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Abstract

We undertake a probabilistic analysis of the response of repeti-
tively firing neural populations to simple pulselike stimuli. Recalling
and extending results from the literature, we compute phase response
curves (PRCs) valid near bifurcations to periodic firing for Hindmarsh-
Rose, Hodgkin-Huxley, FitzHugh-Nagumo, and Morris-Lecar models,
encompassing the four generic (codimension one) bifurcations. Phase
density equations are then used to analyze the role of the bifurcation,
and the resulting PRC, in responses to stimuli. In particular, we ex-
plore the interplay among stimulus duration, baseline firing frequency,
and population level response patterns. We interpret the results in
terms of the signal processing measure of ‘gain,’ and discuss further
applications and experimentally testable predictions.
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1 Introduction

This paper seeks to add to our understanding of how the firing rates of
populations of neural oscillators respond to pulselike stimuli representing
sensory inputs, and to connect this to mechanisms of neural computation
and modulation. In particular, we study how responses depend on oscillator
type (classified by its bifurcation to periodic firing), baseline firing rate of
the population, and duration of the input. As in, e.g., [Fetz and Gustaffson,
1983, Herrmann and Gerstner, 2001], our results also apply to the interpre-
tation of Peri-Stimulus Time Histograms (PSTHs), which represent averages
over an ensemble of independent neuronal recordings.

We are motivated by attempts to understand different responses, in the
form of PSTHs of spike rates in the brainstem organ locus coeruleus, of
monkeys performing target identification and other tasks [Usher et al., 1999,
Brown et al., 2003b], but there are many other situations in which popu-
lations of spiking neurons are reset by stimuli. For example, the multiple-
oscillator and beat- frequency models of interval timing of Meck et al. [Matell
and Meck, 2000] involve cortical oscillators of differing frequencies, and the
40 Hz synchrony reported by Gray and Singer and Eckhorn et al. (see [Gray,
2000, Eckhorn, 1999] for reviews) also suggest the onset of coherent oscilla-
tions in visual cortex.

For most neuron models we find that the response of populations to a
fixed stimulus current scales inversely with the pre-stimulus ‘baseline’ firing
rate of the population. While the firing rates of individual neurons also
display this inverse relationship (encoded in their ‘f − I’ curves [Rinzel and
Ermentrout, 1998]), the scaling of the population response differs from that
of individual neurons. This effect suggests a possible role of baseline firing
rate in cognitive processing by neural populations: decreasing baseline firing
rates (via reduced inputs from other brain areas or via neuromodulators (e.g.
[Usher et al., 1999, Aston-Jones et al., 2000, 2001])) can adjust the ‘fraction’
of an incoming stimulus that is passed on to the next processing module.
Recent data from the brainstem nucleus locus coeruleus (LC), for example,
reflect this pattern: greater responsivity and better cognitive performance
are both correlated with slower baseline firing rates [Aston-Jones et al., 1994,
Usher et al., 1999, Brown et al., 2003b].

We also find that, for certain common neuron models, the maximum
population response to a step stimulus of fixed strength can only occur (if
it occurs at all) after stimulus removal. Moreover, in all cases there are
‘resonant’ stimulus durations for which there is no post-stimulus response.
Thus, the magnitude and timing of maximal population response depends
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strongly both on neuron type and stimulus duration relative to baseline
period.

This paper is organized as follows: Section 2 discusses phase reduction
techniques for ordinary differential equations with attracting limit cycles. In
the following section, we recall and compute phase response curves for famil-
iar neuron models near the four codimension- one bifurcations to periodic
firing, using normal forms and numerical calculations [Ermentrout, 2002].
These two sections review part of the broad literature on the topic as well
as providing new results: PRCs valid near degenerate Hopf and homoclinic
bifurcations, and the scaling of PRCs with the frequency of the neurons
from which they are derived. Section 4 then analyzes firing probabilities in
response to simple stimuli, enabling us to predict spike histograms, to de-
scribe their dependence on parameters characterizing the stimuli and neuron
type, and to emphasize similarities and differences among the responses of
different models. These results are summarized in six Roman-numbered
boldface statements. Section 5 interprets these results in terms of the gain,
or signal amplification, of neural populations. Section 6 closes the paper
with comments on further applications and possible experimental tests.

Both phase reduction methods and population modelling have a rich his-
tory, including numerous applications in neuroscience. The classical phase
coordinate transformation used in this paper originated at least by 1949
[Malkin, 1949], with the complementary asymptotic phase ideas expanded
in, e.g., [Coddington and Levinson, 1955, Winfree, 1974, Guckenheimer,
1975, Winfree, 2001] and applied in, e.g., Ermentrout and Kopell [1984,
1990, 1991], Hansel et al. [1993], van Vreeswijk et al. [1994], Hansel et al.
[1995], Ermentrout [1996], Hoppensteadt and Izhikevich [1997], Kuramoto
[1997], Kim and Lee [2000], Bressloff and Coombes [2000], Izhikevich [2000b],
Brown et al. [2003a], Lewis and Rinzel [2003]; see also the related “spike
response method” [Gerstner et al., 1996, Gerstner and Kistler, 2002] and
references therein.

Voltage density approaches, primarily undertaken in an integrate and fire
framework involving ‘re-injection’ boundary conditions and in some cases in-
volving distributed conductances, are developed and applied in, e.g., [Stein,
1965, Wilson and Cowan, 1972, Fetz and Gustaffson, 1983, Gerstner, 2000,
Nykamp and Tranchina, 2000, Omurtag et al., 2000, Herrmann and Gerst-
ner, 2001, Casti et al., 2001, Brunel et al., 2001, Fourcaud and Brunel, 2002,
Gerstner and Kistler, 2002] and references therein. In particular, density for-
mulations derived from integrate and fire models, e.g. Fetz and Gustaffson
[1983], Herrmann and Gerstner [2001], demonstrate the inverse relationship
between peak firing rates and baseline frequency (for populations receiv-
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ing pulsed stimuli) that we extend to other neuron models in this paper.
The work of [Brunel et al., 2001, Fourcaud and Brunel, 2002] focusses on
the transmission of stimuli by noisy integrate-and-fire populations: it ex-
plains how components of incoming signals are shifted and attenuated (or
amplified) when “output” as firing rates of the population, depending on
the frequency of the signal component and the characteristics of noise in
the population. Some of the conclusions of our paper (for integrate and fire
neurons only) could presumably be reconstructed from the Brunel et al. re-
sults by decomposing our stepped stimuli into Fourier components; however,
simpler methods applicable to our noise-free case allow our different analyt-
ical insights into response properties. Experiments on population responses
to applied stepped and fluctuating currents have also been performed, e.g.
by [Mainen and Sejnowski, 1995] in cortical neurons. Due to noise inherent
in their biological preparations, responses to stepped, but not fluctuating,
stimuli are gradually damped (cf. also [Gerstner, 2000, Gerstner and Kistler,
2002]); these effects are studied using a phase density approach by Ritt and
Kopell.

The phase density formulation is also used in [Kuramoto, 1984, Strogatz,
2000] and references therein, where the emphasis is on coupling effects in
populations with distributed frequencies, generally without external stim-
uli. The approach closest to ours is that of [Tass, 1999], who focuses on how
pulsed input signals can desynchronize populations of noisy, coupled phase
oscillators that have clustered equilibrium states; of particular interest is
the critical stimulus duration Tcrit for which the maximum desynchronizing
effect is achieved. By contrast, the present paper focuses on synchronizing

responses of independent noiseless oscillators (with uniform stationary dis-
tributions) and, using analytical solutions to this simpler problem, stresses
the influence of individual neuron properties. Specifically, we contribute a
family of simple expressions for time-dependent firing rates in response to
pulsed stimuli, derived from different nonlinear oscillator models via phase
reductions and the method of characteristics. Our expressions allow us to
identify a series of novel relationships between population dynamics dur-
ing and after stepped stimuli and the frequencies and bifurcation types of
the individual neurons making up the population. As already mentioned,
we consider only uncoupled (and noiseless) neurons, but we note that our
results remain generally valid for weakly coupled systems. In particular,
in [Brown et al., 2003b] we show that for a noisy neural population with
synaptic and electrotonic couplings sufficient to reproduce observed varia-
tions in experimental cross-correlograms, the uncoupled limit is adequate
for understanding key ‘first order’ modulatory effects.
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2 Phase equations for nonlinear oscillators with

attracting limit cycles

2.1 Phase reductions

Following, e.g., [Ermentrout, 1996, Hoppensteadt and Izhikevich, 1997, Guck-
enheimer, 1975, Winfree, 2001, 1974, Ermentrout, 2002], we first describe a
coordinate change to phase variables that will simplify the analysis to come.
Our starting point is a general, conductance-based model of a single neuron:

CV̇ =
[

Ig(V,n) + Ib + I(V, t)
]

, (1)

ṅ = N(V,n) ; (V,n)T ∈ R
N . (2)

Here V is the voltage difference across the membrane, the (N−1)-dimensional
vector n comprises gating variables and Ig(V,n) the associated membrane
currents, and C is the cell membrane conductance. The baseline inward cur-
rent Ib effectively sets oscillator frequency, and will correspond below to a
bifurcation parameter. I(V, t) represents synaptic currents from other brain
areas due to stimulus presentation; below, we neglect reversal potentials so
that I(V, t) = I(t). We write this equation in the general form

ẋ = F (x) +G(x, t) ; x = (V,n)T ∈ R
N , (3)

where F (x) is the ‘baseline’ vector field, G(x, t) is the stimulus effect, and
T denotes transpose. In our simplification, G(x, t) = (I(t),0)T ; in a more
general setting, perturbations in the gating equations (2) could also be in-
cluded.

We assume that the baseline (G ≡ 0) neural oscillator has a normally
hyperbolic [Guckenheimer and Holmes, 1983], attracting limit cycle γ. This
persists under small perturbations [Fenichel, 1971], and hereafter we assume
that such a limit cycle always exists for each neuron.

The objective is to simplify Eqn. (3) by defining a scalar phase variable
θ(x) ∈ [0, 2π) for all x in some neighborhood U of γ (within its domain of

attraction), such that the phase evolution has the simple form dθ(x)
dt = ω for

all x ∈ U when G ≡ 0. Here ω = 2π/T , where T is the period of (3) with
G ≡ 0. From the chain rule, this requires

dθ(x)

dt
=
∂θ

∂x
(x) · F (x) +

∂θ

∂x
(x) ·G(x, t) = ω +

∂θ

∂x
(x) ·G(x, t) . (4)

Eqn. (4) defines a first order PDE that the scalar field θ(·) must satisfy.
Using the classical techniques of isochrons [Winfree, 1974, Guckenheimer,
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1975, Winfree, 2001, Kuramoto, 1997], cf. [Hirsch et al., 1977], the unique
(up to a translational constant) solution θ(·) to this PDE can be constructed
indirectly.

Even after θ(·) has been found (see the next subsection), (4) is not a
phase-only (and hence self-contained) description of the oscillator dynam-
ics. However, evaluating the vector field at xγ(θ), which we define as the
intersection of γ and the θ(x) level set (i.e., isochron), we have

dθ(x)

dt
= ω +

∂θ

∂x
(xγ(θ)) ·G(xγ(θ, t)) + E , (5)

where E is an error term of O(|G|2), where the scalar |G| bounds G(x, t)
over all components as well as over x and t, cf. [Kuramoto, 1997].

Dropping this error term, we may rewrite (5) as the one-dimensional
phase equation

dθ

dt
= ω +

∂θ

∂x
(θ)·G(θ, t) , (6)

which is valid (up to the error term) in the whole neighborhood U of γ.

2.2 Computing the phase response curve

In the case of Eqns. (1-2), the only partial derivative we must compute to
fully define (6) is with respect to voltage, and we define the phase response

curve (PRC) [Winfree, 2001] as ∂θ
∂V (θ) ≡ z(θ). Then, Eqn. (6) becomes

dθ

dt
= ω + z(θ)I(t) ≡ v(θ, t) , (7)

the population dynamics of which is the subject of this paper. Note that
Eqn. (7) neglects reversal potential effects for the various synapses that
contribute to the net I(t): if these were included, I(t) would be replaced
by I(θ, t). Furthermore, if G had nonzero components in more than just
the voltage direction, we would need to compute a vector-valued PRC; each
component of this could be computed in a similar manner to that below.

2.2.1 Direct method

We now describe a straightforward and classical way to compute z(θ) that
is useful in experimental, numerical, and analytical studies [Winfree, 1974,
2001, Glass and Mackey, 1988, Kuramoto, 1997]. By definition

z(θ) = lim
∆V→0

∆θ

∆V
, (8)
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level sets of θ (x)

limit cycle γ

∗ ∆V
∆θ

Figure 1: The direct method for computing ∂θ
∂V at the point indicated by *

is to take the limit of ∆θ/∆V for vanishingly small perturbations ∆V . One
can calculate ∆θ in the limit t→ ∞, as discussed in the text.

where ∆θ =
[

θ(xγ + (∆V,0)T ) − θ(xγ)
]

is the change in θ(x) resulting from
a perturbation V → V + ∆V from the base point xγ on γ; see Fig. 1. Since
θ̇ = ω everywhere in the neighborhood of γ, the difference ∆θ is preserved
under the baseline (G = 0) phase flow; thus, it may be measured in the limit
as t → ∞, when the perturbed trajectory has collapsed back to the limit
cycle γ. That is, z(θ) can be found by comparing the phases of solutions
in the infinite-time limit starting on and infinitesimally shifted from base
points on γ: this is the idea of asymptotic phase. This method will be used
in Section 3 to compute PRCs for the normal forms commonly arising in
neural models.

2.2.2 Other methods

Another technique for finding ∂θ
∂V (θ) involves solving the adjoint problem

associated with Eqns. (1-2) [Hoppensteadt and Izhikevich, 1997, Ermen-

7



trout and Kopell, 1991]; this procedure is automated in the program XPP
[Ermentrout, 2002] and is equivalent to the direct method discussed above.
This equivalence, described in Appendix A, is implicit in the calculation of
coupling functions presented in [Hoppensteadt and Izhikevich, 1997] and [Er-
mentrout, 2002]. The implementation of the adjoint method on XPP is used
to compute the PRCs for full neuron models that are compared with normal
form predictions later in this paper.

Since only partial derivatives ∂θ
∂x evaluated on γ enter Eqn. (7), and not

the value of the phase function θ itself, it is tempting to compute these
partial derivatives directly from Eqn. (4). However, when viewed as an al-
gebraic equation for the vector field ∂θ

∂x , (4) yields infinitely many solutions,

being only one equation for the N unknown functions ∂θ
∂xj

, j = 1, ..., N .

Some of these solutions are much easier to construct than the phase response
curve computed via the direct or the adjoint method. However, for such a
solution, which we write as ∂θ2

∂x (6= ∂θ
∂x) to distinguish it from partial deriva-

tives of the asymptotic phase θ, there is not necessarily a corresponding
phase variable θ2 such that dθ2(x)

dt = ω, x ∈ U (in the absence of stimulus):
recall the uniqueness of the solution θ(x) to Eqn. (4). See Appendix B for
a specific coordinate change from the literature in this context.

2.3 Validity of the phase reduction

We shall always assume that the phase flow θ̇ is nonnegative at the spike
point θs ≡ 0; otherwise (7) does not make sense as a neuron model (neurons
cannot cross ‘backwards’ through the spike and regain a state from which
they can immediately fire again). For oscillators giving PRCs z(θ) with
z(θs) 6= 0, this assumption restricts admissible perturbing functions I(t)
(or, in the more general case of Eqn. (6), G(x, t)) to those satisfying

I(t)z(θs) > −ω . (9)

Thus, for z(θs) > 0, excitatory input (I(t) > 0) is always admissible, but
there is a lower bound on the strength of inhibitory input for which phase
reductions hold. In particular, if I(t) contains a noise component, it must be
bounded below; this requires ‘trimming’ the white (diffusive) or Ornstein-
Uhlenbeck noise processes commonly used to model variability in synaptic
inputs. These problems do not arise for continuous PRCs having z(θs) = 0.

We note that z(θs) = 0 approximately holds for the Hodgkin-Huxley
(HH) and Hindmarsh-Rose (HR) neurons to be considered below, and indeed
holds for any neuron model with a ‘fast’ vector field surrounding the spike
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tip xs on the limit cycle. In this case, asymptotic phase changes very little in
a small neighborhood near xs, since θ = ωt and only a short time is spent in
the neighborhood. A small perturbation in the V direction therefore takes
trajectories to isochrons with similar values of θ, and so has little effect on
asymptotic phase. For the integrate and fire systems investigated below,
spikes are not explicitly modeled. While this may be viewed as an artificial
omission leading to z(θs) 6= 0, the population dynamics of such systems are
of interest because they are in rather common use.

3 Phase response curves for specific models

In this section we derive or recall analytical approximations to PRCs for
multi-dimensional systems with limit cycles that arise in the four (local
and global) codimension one bifurcations [Guckenheimer and Holmes, 1983]:
these are appropriate to conductance-based models of the form (1-2). We
then give PRCs for one-dimensional (linear) ‘integrate-and-fire’ models. Of
these PRC calculations, results for the homoclinic and degenerate Hopf bi-
furcation are new, while the results for other models, previously derived as
referenced in the text, are summarized and recast to display their frequency
dependence and for application to population models in what follows.

3.1 Phase response curves near codimension one bifurcations

to periodic firing

Bifurcation theory [Guckenheimer and Holmes, 1983] identifies four codi-
mension one bifurcations which can give birth to a stable limit cycle for
generic families of vector fields: a SNIPER bifurcation (saddle-node bifur-
cation of fixed points on a periodic orbit), a supercritical Hopf bifurcation,
a saddle-node bifurcation of limit cycles, and a homoclinic bifurcation: see
Fig. 2. All four bifurcation types have been identified in specific neuron
models as a parameter, here the baseline inward current I b, varies: for ex-
ample, SNIPER bifurcations are found for ‘Type I’ neurons [Ermentrout,
1996] like the Connor model and its two-dimensional Hindmarsh-Rose (HR)
reduction [Rose and Hindmarsh, 1989], supercritical Hopf bifurcations may
occur for the abstracted FitzHugh-Nagumo (FN) model [Keener and Sneyd,
1998], a saddle-node bifurcation of limit cycles is found for the Hodgkin-
Huxley (HH) model [Hodgkin and Huxley, 1952, Rinzel and Miller, 1980],
and a homoclinic bifurcation can occur for the Morris-Lecar (ML) model
[Rinzel and Ermentrout, 1998].
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In this section, we calculate or summarize PRCs for limit cycles arising
from all four bifurcations. This is accomplished, where possible, through
use of one- and two-dimensional normal form equations. Normal forms are
obtained through center manifold reduction of Eqns. (1-2) at the bifurca-
tion, followed by a similarity transformation to put the linear part of the
equation into Jordan normal form, and finally by successive ‘near identity’
nonlinear coordinate transformations to remove as many terms as possible,
a process which preserves the qualitative dynamics of the system [Guck-
enheimer and Holmes, 1983]. To obtain the PRC in terms of the original
variables, i.e., ∂θ

∂V , rather than in terms of the normal form variables (which

we henceforth denote (x, y)) with associated PRCs ∂θ
∂x and ∂θ

∂y , it is neces-
sary to ‘undo’ these coordinate transformations. However, since the normal
form coordinate transformations only affect nonlinear terms, we obtain the
simple relationship

∂θ

∂V
= νx

∂θ

∂x
+ νy

∂θ

∂y
+ O(x, y), (10)

where

νx =
∂x

∂V

∣

∣

∣

∣

x=y=0

, νy =
∂y

∂V

∣

∣

∣

∣

x=y=0

.

The remainder term in (10) is assumed to be small near the bifurcations of
relevance and is neglected below. This introduces vanishing error in the Hopf
case, in which the bifurcating periodic orbits have arbitrarily small radii; the
same is true near SNIPER and homoclinic bifurcations, where periodic orbits
spend arbitrarily large fractions of their period near the origin. When using
the Bautin normal form, however, we must tacitly assume that the nonzero
‘onset’ radius of stable bifurcating orbits is small; failure of this assumption
for the Hodgkin-Huxley model may contribute to the discrepancy between
PRCs derived via analytical and numerical methods; see Sect. 3.3.

Before proceeding, a few notes regarding the normal form equations that
we will consider are in order. For the SNIPER bifurcation, we consider the
normal form for a saddle-node bifurcation of fixed points, which must be
properly embedded globally in order to capture the presence of the periodic
orbit (the unstable branch of the center manifold must close up and limit on
the saddle node, cf. Fig. 2(a)). For the saddle-node bifurcation of periodic
orbits, we appeal to the sequence of bifurcations for ‘Type II’ neurons such
as the Hodgkin-Huxley (HH) model [Hodgkin and Huxley, 1952], namely
a subcritical Hopf bifurcation in which an unstable periodic orbit branch
bifurcates from the rest state, turns around, and gains stability in a saddle-
node bifurcation of periodic orbits [Rinzel and Miller, 1980]. This sequence
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is captured by the normal form of the Bautin (degenerate Hopf) bifurca-
tion [Kuznetsov, 1998], cf. [Guckenheimer and Holmes, 1983, §7.1]. Finally,
for the homoclinic bifurcation we consider only the linearized flow near the
fixed point involved in the bifurcation; this is not strictly a normal form,
and as for the SNIPER bifurcation, a proper global return interpretation is
necessary to produce the periodic orbit.

Near the SNIPER, Hopf, and Bautin local bifurcations, there is a sep-
aration of timescales between dynamics along versus dynamics normal to
the one-or-two dimensional attracting center manifold containing (or, in the
SNIPER case, consisting of) the periodic orbit. In particular, sufficiently
close to the bifurcation point, the time required for perturbed solutions to
collapse back onto the manifold is negligible compared with the period of the
orbit. This implies that, as the bifurcation is approached, (the tangent space
of) any N − 1 dimensional isochron (computed at its intersection with the
periodic orbit) becomes normal to the (corresponding tangent space of the)
center manifold. Thus, sufficiently near these three bifurcations the only
relevant contributions that perturbations make to asymptotic trajectories is
via their components along the center manifold, as captured by the above
terms νx and (additionally for the Hopf and Bautin bifurcations) νy. Hence
Eqn. (10) captures the phase response curve for the full N -dimensional sys-
tem. For the homoclinic global bifurcation, the same conclusion holds, al-
though for a different reason: in this case, there is no low dimensional center
(i.e. locally slow) manifold. However, because the dynamics which asymp-
totically determine the PRC are linear for the homoclinic bifurcation (unlike
the SNIPER, Hopf, and Bautin cases), a PRC valid for full N-dimensional
systems can still be computed analytically, as described below.

We use the direct method of Section 2.2.1 to compute PRCs from the
normal form equations. This involves linearizing about the stable periodic
orbit, which is appropriate because the perturbations ∆V to be considered
are vanishingly small. The explicit solution of the normal form equations
yields ∆θ, and taking limits, we obtain the PRC, cf. (8). Without loss of
generality, the voltage peak (spike) phase is set at θs = 0 and coordinates
are defined so that phase increases at a constant rate ω in the absence of
external inputs, as in Section 2.1. Analogues of some of the following results
have been previously derived by alternative methods, as noted in the text,
and we also note that PRCs for relaxation oscillators have been discussed
in [Izhikevich, 2000b]. However, unlike the previous work, here we explicitly
compute how the PRCs scale with oscillator frequency.
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3.1.1 Saddle-node in a periodic orbit (SNIPER)

A SNIPER bifurcation occurs when a saddle-node bifurcation of fixed points
takes place on a periodic orbit: see Fig. 2(a). Following the method of
[Ermentrout, 1996] (see that paper for details of the calculation), we ig-
nore the direction(s) transverse to the periodic orbit, and consider the one-
dimensional normal form for a saddle-node bifurcation of fixed points:

ẋ = η + x2 , (11)

where x may be thought of as local arclength along the periodic orbit. For
η > 0, the solution of (11) traverses any interval in finite time; as in [Ermen-
trout, 1996], the period T of the orbit may be approximated by calculating
the total time necessary for the solution to (11) to go from x = −∞ to
x = +∞ and making the solution periodic by resetting x to −∞ every time
it ‘fires’ at x = ∞. This gives T = π√

η , hence ω = 2
√
η.

Since (11) is one-dimensional, [Ermentrout, 1996] immediately computes

∂θ

∂x
= ω

∂t

∂x
=

ω
dx
dt

, (12)

where dx
dt is evaluated on the solution trajectory to (11). This gives

∂θ

∂x
=

2

ω
[1 − cos θ] (13)

as first derived in [Ermentrout, 1996], but with explicit ω-dependence dis-
played here.

Considering a voltage perturbation ∆V , we have

∂θ

∂V
= zSN =

csn
ω

[1 − cos θ] , (14)

where csn = 2νx is a model-dependent constant (see (10) above). Note
that ∂θ

∂V is nonnegative or nonpositive according to the sign of csn. Since in
‘Type I’ neuron models [Ermentrout, 1996] a positive voltage perturbation
advances phase (and hence causes the neuron to fire sooner), in the following
we will generally assume csn to be positive.

3.1.2 Generalized and supercritical Hopf bifurcations

The normal form for the (generalized) Hopf bifurcation [Guckenheimer and
Holmes, 1983, Kuznetsov, 1998] is:

ż = (α+ iβ)z + (c+ id)|z|2z + (f + ig)|z|4z ; (15)
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Figure 2: (a) SNIPER bifurcation: two fixed points die in a saddle-node
bifurcation at η = 0, giving a periodic orbit for η > 0, assumed to be
stable. (b) Supercritical Hopf bifurcation: a fixed point loses stability as
α increases through zero, giving a stable periodic orbit (closed curve). (c)

Bautin bifurcation: see text for details. At α = c2

4f there is a saddle-node
bifurcation of periodic orbits. Both a stable (solid closed curve) and unstable

(dashed closed curve) periodic orbit exist for c2

4f < α < 0; the unstable
periodic orbit dies in a subcritical Hopf bifurcation at α = 0. The fixed
point is stable (resp., unstable) for α < 0 (resp., α > 0). (d) Homoclinic
bifurcation: a homoclinic orbit exists at µ = 0, giving rise to a stable periodic
orbit for µ > 0.
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in polar coordinates, this is

ṙ = αr + cr3 + fr5 , (16)

φ̇ = β + dr2 + gr4 . (17)

We study two cases, always treating α as the bifurcation parameter. In the
first case, we assume c < 0, yielding a supercritical Hopf bifurcation: for
α < 0 there is a stable fixed point at the origin that loses stability as α
increases through zero, giving birth to a stable periodic orbit with radius
rpo,H =

√

−α/c: see Fig. 2(b). Crucially, rpo,H = 0 when α = 0, so that
only terms of cubic order in (16-17) are required to capture (unfold) the
supercritical Hopf dynamics. Hence we may set g = f = 0 for a local
analysis.

In the second case, we assume c > 0, so that Eqns. (16-17) have a
subcritical Hopf bifurcation at α = 0 and there is no stable periodic orbit
for any value of α when g = f = 0: hence we must reintroduce these terms to
capture the relevant dynamics. Assuming additionally that f < 0, for α < 0
there is a stable fixed point at the origin that loses stability in a subcritical
Hopf bifurcation at α = 0, giving rise to an unstable periodic orbit as α
decreases through zero. The branch of unstable periodic orbits turns around
at a saddle-node bifurcation of periodic orbits at α = c2

4f ; for α > c2

4f stable

periodic solutions exist with radius rpo,B =
[

1
2f

(

−c−
√

c2 − 4αf
)]1/2

: see

Fig. 2(c). This is the generalized Hopf or Bautin bifurcation (identified by
the subscript B).

In either case, the angular speed is constant on the stable periodic orbit;
hence, we set the asymptotic phase θ equal to the polar angle φ on the
periodic orbit itself. (However, (radial) level sets of φ extending off of the
periodic orbit are not isochrons, since φ̇ varies with r.)

We calculate the PRC by linearizing about the attracting periodic orbit
rpo. Letting r = rpo + r′, we obtain ṙ′ = λr′ + O(r′2), where λ is the
transverse Floquet exponent (eigenvalue) for the stable periodic orbit. In
the supercritical Hopf bifurcation, λ = λH = −2α < 0 and rpo = rpo,H ; in

the Bautin, λ = λB = 1
f

(

c2 − 4αf + c
√

c2 − 4αf
)

< 0 and rpo = rpo,B.

Here and below we drop terms of O(r′2) because we are concerned with
arbitrarily small perturbations, cf. (8). Solving the linearized radial equation
with initial condition r(0) = r0, we obtain

r(t) = rpo + (r0 − rpo)e
λjt , (18)
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with j = H or B. Next, integrating (17) yields

φ(t) =

∫ t

0
dφ =

∫ t

0
[β + d(r(s))2 + g(r(s))4]ds , (19)

and taking φ(0) = φ0, substituting (18) in (19), letting t→ ∞, and dropping
terms of O(r′2), we obtain the phase θ associated with the initial condition
(r0, φ0):

θ(t) = φ0 +
(

β + dr2po + gr4po
)

t−
2rpo(d+ 2gr2po)(r0 − rpo)

λB
. (20)

Here we have again used the fact that the polar angle φ and the phase θ are
identical on the periodic orbit.

Suppose that we start with an initial condition (xi, yi) on the periodic
orbit, with polar coordinates (rpo, φi). As t → ∞, the trajectory with this
initial condition has asymptotic phase φi+(β+dr2po+gr

4
po)t. Now consider a

perturbation ∆x in the x-direction to (xf , yf ) = (rpo cosφi + ∆x, rpo sinφi).
To lowest order in ∆x, this corresponds, in polar coordinates, to

(rf , φf ) =

(

rpo + cosφi∆x, φi −
sinφi
rpo

∆x

)

.

Setting (r0, φ0) = (rf , φf ) in (20) and subtracting the analogous expression
with (r0, φ0) = (rpo,j , φi), j = H or B, we compute the change in asymptotic
phase due to this perturbation:

∂θ

∂x
= −

2drpo,j + 4gr3po,j
λj

cos θ − 1

rpo,j
sin θ , (21)

where we have substituted θ for the polar angle φi, again using the fact that
the two variables take identical values on the periodic orbit. Similarly, we
find

∂θ

∂y
= −

2drpo,j + 4gr3po,j
λj

sin θ +
1

rpo,j
cos θ . (22)

We now express rpo,j and λj in terms of the frequencies of the periodic
orbits. In the supercritical Hopf case (recall that we set g = f = 0 here), at

the bifurcation point the phase frequency ω is φ̇
4
= ωH = β, and from (17)

we have ω − ωH = dr2po,H , yielding

rpo,H =

√

|ω − ωH |
√

|d|
. (23)
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Substituting for rpo,H , we have ω − ωH = −αd/c, which together with the
expression for λH gives

λH =
2c

d
(ω − ωH) . (24)

In the Bautin case, we find that

ω − ωSN =

[

− d

2f
+

gc

2f2

]

√

c2 − 4αf +
g

4f2

(

c2 − 4αf
)

, (25)

where ωSN is the frequency of the periodic orbit at the saddle-node bifur-
cation (α = c2

4f ). Thus, from (25),

√

c2 − 4αf = k|ω − ωSN | + O
(

|ω − ωSN |2
)

, (26)

where k =
∣

∣

∣

2f2

fd−gc

∣

∣

∣
, and we may use the expressions for rpo,B and λB to

compute:

rpo,B =

√

−c
2f

+ O (|ω − ωSN |) , (27)

λB =
ck

f
|ω − ωSN | + O

(

|ω − ωSN |2
)

. (28)

Next, we substitute these Eqns. (23-24) and (27-28) for rpo and λ into
(21-22). For the supercritical Hopf case, this gives

∂θ

∂x
=

1
√

|ω − ωSN |

√

|d|
|c| [d cos(θ) + c sin(θ)] , (29)

∂θ

∂y
=

1
√

|ω − ωSN |

√

|d|
|c| [d sin(θ) − c cos(θ)] , (30)

In the Bautin case, we get

∂θ

∂x
=

1

|ω − ωSN |

[

−2d

√

−c
2f

− 4g

(−c
2f

)3/2
]

f

ck
cos θ + O(1) , (31)

∂θ

∂y
=

1

|ω − ωSN |

[

−2d

√

−c
2f

− 4g

(−c
2f

)3/2
]

f

ck
sin θ + O(1) , (32)

where we have explicitly written terms of O(|ω − ωSN |)−1 which dominate
near the saddle-node of periodic orbits. Note that the only term involving
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the bifurcation parameter α is the prefactor, so that, as this parameter is
varied, all other terms in (31-32) remain constant.

Equipped with (29-30), the PRC for a perturbation in the V -direction
near a supercritical Hopf bifurcation is found from (10) to be

zH(θ) =
∂θ

∂V
=

cH
√

|ω − ωH |
sin(θ − φH) , (33)

where the constant cH =

√
|d|

|c|
√

(νxc+ νyd)2 + (νxd− νyc)2 and the phase

shift φH = tan−1
(

νyc−νxd
νxc+νyd

)

. The form of this PRC was originally presented

as Eqn. (2.11) of [Ermentrout and Kopell, 1984]. See that paper, as well as
Sect. 4 of [Ermentrout, 1996] and [Hoppensteadt and Izhikevich, 1997], for
earlier, alternative methods and computations for the PRC near supercritical
Hopf bifurcation.

For the Bautin bifurcation, we similarly arrive at

zB(θ) =
∂θ

∂V
=

cB
|ω − ωSN |

sin(θ − φB) . (34)

Here cB =

[

−2d
√

−c
2f − 4g

(

−c
2f

)3/2
]

f
ck

√

ν2
x + ν2

y is a constant (which can

be positive or negative depending on d and g), and φB = tan−1
(

νx
νy

)

is an

ω-independent phase shift.

3.1.3 Homoclinic bifurcation

Finally, suppose that the neuron model has a parameter µ such that a ho-
moclinic orbit to a hyperbolic saddle point p with real eigenvalues exists at
µ = 0. Then there will be a periodic orbit γ for, say, µ > 0, but not for
µ < 0. Specifically, we assume a single unstable eigenvalue λu smaller in
magnitude than that of the all stable eigenvalues, λu < |λs,j |, so that the
bifurcating periodic orbit is stable [Guckenheimer and Holmes, 1983]: see
Fig. 2(d).

If parameters are chosen close to the homoclinic bifurcation, solutions
near the periodic orbit spend most of their time near p, where the vector
field is dominated by its linearization. This may generically be written in
the diagonal form:

ẋ = λux , (35)

ẏj = λs,j yj , j = 1, ..., N − 1 , (36)
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y

xp

∆

∆ε

γ

re-injection

Figure 3: The setup for deriving the PRC for oscillations near a homoclinic
bifurcation, shown (for simplicity) with N = 2.

where the x and yj axes are tangent to the unstable and a stable manifold
of p, respectively, and λs,j < 0 < λu are the corresponding eigenvalues. For
simplicity, we assume here that the segments of the axes shown in Fig. 3 are
actually contained in the respective manifolds; this can always be achieved
locally by a smooth coordinate change [Guckenheimer and Holmes, 1983].

We define the boxB = [0,∆]×· · ·×[0,∆] that encloses γ for the dominant
part of its period, but within which (35-36) is still a good approximation;
∆ is model-dependent but fixed for different periodic orbits occurring as a
bifurcation parameter varies within the model. We do not explicitly model γ
outside of B, but note that the trajectory is ‘re-injected’ after negligible time
(compared with that spent in B) at a distance ε from the stable manifold,
where ε varies with the bifurcation parameter µ: see Fig. 3. Thus, periodic
orbits occurring closer to the bifurcation point correspond to lower values
of ε and have larger periods.

We approximate the period T (ε) as the time that the x coordinate of γ
takes to travel from ε to ∆ under Eqn. (35):

T (ε) =
1

λu
ln

(

∆

ε

)

. (37)

Notice that the x-coordinate of γ alone determines T (ε), and hence may
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be thought of as independently measuring the phase of γ through its cycle.
We set θ = 0 at x = ε and, assuming instantaneous re-injection, θ = 2π at
x = ∆. Then ω = 2π/T (ε), and as in (12)

∂θ

∂x
=

ω
dx
dt

=
ω

λux(θ)
=

ω

λuε
exp(−λuθ/ω) . (38)

In the final equality we used the solution to (35), x(t) = ε exp(λut), with
the substitution t = θ/ω. Since, as remarked above, motion in the yj-
directions does not affect the phase of γ, only components of a perturbation
∆V along the x-axis contribute to the phase response curve; thus, the PRC
zHC = ∂θ

∂V = νx
∂θ
∂x , where νx is as defined following (10). Using (37),

ε = ∆ exp(−2πλu/ω), which allows us to eliminate ε from (38):

zHC(θ) =
∂θ

∂V
= chc ω exp

(

2πλu
ω

)

exp

(

−λu
θ

ω

)

, (39)

where chc = νx
λu∆ is a model-dependent constant. This is an exponentially

decaying function of θ with maximum

zmax = chcω exp

(

2πλu
ω

)

(40)

and minimum

zmin = zmax exp

(

−2πλu
ω

)

= chcω . (41)

Here and below we assume chc > 0. zHC is discontinuous at the spike point
θs = 2π, which forces us to take a limit in defining population-averaged
firing rates below, but does not otherwise affect the following analysis.

3.2 One-dimensional neuron models

Generalized integrate and fire models have the form

V̇ = F (V ) +G(V, t) , (42)

where V (t) is constrained to lie between a reset voltage Vr and a thresh-
old Vth, and the following reset dynamics are ‘externally’ imposed: if V (t)
crosses Vth from below a spike occurs and V (t) is reset to Vr. Here, nothing
is lost in transforming to the single phase equation (6); in particular, the er-
ror term of (5) does not apply. In fact, as noted in, e.g., [Ermentrout, 1981],
the crucial quantity ∂θ

∂V can be found directly from (42) with G(V, t) ≡ 0:

z(θ) =
∂θ

∂V
= ω

∂t

∂V
=

ω

F (V (θ))
, (43)
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where we recall that θ is defined such that θ̇ = ω. In the next two subsections
we compute phase response curves for two simple integrate and fire models.

3.2.1 Integrate and fire neuron

We first consider the simplest possible integrate and fire (IF) model:

CV̇ = (Ib + I(t)) ; Vr = 0 , Vth = 1 , (44)

where Ib is the baseline current, C is membrane capacitance, and G(V, t) =
I(t). Hereafter we set C = 1 for the IF model. The angular frequency of a
baseline (I(t) = 0) oscillation is ω = 2πIb, and Eqn. (43) gives

zIF (θ) =
ω

F (V (θ))
=
ω

Ib
≡ 2π . (45)

Thus, the IF PRC is constant in θ and frequency-independent.

3.2.2 Leaky integrate and fire neuron

Next, we consider the leaky integrate and fire (LIF) model:

CV̇ = (Ib + gL(VL − V ) + I(t)) ; Vr = 0 , Vth = 1 < VL +
Ib
gL

, (46)

where Ib is the baseline current, gL > 0 and VL are the leak conductance
and reversal potential, C is the capacitance, and G(V, t) = I(t). As above,
we also set C = 1 for this model. We assume Ib ≥ gL(1− VL) so that, when
I(t) = 0, the neuron fires periodically with frequency

ω = 2πgL

[

ln

(

Ib + gLVL
Ib + gLVL − gL

)]−1

. (47)

This expression shows how Ib enters as a bifurcation parameter, with Ib =
gL(1 − VL) corresponding to the bifurcation point at which ω = 0.

Solving (46) for V (t) with initial condition V (0) = Vr = 0, and then
using θ = ωt and Eqn. (43), gives

zLIF (θ) =
ω

gL

(

1 − exp

(

−2πgL
ω

))

exp

(

gLθ

ω

)

, (48)

equivalent to formulas previously derived in [van Vreeswijk et al., 1994, Lewis
and Rinzel, 2003] and references therein. Thus, the PRC for the LIF model
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bifurcation z(θ) zmax zmin

SNIPER csn
ω [1 − cos(θ)] 2csn

ω 0

Hopf cH√
|ω−ωH |

[sin(θ − φH)] cH√
|ω−ωH |

− cH√
|ω−ωH |

Bautin |cB |
|ω−ωSN | [sin(θ − φB)] + O(1) |cB |

|ω−ωSN | + O(1) − |cB |
|ω−ωSN | + O(1)

homoclinic chc ω exp
(

2πλu
ω

)

exp (−λuθ/ω) chcω exp
(

2πλu
ω

)

chcω

IF 2π 2π 2π

LIF ω
gL

(

1 − e−2πgL/ω
)

egLθ/ω ω
gL

(

e2πgL/ω − 1
)

ω
gL

(1 − e−2πgL/ω)

Table 1: Phase response curves for the different neuron models.

is an exponentially increasing function of θ, with a maximum that decreases
with ω:

zmax(ω) =
ω

gL

(

exp

(

2πgL
ω

)

− 1

)

, (49)

and minimum

zmin(ω) = zmax exp

(

−2πgL
ω

)

=
ω

gL
(1 − e−2πgL/ω) . (50)

Recall that the PRC near a homoclinic bifurcation is also an exponential
function, but with opposite slope: this is because both the essential dynamics
near a homoclinic bifurcation and the LIF dynamics are linear, while the
trajectories accelerate following spikes in the homoclinic case and decelerate
in the LIF.

This is our final analytical PRC calculation; we summarize the results
derived above in Table 1 and Fig. 4.

3.3 Accuracy of the analytical PRCs

The range of parameters over which the PRCs of the full neuron models
are well approximated by the analytical expressions derived above varies
from model to model. One overall limitation noted in [Izhikevich, 2000a]
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Figure 4: PRCs for the various neuron models, from the formulae of Sect. 3
and numerically computed using XPP [Ermentrout, 2002], all with θs = 0.
The relevant bifurcations are noted where applicable. Dot-dashed, dashed
and dotted curves for each model correspond to increasing frequencies, re-
spectively: HR: ω = 0.0102, 0.0201, 0.0316 rad/msec (corresp. 1.62, 3.20,
5.03 Hz.) FN: ω = 0.204, 0.212, 0.214 (corresp. 32.5, 33.7, 34.1 Hz.),
HH: ω = 0.339, 0.355, 0.525 rad/msec (corresp. 54.2, 56.5, 83.6 Hz.), ML:
ω = 0.0572, 0.0664, 0.0802 rad/msec (corresp. 9.10, 10.6, 12.8 Hz.), IF: (any
frequency), LIF: ω = 0.419, 0.628, 1.26 rad/msec (corresp. 66.7, 100, 200
Hz.). For the LIF model, gL = 0.110. Normal forms (14), (33), (34), (39)
for the PRCs closest to bifurcation shown solid (scale factors ci fit by least-
squares); the IF and LIF PRCs are exact. PRC magnitudes decrease with
ω for the HR, HH, ML, and LIF models, are constant for the IF model, and
increase with ω for the FN model. The phase shifts φH and φB are chosen
as π (yielding z(θs) = 0: see Sect. 2.3). The inset to the ML plot displays
the same information on a log scale, demonstrating exponential decay.
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is that normal form calculations for the Bautin and supercritical Hopf bi-
furcation ignore the relaxation nature of the dynamics of typical neural
oscillators. However, the analytical PRCs (14), (33), (34), and (39) are qual-
itatively, and in many cases, quantitatively correct: see Fig. 4, which com-
pares these formulas with PRCs calculated using XPP [Ermentrout, 2002]
for the Hindmarsh-Rose (HR), FitzHugh-Nagumo (FN), Hodgkin-Huxley
(HH), and Morris-Lecar (ML) models near the relevant bifurcations (PRCs
for the integrate and fire (IF, LIF) models are exact). The companion
Fig. 5 demonstrates the scaling of PRC maxima with baseline frequency,
which is also correctly predicted by the normal form analysis. Frequencies
ω were varied by changing the bifurcation parameter: baseline inward cur-
rent Ib. Here and elsewhere, the neural models are as given in [Rose and
Hindmarsh, 1989, Murray, 2002, Hodgkin and Huxley, 1952], and [Rinzel
and Ermentrout, 1998]; all parameter values used here are reproduced along
with the equations in Appendix C. Finally, looking forward to the next sec-
tion, we note that the analytical PRCs derived here will correctly predict
key qualitative aspects of population responses to stimuli.

4 Probabilistic analysis of firing rates

4.1 A phase density equation

We now describe how time-dependent firing rates in response to external
stimuli emerge from averages of oscillator population dynamics with ap-
propriate initial conditions. Let ρ(θ, t) denote the probability density of
solutions of (7); thus ρ(θ, t)dθ is the probability that a neuron’s phase in an
arbitrary trial lies in the interval [θ, θ + dθ] at time t. This density evolves
via the advection equation:

∂ρ(θ, t)

∂t
= − ∂

∂θ
[v(θ, t) ρ(θ, t)] . (51)

Boundary conditions are periodic in the probability flux: e.g., v(0, t)ρ(0, t) =
limψ→2π v(ψ, t)ρ(ψ, t), which reduces to ρ(0, t) = ρ(2π, t) for smooth phase
response curves z. A related phase density approach is used in [Tass, 1999,
Ritt and Kopell], and we first derived the present solution in [Brown et al.,
2003b]. In the presence of noise, there is an additional diffusion term in (51)
[Stein, 1965, Tass, 1999, Brown et al., 2003b].

Multiple trials in which stimuli are not keyed to oscillator states may
be modeled by averaging solutions of the linear PDE (51) over suitably
distributed initial conditions; since (unmodeled) noise and variable and/or
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drifting frequencies tend to distribute phases uniformly in the absence of
stimuli, we set ρ0 ≡ 1/2π. Histograms of firing times may then be extracted
by noting that firing probabilities for arbitrary cells at time t are equal to
the passage rate of the probability density through the spike phase, i.e., the
probability flux

FL(t)
4
= lim

ψ→θ−s

v(ψ, t) ρ(ψ, t) = lim
ψ→θ−s

[ω + z(ψ)I(t)] ρ(ψ, t) . (52)

The limit from below allows for discontinuities in z(θ) (as in the homoclinic
and LIF PRCs), since the relevant quantity is flux across the spike threshold
from lower values of V and hence from lower values of θ. If the PRC z(θ)
and hence ρ(θ, t) are continuous at θs, (52) simply becomes FL(t) = [ω +
z(θs)I(t)] ρ(θs, t).

We emphasize that the expression (52) equally describes the average fir-
ing rate of an entire uncoupled population on a single trial, or the average
firing rate of single neurons drawn from such a population over many se-
quential trials, as in [Herrmann and Gerstner, 2001], or a combination of
both.

4.2 Patterns of firing probabilities and conditions for refrac-

tory periods

Eqn. (51) can be explicitly solved for piecewise constant stimuli of duration
d = t2 − t1: I(t) = Ī for t1 ≤ t ≤ t2 and I(t) = 0 otherwise. (Here and
elsewhere we assume Ī > 0 unless explicitly noted.) Specifically, the method
of characteristics ([Whitham, 1974], pp. 97-100 of [Evans, 1998]) yields:

ρ(θ, t) = ρ0(Θθ,t(0)) exp

(

−
∫ t

0

∂

∂θ
v(Θθ,t(t

′), t′)dt′
)

=
1

2π
exp

(

−Ī
∫ t̃2

t1

z′[Θθ,t(s)]ds

)

, (53)

where t ≥ t1, t̃2 = min(t, t2) and we take the initial condition ρ0 = ρ(θ, 0) =
1/2π. Here, Θθ,t(s) lies on the characteristic curve given by

d

ds
Θθ,t(s) = v(Θθ,t(s), s) , (54)

with ‘endpoint’ condition Θθ,t(t) = θ. When Θθ,t(s) coincides with a dis-
continuity in z, the integrands in (53) are not defined, and we must appeal
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to the continuity of probability flux or, equivalently, to the following change
of variables.

We now simplify the expression (53). Using the fact that v(Θθ,t(s), s) =
ω + Īz(Θθ,t(s)) for t1 ≤ s ≤ t2, and changing variables from s to Θθ,t(s),

∫ t̃2

t1

z′[Θθ,t(s)]ds =

∫ Θθ,t(t̃2)

Θθ,t(t1)

z′[Θθ,t(s)]

ω + Īz(Θθ,t(s))
dΘθ,t(s)

=
1

Ī
ln

[

ω + Īz(Θθ,t(t̃2))

ω + Īz(Θθ,t(t1))

]

, (55)

so that

ρ(θ, t) =
1

2π

[

ω + Īz(Θθ,t(t1))

ω + Īz(Θθ,t(t̃2))

]

. (56)

This expression is valid everywhere it is defined. To obtain the terms in (56),
we integrate (54) backward in time from the final condition at s = t until
s = t1 or s = t̃2; this may be done analytically for the normal form PRCs of
Sect. 3 or numerically for PRCs from full neuron models. The integration
yields the PRC-independent expression

Θθ,t(t̃2) = θ − ω(t− t̃2) ; (57)

for all neuron models, while Θθ,t(t1) is model-dependent via the PRC.
Note that while the stimulus is on (i.e. t1 ≤ t ≤ t2), t̃2 = t so that

Θθ,t(t̃2) = θ. After the stimulus turns off, v(θ, t) is independent of θ, and
ρ is constant along curves with constant θ − ωt. Thus, for t > t2, ρ(θ, t) is
simply a traveling wave rotating with frequency ω, with ρ(θ, t2) determining
the phase density.

From the definition (52), we have:

FL(t) = lim
ψ→θs

ω + z(ψ)I(t)

2π

[

ω + Īz(Θψ,t(t1))

ω + Īz(Θψ,t(t̃2))

]

. (58)

Fig. 6 shows examples of FL(t) for the various neuron models, computed
via Eqn. (58) with both numerically and analytically derived PRCs z, as
well as as via numerical simulations of the full neuron models. The phase
reduction (58) gives qualitative, and, in some cases, precise matches to the
full numerical data. We recall that the accuracy of phase reductions from
full neuron models improves with weaker stimuli Ī, and that the analytical
PRCs better approximate their numerical counterparts as the bifurcation
point is approached (i.e., as Ib is varied).
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Note that if limψ→θs z(ψ) = 0, I(t) does not directly enter (58), so FL(t)
depends only on variations in ρ resulting from the stimulus. However, (I)
if limψ→θs z(ψ) 6= 0, the firing probability FL(t) ‘jumps’ at stimulus
onset and offset; see Fig. 6, and recall that we set θs = 0. This is our first
main result.

Some comments on the limit in Eqn. (58) are appropriate. Since for all
neuron models we always assume that v(θ) is positive and bounded, and is
defined except at isolated point(s), Θψ,t(s) is a continuous function of ψ, s
and t. Nevertheless, as Θψ,t(t1) and Θψ,t(t̃2) pass through θs as t advances,
discontinuities in z(·) give discontinuities in FL(t), but the limit in Eqn. (58)
ensures that FL(t) is always defined. As remarked above, if the PRC z(·)
is continuous function, then the limψ→θs z(ψ) = z(θs) and taking the limit
is unnecessary.

While the stimulus is on, solutions to (54) are periodic with period

P =

∫ 2π

0

dθ

ω + Īz(θ)
, (59)

(independent of the endpoint condition). Thus, (56) implies that ρ(θ, t)
must also be P -periodic, so that the distribution returns to ρ(θ, t1) ≡ 1

2π
every P time units: i.e., ρ(θ, t1 + kP ) ≡ 1

2π for integers k. If the stimulus
is turned off after duration d = t2 − t1 = kP , this ‘flat’ density therefore
persists (recall that ρ evolves as a traveling wave), giving our second result:
(II) for stimulus durations that are multiples of P , post-stimulus
firing probabilities FL(t) return to the constant value ω

2π . This is
illustrated in Fig. 7 (a) and corresponds to the absence of post-stimulus

refractory periods and ringing, and is related to the ‘black holes’ discussed
in [Tass, 1999]; Figs. 6, 7 also illustrate the periodic regimes both during
and after the stimulus.

When the stimulus duration d is not a multiple of P (and provided z(θ)
is not constant), ρ(θ, t2) has at least one peak exceeding 1/2π, and at least
one valley less than 1/2π (see phase density plots of Fig. 6). Let the largest
and smallest possible ρ values be ρmax and ρmin, respectively. Eqn. (56)
then gives

ρmax =
1

2π

[

ω + Īzmax
ω + Īzmin

]

; ρmin =
1

2π

[

ω + Īzmin
ω + Īzmax

]

, (60)

where zmin ≡ z(θmin) and zmax ≡ z(θmax) are the global extrema of the
PRC; note the relationship ρminρmax = 1/4π2. Recalling that Θθ,t(t̃2) = θ
during the stimulus, comparing Eqns. (60) and (56) shows that ρmax oc-
curs at θmin and ρmin at θmax. When it exists, the stimulus duration dmax
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Figure 6: (a)-(f) Phase density ρ(θ, t) in greyscale (darker corresponding
to higher values) (top) and firing probability FL(t) in msec−1 (bottom)
for stimuli of length 3/2 × P (indicated by black horizontal bars), from
Eqns. (56),(58) via the method of characteristics. Dashed curves indicate
FL(t) from the normal form PRCs of Eqns. (14), (33), (34), (39), (45), (48);
solid curves from numerical PRCs computed via XPP. Baseline frequencies
and values of Ī for HR, FN, HH, ML, IF, and LIF models are (0.0201, 0.212,
0.429, 0.08, 0.628, 0.628) rad/msec (corresp. 3.20, 33.7, 68.3, 12.7, 100, 100
Hz.) and (0.1, 0.0015, 0.25, 0.0005, 0.05, 0.05) µA/cm2, respectively. The
vertical bars are PSTHs, numerically computed using the full conductance-
based equations (Appendix C) using 10,000 initial conditions, with Ib set
to match frequencies of the corresponding phase models. Initial conditions
generated by evolving the full equations for a (uniformly distributed) random
fraction of their period, from a fixed starting point. Note that FL(t) jumps
discontinuously at stimulus onset and offset for the IF and LIF models, since
for these models z(θs) 6= 0 (point (I) in text). Also, during stimulus FL(t)
does not dip below the baseline value ω

2π for the HR, IF, and LIF models,
because zmin ≈ 0 in these cases (point V).
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Figure 7: (a)-(d) Firing probabilities FL(t) for the HH and HR models, with
stimulus characteristics chosen to illustrate the points in the text. Dashed
and solid curves and vertical bars denote data obtained as in Fig. 6. (a) A
stimulus (Ī = 0.04 µA/cm2) of length exactly P = 232.50 msec (indicated
by the horizontal black bar) for the HR model (ω =0.0201 rad/msec) leaves
no trace (point (II)). (b) A stimulus (Ī = 0.25 µA/cm2) of duration dmax =
11.46 msec for the HH model (ω =0.429 rad/msec) yields maximum response
after the stimulus has switched off (because zmin < 0) but for the HR model
(d) (ω =0.0102 rad/msec) with stimulus duration dmax = 152.01 msec, the
peak in FL(t) is achieved at t2 (because zmin ≈ 0), (points (III,IVa)). Plots
(c),(d) illustrate point (VI): the stimulus in (c) is identical to that of (d),
but the slower HR population (d) (ω=0.0102 vs. 0.0201 rad/msec) displays
the greatest response.
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(resp., dmin) for which a distribution with peak ρmax (resp., valley ρmin)
occurs is essentially obtained by requiring (ignoring the limits required for
discontinuous PRCs) that a characteristic curve passes through θmax (resp.,
θmin) at t1 and through θmin (resp., θmax) at time t2. Thus, (III) for
stimulus durations dmax (resp., dmin), post-stimulus firing proba-
bilities FL(t) exhibit their maximal deviation above (resp., below)
the baseline rate ω

2π . These deviations may or not be exceeded during the
stimulus itself. See Fig. 7 for examples and Fig. 6 for the evolution of phase
density during a prolonged stimulus; in particular, note that while dmax is
not strictly defined for the LIF model, shorter stimuli (of arbitrarily small
duration) always give higher peaks.

We now determine whether maximal peaks and minimal valleys in firing
rates occur during or after stimulus for the various neuron types. Again
using Θψ,t(t̃2) = ψ during the stimulus, (58) yields

FLd(t) = lim
ψ→θs

ω + z(ψ)Ī

2π

[

ω + Īz(Θψ,t(t1))

ω + Īz(ψ)

]

= lim
ψ→θs

1

2π

[

ω + Īz(Θψ,t(t1))
]

, t1 < t ≤ t2 ; (61)

the superscript on FLd(t) denotes ‘during’ the stimulus, emphasizing that
this expression is only valid for t1 < t ≤ t2. After the stimulus has turned
off, a different special case of (58) is valid:

FLa(t) = lim
ψ→θs

ω

2π

[

ω + Īz(Θψ,t(t1))

ω + Īz(Θψ,t(t2))

]

, t > t2 ; (62)

here the superscript on FLa(t) denotes ‘after’ the stimulus. We now use
these expressions to write the maximum and minimum possible firing rates
during and after the stimulus:

FLdmax =
1

2π

[

ω + Īzmax
]

(63)

FLamax =
ω

2π

[

ω + Īzmax
ω + Īzmin

]

(64)

FLdmin =
1

2π

[

ω + Īzmin
]

(65)

FLamin =
ω

2π

[

ω + Īzmin
ω + Īzmax

]

. (66)
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From (63-66), we have

FLdmax − FLamax =
1

2π

[

ω + Īzmax
ω + Īzmin

]

Īzmin , (67)

FLdmin − FLamin =
1

2π

[

ω + Īzmin
ω + Īzmax

]

Īzmax . (68)

Since we restrict to the case where v(θ, t) > 0 (i.e., there are no fixed points
for the phase flow), the terms in the brackets of the preceding equations are
always positive. This implies, for Ī > 0,

FLamax ≥ FLdmax if and only if zmin ≤ 0 , (69)

FLamax ≤ FLdmax if and only if zmin ≥ 0 , (70)

FLamin ≤ FLdmin if and only if zmax ≥ 0 , (71)

FLamin ≥ FLdmin if and only if zmax ≤ 0 , (72)

where the ‘equals’ cases of the inequalities require zmax = 0 or zmin = 0.
In other words, (IVa) for the specific stimulus durations that elicit
maximal peaks in firing rates, these maximal peaks occur during
the stimulus if zmin ≥ 0 but after the stimulus switches off if zmin ≤
0; (IVb) for the specific (possibly different) stimulus durations
that elicit minimal firing rate ‘dips,’ these minimal dips occur
during the stimulus if zmax ≤ 0 but after the stimulus switches off
if zmax ≥ 0. We recall that zmin < 0 is a defining condition for ‘Type II’
neurons [Ermentrout, 1996]. The post-stimulus maximum (resp. minimum)
firing rates are obtained as the peak (resp. valley) of the distribution ρ(θ, t)
passes through θs. As Fig. 7 (b) shows, the delay from stimulus offset can
be significant for typical neuron models.

Defining the baseline rate valid for t < t1

FLb(t) ≡ ω

2π
, (73)

Eqn. (65) shows that FLdmin ≥ FLb if and only if zmin ≥ 0. Thus, (V) if
zmin ≥ 0, the firing rate does not dip below baseline values until
(possibly) after the stimulus switches off. Table 2 summarizes the
above results for the neuron models studied here.

We conclude this section by noting that Fourier transformation of the
analog of Eqn. (51) in the presence of noise shows that FL(t) decays at
exponential or faster rates due to noise and averaging over distributions of
neuron frequencies (cf. [Tass, 1999, Brown et al., 2003b]). For mildly noisy
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neuron model Response “jumps” with stimulus? Max. response after stimulus
(point I) and depressed firing

during stimulus?
(points IV, V)

HR NO NO
HH NO YES
FN YES YES
ML YES NO
IF YES NO
LIF YES NO

Table 2: Predictions using the numerical PRCs of Fig. 4. The conclusions
follow from the limiting value of z(θs) (point (I) in text), and the value of
the PRC minimum zmin (points (IVa, V)).

or heterogeneous systems, the results (I)-(V) remain qualitatively similar
but are ‘smeared:’ e.g., ρ(θ, t) is no longer time-periodic during or after
the stimulus, but approaches a generally nonuniform equilibrium state via
damped oscillations.

4.3 Frequency scaling of response magnitudes

We now determine how the maximum and minimum deviations from baseline
firing rates depend on the baseline (pre-stimulus) firing rate of the neural
population. Following the discussion of the previous section, we separately
compute the scaling of maximal (minimal) responses that are possible during

stimulus and the scaling of maximal (minimal) responses that are possible
after stimuli switch off. Eqns. (63-66) and (73) yield:

FLdmax − FLb =
1

2π

[

Īzmax
]

(74)

FLdmin − FLb =
1

2π

[

Īzmin
]

(75)

FLamax − FLb =
ω

2π

[

Ī(zmax − zmin)

ω + Īzmin

]

(76)

FLamin − FLb =
ω

2π

[

Ī(zmin − zmax)

ω + Īzmax

]

. (77)

These expressions provide one set of measures of the sensitivity of population
level response at different baseline firing rates. Additionally, taking ratios
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with the pre-stimulus firing rate (e.g. finding FLd
max−FLb

FLb ) determines the
size of deviations relative to baseline activity. We use the information sum-
marized in Table 1 to compile these measures for all neuron models in the
following Tables 3-6. Note that in these tables, ‘moving away from the bi-
furcation’ means varying parameters so that the frequency varies away from
its value at onset of firing, namely ω = 0 for the SNIPER and homoclinic
bifurcations and IF and LIF models, ωH for the supercritical Hopf bifurca-
tion, and ωSN for the Bautin bifurcation. The scaling of FLdmax − FLb, as
an example, is confirmed by comparing Fig. 5. In summary, (VI) different
neural models and bifurcations imply different scalings of maximal
response magnitude with frequency.

Most measures of population firing rate responses increase for frequencies
closer to the bifurcation point (Tables 3-6). If these models are parameter-
ized so that frequency increases as the bifurcation parameter Ib increases
through the bifurcation point, this means that populations at lower fre-
quencies tend to display greater responses; see Fig. 5 for examples. This
effect is further explored in the next section.

5 Gain of oscillator populations

In attempts to understand neural information processing, it is useful to
understand how input signals are modified by transmission through various
populations of spiking cells in different brain organs. The general way to
treat this problem is via transfer functions [Servan-Schreiber et al., 1990,
Gerstner and Kistler, 2002]. Here we interpret the results of the previous
section in terms of the amplification, or attenuation, of step function input
stimuli by the neural population. We consider both extremal and average
values of the firing rate FL(t) during stepped stimuli of varying strengths,
and illustrate for neurons near a SNIPER bifurcation. We will use the word
‘gain’ to describe the sensitivity of the resulting input-output relationship:
systems with higher gain have a greater output range for a specific set of
input strengths. The average firing rate during stimulus is

〈FLd〉 ≡ 1

P
, (78)

where P is the period of an individual oscillator during the stimulus (Eqn. (59)),
and 〈·〉 is the average over one such period. For the special case of a popu-
lation near a SNIPER bifurcation, PSN = 2π√

ω2+2csnI
so that

〈FLdSN 〉 =

√
ω2 + 2csnI

2π
. (79)
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bifurcation FLdmax − FLb Lowest order scaling Stronger or weaker effect
near bifurcation as move away from bifurcation,

to lowest order
unnormalized (normalized by FLb)

SNIPER 1
2π

[

2Īcsn
ω

]

∼ 1
ω weaker (weaker)

Hopf 1
2π

[

ĪcH√
|ω−ωH |

]

∼ 1√
|ω−ωH |

weaker (weaker)

Bautin 1
2π

[

Ī|cB |
|ω−ωSN |

]

∼ 1
|ω−ωSN | weaker (weaker)

homoclinic 1
2π Īchc ω exp

(

2πλu
ω

)

∼ ω exp(k/ω) weaker (weaker)

IF Ī const. const. (weaker)

LIF 1
2π

Īω
gL

(

e2πgL/ω − 1
)

∼ ω exp(k/ω) weaker (weaker)

Table 3: Scaling of deviations in firing rate during stimulus FLdmax − FLb

for the different neuron models. The positive constant k differs from case to
case.
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bifurcation FLdmin − FLb Lowest order scaling Stronger or weaker effect
near bifurcation as move away from bifurcation,

to lowest order
unnormalized (normalized by FLb)

SNIPER 0 const. const. (const.)

Hopf − 1
2π

[

ĪcH√
|ω−ωH |

]

∼ − 1√
|ω−ωH |

weaker (weaker)

Bautin − 1
2π

[

Ī|cB |
|ω−ωSN |

]

∼ − 1
|ω−ωSN | weaker (weaker)

homoclinic 1
2π Īchc ω ∼ ω stronger (const.)

IF Ī const. const. (weaker)

LIF 1
2π

Īω
gL

(

1 − e−2πgL/ω
)

∼ ω stronger (const.)

Table 4: Scaling of deviations in firing rate during stimulus FLdmin − FLb

for the different neuron models.
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bifurcation FLamax − FLb Lowest order scaling Stronger or weaker effect
near bifurcation as move away from bifurcation,

to lowest order
unnormalized (normalized by FLb)

SNIPER 1
2π

[

2Īcsn
ω

]

∼ 1
ω weaker (weaker)

Hopf 1
2π

[

2ĪcHω

ω
√

|ω−ωH |−ĪcH

]

∼ 1√
|ω−ωH |

weaker (weaker)

Bautin 1
2π

[

2Ī|cB |ω
ω|ω−ωSN |−Ī|cB |

]

∼ 1
|ω−ωSN | weaker (weaker)

homoclinic 1
2π

Īchcω
1+Īchc

(exp(2πλu/ω) − 1) ∼ ω exp(k/ω) weaker (weaker)

IF 0 const. const. (const.)

LIF ω
2π

Ī(1−e−2πgL/ω)(e2πgL/ω−1)

gL+Ī(1−e−2πgL/ω)
∼ ω exp(k/ω) weaker (weaker)

Table 5: Scaling of deviations in firing rate after stimulus, FLamax − FLb,
for the different neuron models. The positive constant k differs from case to
case.
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bifurcation FLamin − FLb Lowest order scaling Stronger or weaker effect
near bifurcation as move away from bifurcation,

to lowest order
unnormalized (normalized by FLb)

SNIPER − 1
2π

[

2Īcsn

ω+2csnĪ/ω

]

∼ −ω stronger (const.)

Hopf − 1
2π

[

2ĪcHω

ω
√

|ω−ωH |+ĪcH

]

∼ − 1√
|ω−ωH |

weaker (weaker)

Bautin − 1
2π

[

2Ī|cB |ω
ω|ω−ωSN |+Ī|cB |

]

∼ − 1
|ω−ωSN | weaker (weaker)

homoclinic Īchcω
2π

exp(− 2πλu
ω )−1

exp(−2πλu
ω

)+Īchc
∼ −ω stronger (const.)

IF 0 const. const. (const.)

LIF ω
2π

Ī(e2πgL/ω−1)(e−2πgL/ω−1)

gL+Ī(e2πgL/ω−1)
∼ −ω stronger (const.)

Table 6: Scaling of deviations in firing rate after stimulus FLamin − FLb for
the different neuron models.
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These expressions describe the standard ‘f − I’ curve typically studied for
single neurons [Rinzel and Ermentrout, 1998].

The instantaneous responses of neurons are perhaps of greater interest
than averages such as (78-79). To derive the extremal (i.e., maximally above
or below baseline) firing rates, we appeal to the expressions (61) and (62),
which are valid for both positive and negative values of Ī as long as v(θ, t)
remains nonnegative. (However, the subsequent formulae of Section 4.2
require modification: ‘max’ and ‘min’ must be appropriately interchanged
when dealing with negative Ī.) Thus, the extremal value of FLd(t) is (cf.
(63))

FLd,ext =
1

2π

[

ω + Īzmax
]

, (80)

in general; and in particular for the SNIPER bifurcation:

FLd,extSN =
1

2π

[

ω +
2csnĪ

ω

]

. (81)

In Fig. 8, we plot FLextSN as a function of both baseline firing rate and
stimulus strength Ī, where the latter takes both positive and negative values.
For (here, negative) stimulus values, and frequencies, sufficient to cause the
minimum of v(θ) to dip below zero, fixed points appear in the phase model,

giving firing rates FLd(t) = 〈FLdSN 〉 = FLd,extSN = 0. Notice the increased
sensitivity of extremal firing rates to changes in stimulus strength at low
baseline frequencies. This ‘increased gain’ is also shown in Fig. 9 (a), which
plots slices through Fig. 8 for two different baseline frequencies. However,
there is no analogous effect for the average firing rates of Eqn. (79), which
follow the standard frequency-current relationships for individual neurons:
see Fig. 9 (b).

Note that there is always a crossing point between firing rate curves for
near-SNIPER populations with high and low baseline frequencies (see Fig. 9
(a)). Above this crossing point, stimuli are more greatly amplified by the
low frequency population; below the crossing point, they are more greatly
amplified by the high frequency population. This is analogous to increasing
the slope (= gain) of a sigmoidal response function as in [Servan-Schreiber
et al., 1990], gain increase in Fig. 1 of that paper being analogous to decrease
of ω. Thus, if signal discrimination depends on extremal firing rates, the ef-
fects of gain modulation on signal/noise discrimination of [Servan-Schreiber
et al., 1990] could be produced by changes in baseline rate.
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Figure 8: Maximum/minimum firing rate FLd,extSN of a population of stim-
ulated HR neurons in Hz., as a function of baseline frequency (Hz.) and
applied current strength Ī (µA/cm2).

6 Discussion

We now provide further comments on how the mechanisms studied in this
paper could be applied and tested. As discussed in Section 5 and with
regard to the locus coeruleus (LC) in the Introduction, baseline frequency-
dependent variations in the sensitivity of neural populations to external
stimuli could be used to adjust gain in information processing. The effect
could be to engage the processing units relevant to specific tasks, and, as in
[Servan-Schreiber et al., 1990, Usher et al., 1999], to additionally sensitize
these units to salient stimuli. See [Brown et al., 2003b] for details of the LC
application.

We recall that Section 4.2 described the different types of post-stimulus
‘ringing’ of firing rates FL(t) that occur for the various neuron models. This
‘phase-resetting’ effect has long been studied in theoretical and experimental
neuroscience (e.g. [Winfree, 2001, Tass, 1999, Makeig et al., 2002]). As we
show here (Eqn. (69), Fig. 7), for neuron models having a phase response
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Figure 9: Maximum/minimum firing rate of a population of stimulated HR
neurons (a), and average firing rate (b) in Hz., as a function of applied
current strength for two different baseline frequencies: 1.3 Hz. (dot-dashed
line), and the higher frequency 2.9 Hz (dotted). The increased gain effect at
lower baseline frequencies discussed is evident for maximum/minimum, but
not average, firing rates (see text).

curve z(θ) that takes negative values, the greatest deviations from baseline
firing rates can occur significantly after stimulus end. Subpopulations of
such neurons could be used in detecting offsets of sensory stimuli. Elevated
firing rates FL(t) that remain (or are enhanced) after the stimulus ends are
an example of persistent neural activity, a general phenomenon implicated
in short-term memory, interval timing, and other functions. However, phys-
iological evidence suggests that some of the persistent activity observed in

vivo results from desynchronized, not phase-clustered, neural groups.
Finally, stimulus-induced ringing of population firing rates (which occurs

at the natural baseline frequency of the neuron population, see Eqn. (56))
could play a role in generating alpha-wave patterns (‘alpha-ringing’); the
possible relevance of this effect is well-known and is a topic of current debate
in the EEG community [Makeig et al., 2002, Bogacz et al., 2002].

The results presented here are experimentally testable. As noted in the
Introduction, the predictions for average firing rate FL(t) are equally valid
for multi-channel recordings from a (weakly coupled) population and for se-
quences of single-unit recordings from members of such a population. Thus,
the FL(t) predictions of this paper can be compared with Peri-Stimulus
Time Histograms (PSTHs) formed from both types of data. The scaling of
response magnitudes predicted in Sect. 4.3 could be tested in any experiment
in which baseline neural firing rates are modulated pharmacologically while
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stereotyped stimuli are presented. This is essentially what is done in many
experiments on the effects of different neuromodulators, neurotransmitters,
and other agents. For example, direct application of the neuropeptide cor-
ticotropin releasing factor (CRF) has been found to increase LC baseline
activity and simultaneously decreases responses to sensory stimuli [Moore
and Bloom, 1979] in some, but not all, protocols. Many other examples
of such ‘modulatory’ effects of neurotransmitters or exogenous inputs ex-
ist for neurons in other brain areas [Aston-Jones et al., 2001]. However, a
general difficulty is that these substances may change many parameters in
neurons besides the bifurcation parameter Ib that is the focus of this paper,
hence making it difficult to determine what mechanism leads to changes in
averaged response. Furthermore, the presence of noise tends to diminish
the scaling results reported here (cf. [Herrmann and Gerstner, 2001, Brown
et al., 2003b]), and while it seems that coupling can in some circumstances
amplify the scaling [Brown et al., 2003b], we are still working to clarify this
effect.

We close by mentioning another experimental test of the predictions
presented here, suggested by John Rinzel. First, one could determine what
pharmacological manipulations would cause a given in vitro neuron to tran-
sition from periodic firing near a SNIPER bifurcation to periodic firing near
a Bautin bifurcation. Then, one could measure how trial-averaged responses
to stereotyped stimuli vary as this manipulation is performed. In particu-
lar, this paper predicts that maximal responses should occur during the
stimulus in SNIPER firing, but after the stimulus switches off following a
manipulation to Bautin firing.
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Appendix A: the adjoint method

Consider an infinitesimal perturbation ∆x to the trajectory xγ(t) ∈ γ at
time t = 0. Let x(t) be the trajectory evolving from this perturbed initial
condition. Defining ∆x(t) via x(t) = xγ(t) + ∆x(t),

d∆x(t)

dt
= DF (xγ(t))∆x(t) + O(‖∆x‖2) , ∆x(0) = ∆x . (82)

For the phase shift defined as ∆θ = θ(x(t)) − θ(xγ(t)), we have

∆θ = 〈∇
x

γ(t)θ,∆x(t)〉 + O(‖∆x‖2) , (83)

where 〈·, ·〉 defines the standard inner product (written as a dot product in
the main text), and ∇

x
γ(t)θ is the gradient of θ evaluated at xγ(t). We recall

from above that ∆θ is independent of time (after the perturbation at t = 0)
so that taking the time derivative of (83) yields, to lowest order in ‖∆x‖,

〈

d∇
x

γ(t)θ

dt
,∆x(t)

〉

= −
〈

∇
x

γ(t)θ,
d∆x(t)

dt

〉

= −〈∇
x

γ(t)θ,DF (xγ(t)) ∆x(t)〉
= −〈DF T (xγ(t))∇

x
γ(t)θ,∆x(t)〉 . (84)

Here the matrix DF T (xγ(t)) is the transpose (i.e., adjoint) of the (real) ma-
trix DF (xγ(t)). Since the above equalities hold for arbitrary perturbations
∆x(t), we have

d∇
x

γ(t)θ

dt
= −DF T (xγ(t))∇

x
γ(t)θ . (85)

Finally, recall that from (4) that

dθ

dt
= ∇xθ ·

dx

dt
= ∇xθ · F (x) = ω , (86)

which in particular must hold at t = 0. Thus, as in [Hoppensteadt and
Izhikevich, 1997, Ermentrout, 2002, Ermentrout and Kopell, 1991], we must
solve (85) subject to the condition

∇
x

γ(0)θ · F (xγ(0)) = ω . (87)

Since ∇
x

γ(t)θ evolves in R
N , (87) supplies only one of N required initial

conditions; the rest arise from requiring that the solution ∇
x

γ(t)θ to (85) be
T -periodic [Hoppensteadt and Izhikevich, 1997, Ermentrout, 2002, Ermen-
trout and Kopell, 1991].
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Note that equations (85) and (87) correspond to equations (9.16) and
(9.17) of [Hoppensteadt and Izhikevich, 1997], with the identification of
∇xθ → Q and a slightly different parametrization. Indeed, this is the ad-
joint problem that XPP solves to numerically find the PRC QXPP. The
relationship is

∇xθ = ωQXPP . (88)

Appendix B: the ‘strong attraction’ method

The ‘strong attraction limit’ of a coordinate change to the phase variable θ2

discussed in, e.g., [Ermentrout and Kopell, 1990, Hoppensteadt and Izhike-
vich, 1997] effectively sets

∂θ2
∂x

(x) =
F (x)

‖F (x)‖2
ω , (89)

which clearly satisfies (4) but implicitly imposesN−1 additional constraints:
in particular, level sets of θ2 are always orthogonal to γ, which is not gener-
ally the case for isochrons. Furthermore, Eqn. (89) requires that F (x)

‖F (x)‖2ω is

the gradient of the scalar function θ2, which is only possible if it is curl-free
in a neighborhood of γ. Since it is proportional to the unit-normalized vec-
tor field which exhibits the attracting limit cycle, F (x)

‖F (x)‖2ω will never meet

this requirement, so the phase variable θ2 cannot be extended to a neighbor-
hood of γ. More practically, ∂θ

∂x(xγ) and ∂θ2
∂x (xγ) can also give qualitatively

different phase dynamics, with θ dynamics representing more accurately the
original ‘full’ equations: see [Brown et al., 2003a] for an example involving
the stability of phase-locked states in coupled Hodgkin-Huxley systems.
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Appendix C: equations for the neural models

The Rose-Hindmarsh equations:

V̇ = [Ib − gNam∞(V )3(−3(q −Bb∞(V )) + 0.85)(V − VNa)

−gKq(V − VK) − gL(V − VL)]/C

q̇ = (q∞(V ) − q)/τq(V )

q∞(V ) = n∞(V )4 +Bb∞(V ) , b∞(V ) = (1/(1 + exp(γb(V + 53.3))))4 ,

m∞(V ) = αm(V )/(αm(V ) + βm(V )) , n∞(V ) = αn(V )/(αn(V ) + βn(V )) ,

τq(V ) = (τb(V ) + τn(V ))/2 , τn(V ) = Tn/(αn(V ) + βn(V )) ,

τb(V ) = Tb(1.24 + 2.678/(1 + exp((V + 50)/16.027))) ,

αn(V ) = 0.01(V + 45.7)/(1 − exp(−(V + 45.7)/10)) ,

αm(V ) = 0.1(V + 29.7)/(1 − exp(−(V + 29.7)/10)) ,

βn(V ) = 0.125 exp(−(V + 55.7)/80) , βm(V ) = 4 exp(−(V + 54.7)/18) .

VNa = 55 mV , VK = −72 mV , VL = −17 mV , gNa = 120 mS/cm2 ,

gK = 20 mS/cm2 , gL = 0.3 mS/cm2 , gA = 47.7 mS/cm2 ,

C = 1 µF/cm2 , Ibi = 5 µA/cm2 , γb = 0.069 mV−1 ,

Tb = 1 msec , Tn = 0.52 msec , B = 0.21 gA/gK .

The Fitzhugh-Nagumo equations:

V̇ = [−w − V (V − 1)(V − a) + Ib]/C

ẇ = ε(V − gaw)

ga = 1 , ε = 0.05 , a = 0.1 mV , C = 1 µF/cm2.
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The Hodgkin-Huxley equations:

dV/dt = 1/C(I − gNah(V − VNa)m
3 − gK(V − VK)n4 − gL(V − VL))

dm/dt = am(V )(1 −m) − bm(V )m

dh/dt = ah(V )(1 − h) − bh(V )h

dn/dt = an(V )(1 − n) − bn(V )n

am(V ) = 0.1(V + 40)/(1 − exp(−(V + 40)/10))

bm(V ) = 4 exp(−(V + 65)/18)

ah(V ) = 0.07 exp(−(V + 65)/20)

bh(V ) = 1/(1 + exp(−(V + 35)/10))

an(V ) = 0.01(V + 55)/(1 − exp(−(V + 55)/10))

bn(V ) = 0.125 exp(−(V + 65)/80)

VNa = 50 mV , V k = −77 mV , VL = −54.4 mV , gNa = 120 mS/cm2

gK = 36 mS/cm2 , gL = .3 mS/cm2 , C = 1 µF/cm2

The Morris-Lecar equations:

V̇ = [gCam∞(V )(VCa − V ) + gKw(VK − V ) + gL(VL − V ) + Ib]/C

ẇ = φ(w∞(V ) − w)/τw(V )

m∞(V ) = 0.5(1 + tanh((V − V1)/V2))

w∞(V ) = 0.5(1 + tanh((V − V3)/V4))

τw(V ) = 1/ cosh((V − V3)/(2V4))

φ = 0.23 , gL = 2 mS/cm2 , gCa = 4 mS/cm2 , gK = 8 mS/cm2 , C = 20 µF/cm2

VK = −84 mV , VL = −60 mV , VCa = 120 mV

V1 = −1.2 mV , V2 = 18 mV , V3 = 12 mV , V4 = 17.4 mV
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