. dev. ~ ( rate X corr ) 1/2
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Correlated spiking modulates signal propagation

[Abeles '92; Salinas and Sejnowski,'00; Reid et al '01;
Bruno '11:; Jia, Tanabe, and Kohn, '13;
but see Histed, Maunsell et al ‘14]

Positive correlations Downstream cell;

fluctuation-driven
e T plieagy - a0 BEOES

gain

std. dev. ~ ( rate X |corr|) 1/2 rate = f (std dev)




CODING IMPACT OF CORRELATED SPIKING

(a) Modulates signal propagation

(b) Information in homogeneous populations
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Response Variability
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Population codes — average over M independent cells
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Population codes — average over M independent cells
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Population codes — average over M independent cells

1 M cells
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Population codes — average over M independent cells
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Population averaging
improves SNR.
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Population codes — average over M correlated cells

M cells
n; spikes each

in time window T
n; have correlation coetficient p



Population codes — average over M correlated cells
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Population codes — average over M correlated cells
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M cells
n; spikes each

in time window T
n; have correlation coetficient p
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CODING IMPACT OF CORRELATED SPIKING

(a) Modulates signal propagation

(b) Homogeneous populations: impedes pop. averaging/
decreases SNR

(c) Heterogeneous populations ...




Abbott+Dayan, 99; Panzeri et al, '99; Oram
et al, ‘98; Averbeck et al., Nat Rev Nsci 06
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Abbott+Dayan, 99; Panzeri et al, '99; Oram
et al, ‘98; Averbeck et al., Nat Rev Nsci 06

neuron 2 response
neuron 2 response

uncorrelated correlated

neuron 1 response neuron 1 response

What are effects of

correlations on information
content in cell pair?
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Abbott+Dayan, 99; Panzeri et al, '99; Oram
et al, ‘98; Averbeck et al., Nat Rev Nsci 06

uncorrelated correlated
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Positive noise correlation
DEGRADES signal encoding.

when also have positive signal
correlation.




Abbott+Dayan, 99; Panzeri et al, '99; Oram
et al, ‘98; Averbeck et al., Nat Rev Nsci 06
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Abbott+Dayan, 99; Panzeri et al, '99; Oram
et al, ‘98; Averbeck et al., Nat Rev Nsci 06
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Positive noise correlation
ENHANCES signal encoding.

when also have negative
signal correlation.




Abbott+Dayan, 99; Panzeri et al, '99; Oram
et al, ‘98; Averbeck et al., Nat Rev Nsci 06
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Neuron, Vol. 38, 649-657, May 22, 2003, Copyright ©2003 by Cell Press

Correlated Neuronal Discharges that Increase
Coding Efficiency during Perceptual Discrimination

(S2 cells)

Ranulfo Romo,"* Adrian Hernandez,’ rate increases similar to those observed in S1, but for
Antonio Zainos,' and Emlllo Salinas’ other units the firing rate decreases monotonically as a
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Correlated Neuronal Discharges that Increase
Coding Efficiency during Perceptual Discrimination

(S2 cells)

Ranulfo Romo,"* Adrian Hernandez,’ rate increases similar to those observed in S1, but for
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Neuron, Vol. 38, 649-657, May 22, 2003, Copyright ©2003 by Cell Press

Correlated Neuronal Discharges that Increase
Coding Efficiency during Perceptual Discrimination

(S2 cells)
Ranulfo Romo,’* Adrian Hernandez,’ rate increases similar to those observed in S1, but for
Antonio Zamos and Emilio Salinas’ other unlts the flnng rate decreases monotomcally asa
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Direction-Selective Circuits Shape Noise to Ensure a

Precise Population Code (RGC cells)
3 20-
%
(Q\|
3 10-
Zylberberg, Cafaro,
0 Turner et al.
0 10 20 30 Neuron 2016

Cell 1 spikes



Correlations and coding in larger cell populations
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Correlations and coding in larger cell populations
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Correlations and coding in larger cell populations
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MANTRA (SIGN RULE): IF NOISE + SIGNAL CORRELATIONS HAVE ...
SAME “SIGN”, BAD (At least for “small” correlations w.r.t. population size N.)

DIFFERENT SIGN, GOOD.
FORMALIZE: Hu et al ‘14, Ecker et al ’11; Shamir, *14; da Silvera+Berry’14



CODING IMPACT OF CORRELATED SPIKING:

(a) Modulates signal propagation
(b) Homogeneous populations: DEGRADES CODING
(c) Heterogeneous populations:

SIGN RULE MANTRA:

correlate cells w/ similar stimulus tuning: DEGRADE*
correlate cells w/different stimulus tuning: ENHANCE

*(only guaranteed if correlations small w.r.t. # cells in pop.)
BEYOND THE MANTRA:
many possibilities for correlations that ENHANCE
coding in large populations

[Shamir and Sompolinsky Neural Comp 2006,
Hu, Zylberberg et al PLOS CB 2014
Shamir Current Opinion Neurobio 2014]



That was the encoding perspective on correlations
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There is also a decoding perspective
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That was the encoding perspective on correlations

uncorrelated correlated
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That was the encoding perspective on correlations

uncorrelated correlated
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There is also a decoding perspective
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Projects galore...

What does collective activity contribute to
decoding stimuli in different visual areas (and
Cre lines)?

Coupled spiking model

Stimulus Stochastic
filter Nonlinearity spiking

—» G - [

Post-spike filter

Neuron 1

Coupling
filters

e

Pillow et al, 2008

Can ask via other decoders, e.g. GLM with vs. without coupling
filters 44



Collective (or correlated) neural activity and
population codes

Algorithmic: Evidence for signatures (or exhaust
fumes) of computation?

Propagation: Do correlations modulate signal
transmission?

Encoding: How do correlations impact info?

Decoding: Are readouts sensitive to correlations?
Geometry of signal and noise:
sign rule mantra (and beyond)
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Collective (or correlated) neural activity and population codes

Algorithmic: Signatures (or exhaust fumes) of
computation?

Propagation: Do correlations modulate signal
transmission?

Encoding: How do correlations impact info?

Decoding: Are readouts sensitive to correlations?

46



