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ABSTRACT We study a class of permutation-symmetric globally-coupled,
phase oscillator networks on N -dimensional tori. We focus on the effects
of symmetry and of the forms of the coupling functions, derived from un-
derlying Hodgkin-Huxley type neuron models, on the existence, stability,
and degeneracy of phase-locked solutions in which subgroups of oscillators
share common phases. We also estimate domains of attraction for the com-
pletely synchronized state. Implications for stochastically forced networks
and ones with random natural frequencies are discussed and illustrated nu-
merically. We indicate an application to modeling the brain structure locus

coeruleus: an organ involved in cognitive control.

1 Introduction and background

We consider networks of N rotator oscillators with constant forcing and
pairwise phase-difference and absolute-phase ‘product’ coupling, described
by:

θ̇i = ωi +
1

N

N∑

j=1

αijfij(θj − θi) + hi(θi)
1

N − 1

N∑

j 6=i

βijgj(θj), (1.1)

where (θ1, . . . , θN )T ∈ TN , αij , βij and fij , hi, gj are, respectively, coupling
parameters and 2π-periodic functions, and ωi are the natural frequencies
of the uncoupled rotators. This paper focuses on networks with identical
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global (mean field) coupling, so that equation (1.1) becomes

θ̇i = ω +
α

N

N∑

j=1

f(θj − θi) + h(θi)
β

N − 1

N∑

j 6=i

g(θj) , (1.2)

although we include some results with randomly distributed frequencies
ωi, and also with additive random noise. The denominators (N , N −1) are
introduced to normalize coupling effects.

Rotator (phase-only) models of coupled oscillators have been widely stud-
ied, especially in the contexts of neuroscience and coupled Josephson junc-
tions. The phase equations offer, respectively, significant simplification of
more realistic neuron models of Hodgkin-Huxley or Fitzhugh-Nagumo type:
see e.g. Murray [2001]; Keener and Sneyd [1998]; Hoppensteadt and Izhike-
vich [1997], and of the Josephson circuit equations: e.g. Watanabe and Stro-
gatz [1994]; Watanabe and Swift [1997]; Wiesenfeld, Colet, and Strogatz
[1998]. In the case that the N uncoupled oscillators have strongly attracting
limit cycles in their full phase space, the persistence of normally hyperbolic
invariant manifolds (Fenichel [1971]) under small perturbations (weak cou-
pling) may be used to reduce the system to the N -torus by a suitable
coordinate transformation. Two procedures for approximating the reduced
system will be applied in Section 4 of this paper. The first is the ‘strong
attraction’ (SA) method described in Ermentrout and Kopell [1990] and
Hoppensteadt and Izhikevich [1997]; the second, a related ‘phase response’
(PR) technique, is given in e.g. Ermentrout [1996], Kuramoto [1997], and
Kim and Lee [2000].

We were motivated to study systems of the form (1.1) by the study of
Usher, Cohen, Servan-Schreiber, Rajkowski, and Aston-Jones [1999], which
presents data showing that neurons of the brain organ locus coeruleus (LC)
in monkeys exhibit two distinct firing patterns corresponding to different
behaviors evinced in cognitive tasks, cf. Grant, Aston-Jones, and Redmond
[1988]; Aston-Jones, Rajkowski, and Alexinsky [1994]. These are designated
as the phasic and tonic modes. In the latter, associated with labile behav-
ior and poor task performance, LC neurons fire at a relatively high rate,
but with little synchrony; in the former, associated with good performance,
their average firing rate is lower but they display greater synchrony (i.e.
higher correlation among individual firing times). See Figure 1.1(a). More-
over, firing patterns are more responsive to changes in stimulus in the
phasic than in the tonic mode; see Figure 1.1(b,c). Thus, the LC has been
proposed as a modulator involved in cognitive control, cf. Servan-Schreiber,
Printz, and Cohen [1990].

The computational model constructed in Usher, Cohen, Servan-Schreiber,
Rajkowski, and Aston-Jones [1999] includes inhibitory synaptic and exci-
tatory electrotonic coupling (Johnston and Wu [1997]), explicitly imposed
refractory periods, and representations of rapid depolarization during ac-
tion potentials to successfully reproduce these characteristics of the phasic
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FIGURE 1.1. Reproduced from Usher, Cohen, Servan-Schreiber, Rajkowski, and
Aston-Jones [1999], with adapted caption. (a) Cross correlograms for two simul-
taneously recorded LC neurons during phasic LC mode (filled histogram) and
tonic mode (line): central peak indicates increased synchrony in phasic mode.
(b,c) Histograms of LC activity in phasic (b) and tonic (c) LC modes: psy-
chological stimulus onset (which precedes the direct stimulus I(t) considered in
Section 4.4) is marked by dotted line, and enhanced response in phasic versus
tonic mode is apparent. Average firing rate is lower in phasic mode.

and tonic modes; transitions between the two modes are effected by vary-
ing the degree of electrotonic coupling. However, the model’s complexity
makes analysis difficult, and we wish to develop a model that has similar
behavior but is more amenable to mathematical study.

In this paper, we consider coupling functions motivated by two physi-
cally distinct mechanisms: (1) electrotonic or gap junction coupling, based
on voltage differences between cells in electrical contact, and (2) spike-
triggered synaptic transmission that releases a pulse of neurotransmitter
across synaptic clefts. Electrotonic coupling is additive in the sense that the
sum of voltage differences of all cells in contact with a given cell influence
that cell; hence the first sum in equations (1.1) and (1.2). Synaptic cou-
pling leads to absolute phase terms βhi(θi)gj(θj) in (1.1-1.2). Intuitively,
these arise because the primary effect on the post-synaptic cell occurs after
the pre-synaptic cell fires, and therefore depends, via g(θj), on the latter’s
location on its phase circle. Coupling via a ‘reversal potential’ also depends
upon the post-synaptic cell’s phase through h(θi) (Ermentrout and Kopell
[1990]; Taylor and Holmes [1998]); thus h(θi) multiplies the summed g(θj)’s,
leading to the product coupling form of the second term.

We furthermore assume an additional separation of scales, taking elec-
trotonic coupling to be weaker than synaptic, so that it can be averaged to
give the phase-difference functions αfij without affecting βhigj at leading
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order; we are currently studying when the standard averaging theorems can
be extended to make this rigorous. Sections 3 and 4 consider the dynamics
of equation (1.1) for various values of α and β, without a priori restricting
to the |α| ¿ |β| ¿ O(1) required in this derivation of the phase equations.

When β = 0 but frequencies differ between oscillators, equation (1.2) is
referred to as the Kuramoto model (Kuramoto [1984]), on which there is
an extensive literature; see the recent review of Strogatz [2000] and refer-
ences therein (e.g. Crawford [1995]). Much of this work has been done in
the continuum limit N → ∞, and Strogatz [2000] adopts this viewpoint;
specifically, stability analyses of some stationary (continuous) states are
discussed. Finite-dimensional results, including a Liapunov function and
dimension reduction, are found in the context of Josephson junction mod-
els in Watanabe and Strogatz [1994]. Many earlier studies take only the
leading term in an odd Fourier expansion of f , so that f(·) = sin(·); as
we shall see this is a very degenerate case for the mean field coupled sys-
tem (1.2) (e.g. Nichols and Wiesenfeld [1992]; Golomb, Hansel, Shraiman,
and Sompolinsky [1992]). Moreover, as shown in Izhikevich [2000], relax-
ation oscillators of Hodgkin-Huxley or Fitzhugh-Nagumo type lead to much
richer phase difference functions than sin(·). Others have recognized the im-
portance of higher Fourier harmonics: see Daido [1994]; Golomb, Hansel,
Shraiman, and Sompolinsky [1992]; Nichols and Wiesenfeld [1992]; Watan-
abe and Swift [1997]. Additional work on finite dimensional oscillator net-
works includes Kopell and Ermentrout [1990]; Kopell, Ermentrout, and
Williams [1991]; Kopell and Ermentrout [1994], which consider directed
coupling, Bressloff and Coombes [1998], which considers integrate-and-fire
models derived from coupled spiking neurons, and Okuda [1993], which
will be discussed in Section 2. Shortly before this paper was submitted,
we learned of recent work of Chow and Kopell [2000], in which the effects
of spike shape on electrotonically coupled integrate-and-fire networks are
studied. They find that the existence and stability of splay states depends
on the spike shape in a manner that would be interesting to compare with
the present results.

The present paper draws on Ashwin and Swift [1992], which addresses
a class of SN × T 1-equivariant oscillator networks (of which (1.2) is an
example when β = 0). We now summarize the properties of symmetric
dynamical systems necessary to present and apply these results; for more
background, see Golubitsky, Stewart, and Schaeffer [1988].

Consider the ODE

dx

dt
= f(x) , x ∈ manifoldM , (1.3)

and let Γ be a group acting on M . The ODE is said to be Γ-equivariant if
f commutes with the group action, i.e.

f(γx) = γ̂f(x) ∀γ ∈ Γ, x ∈M , (1.4)
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where the derivative map γ̂ (Arnold [1973]) acts on the tangent space TM ;
for linear actions of γ, γ̂ = γ. The symmetry of a solution x0 ∈ M is
characterized by the isotropy subgroup Σx0

= {γ ∈ Γ : γx0 = x0}, that
is, the set of all group elements which leave the solution x0 unchanged.
Associated with an isotropy subgroup is a fixed point subspace Fix[Σx0

] =
{x ∈ M : σx = x ∀σ ∈ Σx0

}: the set of points fixed by all elements of
Σx0

. Two immediate consequences of Γ-equivariance are that (1) for any
solution x(t) to equation (1.3), γx(t) is also a solution, and (2) fixed-point
subspaces are invariant under the flow generated by f . We will refer to this
latter property as dynamical invariance. As in Ashwin and Swift [1992], we
study special classes of symmetric systems defined by the following groups:
the circle group T 1 = {δ : δ ∈ [0, 2π)} (with action on TN , θi 7→ θi+δ, ∀ i),
the cyclic subgroups Zm ∈ T 1 (with action θi 7→ θi + 2π/m), and the
subgroups of permutations on j-many coordinates, Sj .

The remainder of the paper proceeds as follows. In Section 2 we study
(1.2) with β = 0 (SN×T

1 equivariant), emphasizing the influence of general
coupling functions and obtaining additional results for odd functions f . In
succeeding sections the symmetries are gradually relaxed. In Section 3 this
is done by breaking T 1 equivariance through re-introduction of h(θi)g(θj)
terms. In Section 4 we break SN equivariance by introducing a random dis-
tribution of frequencies as well as random excitation, and apply our model
to the LC. Thus, Sections 2 and 3 are largely abstract and general, while
Section 4 concerns specific ‘neural’ coupling. Conclusions are drawn and fu-
ture directions noted in Section 5. Our major contributions to this survey
on globally coupled oscillators include the implications of gradient dynam-
ics for the existence of families of equilibria, nonlinear stability results for
the synchronized state, and the analysis of a two-parameter (α, β) system,
including the influence of noise, in relation to the LC model.

2 SN × T 1 phase difference oscillator systems

This section treats the system of N oscillators,

θ̇i = ω +
α

N

N∑

j=1

f (θj − θi) , i = 1, . . . , N, (2.1)

where f(·) is assumed to be continuously differentiable and 2π-periodic.
Transforming to coordinates φi = θi−ωt rotating with the common natural
frequency, equation (2.1) becomes

φ̇i =
α

N

N∑

j=1

f (φj − φi) . (2.2)
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Denoting the phase differences φj − φi ≡ φji, we seek ‘diagonal flow’ peri-
odic solutions φ̄ of equation (2.2) in the form

˙̄φi =
1

N

N∑

j=1

f
(
φ̄ji

)
= c, i = 1, . . . , N, (2.3)

where c is a constant, nonzero in general. These solutions are also peri-
odic for (2.1), and, employing a second rotating frame θi − (ω + c)t, they
become fixed points. Since the derivatives f ′(φji) are time-independent,
eigenvalue calculations suffice to determine the stability of such solutions.
Equation (2.3) determines the N −1 phase differences, without loss of gen-
erality leaving the phase φ1 unspecified, as expected from the T 1 symmetry
of equation (2.1).

We began this work by determining the existence and stability of diagonal
flow solutions to equation. (2.2). While we later found many of the following
results in the literature, no unified presentation appears to exist, so we
provide a summary here, including extensions and new examples of our
own. Proofs are only sketched.

2.1 Gradient property for odd phase-difference

coupling

If f(·) is odd, we observe as in Theorem 9.15 of Hoppensteadt and Izhike-
vich [1997] that:

2.1 Proposition. Equation (2.2) is a gradient dynamical system on TN

with potential

V =
α

N

N−1∑

i=1

N∑

j=i+1

F (φj − φi), where f(θ) = F ′(θ). (2.4)

Proof. Note that

−
∂V

∂φi
=

α

N

∑

j<i

f(φj − φi)−
α

N

∑

j>i

f(φi − φj); (2.5)

the oddness of f implies that φ̇i = −∂V/∂φi. ¥

Proposition 2.1 implies that

V̇ =

N∑

i=1

∂V

∂φi
φ̇i = −

N∑

i=1

φ̇2i ≤ 0 , (2.6)

with equality only at equilibria. Thus, equation (2.2) with odd f(·) has no
periodic or homoclinic orbits or heteroclinic cycles: all solutions approach
equilibria, and almost all approach stable equilibria. In particular,

2.2 Corollary. For f odd, equation (2.3) has no solutions unless c = 0.
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2.2 Periodic orbits for the phase difference system
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FIGURE 2.1. Illustrations of equilibria fixed under the actions of various isotropy
subgroups. (a) An element of Fix[(Sk1 × Sk2)

3 o Z3]. Each square represents k1

oscillators mutually in phase, and successive squares denote groups differing in
phase by 2π/3 (similar for circles). Elements of this fixed point subspace are
parameterized by two angles φi and δ, so it is a 2-torus. (b) (Sk)

moZm (rotating
block modes) withm = 6, (c) Sp×SN−p (two-block modes), and (d) SN (in-phase
mode).

We begin by stating two results from Ashwin and Swift [1992] which
hold for arbitrary 2π-periodic, continuously differentiable coupling func-
tions f(·):

2.3 Theorem. (Ashwin and Swift [1992]) Every isotropy subgroup of a
general SN × T

1-equivariant vector field is of the form:

Σk,m ≡ (Sk1 × · · · × SklB
)m o Zm,

where N = m(k1 + · · ·+ klB ), and o denotes the semi-direct product.

The fixed-point subspace Fix[Σk,m] may be thought of as being partitioned
into m blocks each containing k = (k1+ · · ·+ klB ) oscillators. The solution
is invariant under time shifts of the period divided by m, coupled with a
cyclic permutation of the blocks, giving the Zm symmetry. Each block is
partitioned into clusters of ki oscillators, and the solution is invariant under
permutations of oscillators within these clusters, giving the Sk1×· · ·×SklB

symmetry. These permutations all commute, hence the direct products,
while the Zm symmetry does not commute with the permutations, hence
the semi-direct product. Overall, the fixed-point subspace Fix[Σk,m] is an
lB-torus: there are lB − 1 degrees of freedom setting the spacings between
the blocks, plus an additional degree of freedom determining a ‘reference’
φ1 (see Figure 2.1(a) for an example); this represents the T 1 group orbit
and will be associated with a unit Floquet multiplier.

2.4 Theorem. (Ashwin and Swift [1992]) Every Fix[(Sk)
m o Zm] with

mk = N and Fix[(Sk1 × Sk2)
m o Zm] with m(k1 + k2) = N , generically

contains a periodic orbit with diagonal flow.
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Ashwin and Swift [1992] prove this theorem by noting that, without loss
of generality, the phases of the oscillators can be ordered as φ1 ≤ φ2 ≤
· · · ≤ φN ≤ φ1+2π. The oscillators retain their ordering under the dynam-
ics, i.e., they can never ‘pass’ each other, since this would involve crossing
an invariant fixed-point subspace. Projecting the phases onto the manifold
φ1 = 0 (by subtracting the instantaneous value of φ1 from each phase) gives
a simplex called the ‘canonical invariant region’ (CIR). The intersection of
Fix[(Sk)

m o Zm] with the CIR is a zero-dimensional invariant subspace,
i.e., an equilibrium. In the unprojected system, this corresponds to a pe-
riodic orbit (or a circle of equilibria if φ1 = 0 for all time) with isotropy
(Sk)

m oZm. Furthermore, the intersection of Fix[(Sk1 ×Sk2)
m oZm] with

the CIR is a one-dimensional line segment. The end points of this segment
have isotropy (Sk1+k2)

m o Zm, and are equilibria with stability in the di-
rection of the line segment determined by the same eigenvalue. Provided
this eigenvalue does not vanish (this is the nondegeneracy condition satis-
fied for generic functions f), this can only happen if there is at least one
equilibrium in the interior of the line segment. In the original system, this
corresponds to a periodic orbit (or one-torus of equilibria if φ̇1 = 0 for all
time) with isotropy (Sk1 ×Sk2)

moZm. If k1 = k2, the midpoint of the line
segment is an equilibrium with isotropy (Sk1)

2m o Z2m; this can serve as
the necessary equilibrium in the interior of the line segment.

Ashwin and Swift [1992] developed their proof for systems coupled with
general T 1-equivariant functions. The special additive, pairwise-coupled
form of the coupling in (2.1) allows a much simpler argument to prove
(a restricted version of) Theorem 2.4. For a (Sk1 × Sk2)

m o Zm solution
with clusters separated by phase δ (see Figure 2.1(a)) to have diagonal flow
requires φ̇i ≡ c(δ) ∀i, for some fixed δ. This condition reduces to

c1(δ) = c2(δ) , where (2.7)

c1(δ) = k1

m−1∑

j=0

f

(
2πj

m

)
+ k2

m−1∑

j=0

f

(
2πj

m
+ δ

)
(2.8)

c2(δ) = k2

m−1∑

j=0

f

(
2πj

m

)
+ k1

m−1∑

j=0

f

(
2πj

m
− δ

)
(2.9)

are the (constant) phase velocities for oscillators in k1 or k2-clusters, re-
spectively (cf. Kim and Lee [2000] for m = 1). A quick sketch shows that at
least one δ ∈ (0, 2π/m) satisfying (2.7) must exist if c′1(0)/k2 = −c′2(0)/k1
is nonzero, since c′1,2(0) = c′1,2(2π/m). Thus, the nondegeneracy condition

becomes
∑m−1
j=0 f ′( 2πj

m
) 6= 0; for SN−p × Sp solutions, m = 1, implying

f ′(0) 6= 0. Further, for (Sk)
m o Zm rotating blocks the equality φ̇i ≡ γ

is automatic. Finally, we note that if k1 = k2, δ = π/m always satisfies
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(2.7), so that the corresponding (Sk1×Sk1)
moZm solutions may also have

symmetry (Sk1)
2m o Z2m.

These arguments extend in a natural way to show the existence of weak
solutions to the partial differential equations derived from (2.1) as N →∞
(Crawford and Davies [1999]). These are symmetrically-spaced combina-
tions of delta distributions rotating at the frequency c(δ) found above, with
the kj-cluster distributions weighted by kj(N)/m(k1(N)+k2(N)), j = 1, 2.
Here, kj(N) is the number of oscillators in a cluster when the total number
of oscillators is N , and the N → ∞ limit is taken over a subsequence of
configurations (E [2001]) with constant kj(N)/m(k1(N)+k2(N)) such that
m (fixed) divides k1(N)+k2(N). Under the same nondegeneracy conditions
as above, their existence may be shown for any values of kj/m(k1 + k2)
and any m. Furthermore, if f lacks m-th Fourier harmonics and their mul-
tiples, families of Zm-symmetric solutions analogous to the fixed tori of
Section 2.4 also exist. A study of the stability of these solutions, their per-
sistence under the introduction of a (diffusive) noise term, and associated
convergence issues as N →∞ is in progress.

For the special case of odd phase-difference coupling, Proposition 2.1
ensures:

2.5 Theorem. For the phase-difference system (2.2) with f odd, every
Fix[(Sk1 × · · ·×SklB

)m oZm] with m(k1+ · · ·+ klB ) = N contains at least
one equilibrium.

Proof. Let V̂k,m denote the restriction of V from (2.4) to the lB-torus

Σk,m. V̂k,m is a continuous function on the (flow-invariant) compact set
Σk,m and thus possesses a minimum φ̄ on Σk,m. Consider a trajectory

φ(t) ∈ Σk,m starting at φ̄ at t = 0. Since V̇ = −
∑N
i=1 φ̇i

2
, if φ(t) 6= φ̄

then V (φ(t)) < V (φ̄), ∀t > 0. This contradicts the assumption that φ̄ is a
minimum for V, so φ̄ ∈ Σk,m must be a fixed point for equation (2.2). ¥

Associated with any of the equilibria above, we expect at least one zero
eigenvalue and a circle of equilibria corresponding to its T 1 group orbit.

Despite the variety of these equilibria, we can prove a result on the non-
existence of fixed points in a region surrounding the in-phase solution. De-

fine the open N -cylinder CR1

4
= {θ|d(θ, θd(ψ)) ≤ R1 for some ψ ∈ [0, 2π]}.

Here, d(·, ·) is the Euclidian metric on RN (and hence on TN ) and θd(ψ)
is the N -vector with all coordinates equal to ψ (so that the axis of CR1

is

the diagonal D
4
= {θ|θi = θj ∀ i, j}; see Figure 2.2).

2.6 Proposition. Let R1 > 0 be such that either f restricted to (0, 2R1)
or f restricted to (−2R1, 0) is of one sign (i.e., f is strictly negative or
positive in the region). Then there are no fixed points in CR1

\ D.

Proof. First we note that for φ ∈ CR1
, there exists a ψ s.t. φ ∈ BR1

(ψ)
4
=

{φ|d(φ, θd(ψ)) < R1)}. Thus in particular |φj − ψ| < R1 ∀j; summing
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two of these inequalities and applying the triangle inequality gives |φji| <
2R1 ∀ i, j. Next, consider an arbitrary N -vector φ ∈ CR1

\ D, where with-
out loss of generality φ1 ≤ φ2 ≤ · · · ≤ φN . If the chosen interval in the
hypothesis is (0, 2R1), note that 2R1 > φj−φ1 ≥ 0 ∀ j and φj−φ1 > 0 for

at least one j (since φ /∈ D). Thus, φ̇1 = α
N

∑N
j=1 f(φj − φ1) 6= 0, because

each term in the sum is either zero or of the same sign (the continuity of f
implies that f(0) is either 0 or of the same sign as f(φ) for φ ∈ (0, 2R1))
and at least one term is nonzero. If the chosen interval is (−2R1, 0), we use
the facts that 0 ≥ φj − φN > −2R1 ∀ j and φj − φN < 0 for at least one

j. Similarly, then, ˙φN = α
N

∑N
i=1 f(φj − φN ) 6= 0. Hence φ is not a fixed

point. ¥

This result does not exclude orbits with nonzero diagonal flow, which may
exist within CR1

\ D if f is not odd.
We now consider the stability of some of the solutions found above.

C

D

FIGURE 2.2. The diagonal D and cylinder C of Proposition 2.6. The cube rep-
resents the N -torus.

2.3 Stability of periodic orbits

Rotating blocks

We study solutions with isotropy (Sk)
moZm (rotating block modes), Sp×

SN−p (two-block modes), and SN (in-phase mode). Since the Jacobian
is constant along these periodic orbits with diagonal flow, this problem
reduces to computation of eigenvalues (Ashwin and Swift [1992]). Stability
will be discussed in terms of orbital stability, which implies asymptotic
stability with respect to all perturbations transverse to the (continuous)
T 1 group orbit of the solution (hence excluding the corresponding zero
eigenvalue). Note that if c 6= 0 in equation (2.3), the group orbit and
periodic orbit coincide.

To state some of the stability results, it is useful to express the coupling
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function in a Fourier series with coefficients bol and bel :

f(φji) =
∞∑

l=0

(bol sin(lφji) + bel cos(lφji)) . (2.10)

For (Sk)
m o Zm symmetric solutions we have, as in Okuda [1993] and

(for m = 1) Watanabe and Swift [1997]:

2.7 Proposition. Let N = mk and let φ̄ be an (Sk)
m o Zm-invariant

fixed point or periodic orbit with diagonal flow. Then the eigenvalues of the
Jacobian J(φ̄) obtained by linearization of Equation (2.2) are

λ = λ0 = 0, with multiplicity 1
λ = λjr, j = 1, ...,m− 1 : ‘rotation eigenvalues’
λ = λp, with multiplicity m(k − 1) : ‘permutation eigenvalues’



 ,

λjr =
α

m

m−1∑

k=1

f ′
(
2πk

m

)(
exp

(
2πkji

m

)
− 1

)

=
α

2


 ∑

l∈M(m)j
1

l (bol + ibel ) +
∑

l∈M(m)j
2

l (bol − ib
e
l )− 2

∑

l∈M(m)

lbol




(2.11)

λp = −
α

m

m−1∑

k=0

f ′
(
2πk

m

)
= −α

∑

l∈M(m)

bol l, (2.12)

M(m)j1 = {mh− j|h = 1, 2, ...} , M(m)j2 = {mh+ j|h = 0, 1, 2, ...} ,

M(m) = {mh|h = 1, 2, ...} .

The ‘rotation’ and ‘permutation’ terminology is due to Ashwin and Swift
[1992], where general formulae for eigenvalues and eigenvectors are pre-
sented. The proof of Proposition 2.7 repeatedly uses the following simple
fact. Define the setM = {l|l = qm for some q ∈ Z} and let γ = exp(2πi/m);

then for l̄ ∈ Z\M,
∑m−1
r=1 γ l̄r = −1. From here, them×m-blocked structure

of the Jacobian along with results on the eigenvectors of Toeplitz matrices
leads to the desired conclusion.

If m = 1, then the proposition addresses the SN -invariant (in-phase) so-
lutions. Here there are no rotation eigenvalues, and the permutation eigen-
values are simply

λp = −αf
′(0) , (2.13)

with multiplicity N−1. Nonlinear stability of these solutions is discussed in
Section 3.2 (Proposition 3.2 with β = 0). At the other extreme, if m = N ,
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the proposition addresses the ZN -invariant solutions in which the phases
of the oscillators are equally spaced; these are called ‘rotating wave’ solu-
tions by Ashwin and Swift [1992], and correspond to the ‘splay state’ in
the Josephson junction literature. In this case, there are no permutation
eigenvalues, and (2.11) reduces to equation (63) of Watanabe and Swift
[1997].

We now give examples to illustrate several interesting stability behaviours
implied by Proposition 2.7. Including only the first harmonic in the cou-
pling function (f(·) = bo1 sin(·) + be1 cos(·)), we have for m > 1:

λp = 0,with multiplicity m(k − 1)

λjr =

{
α
2 (b

o
1 − ib

e
1) and

α
2 (b

o
1 + ibe1) for j = 1 and m− 1

0 otherwise (multiplicity m− 3),

in addition to λ0. In this case the (Sk)
m o Zm solutions are highly degen-

erate and, for αbo1 > 0, unstable. For m = N (k = 0), there are N − 2 zero
eigenvalues. This result is well-known from the Josephson junction liter-
ature; in Watanabe and Strogatz [1994], it is shown to be related to the
integrability of the equations for this choice of f .

On the other hand, we note that inclusion of higher harmonics in f(·)
generically unfolds the degeneracy in the sense that all but one (λ0) of the
eigenvalues become nonzero, implying instability or orbital stability. For
example, adding themth harmonic (f(·) = bo1 sin(·)+b

e
1 cos(·)+b

o
m sin(m·)+

bem cos(m·); m 6= 1), we obtain

λp = −αb
o
mm, with multiplicity m(k − 1)

λjr =

{
α[ 12 (b

o
1 − ib

e
1)− b

o
mm], c.c. if j = 1, m− 1

−αbomm otherwise (multiplicity m− 3),

so that any (Sk)
m o Zm solution is orbitally stable if αbom > α

bo
1

2m and
αbom > 0. We also note that for coupling functions whose harmonic indices
belong entirely toM(l), any oscillator may be individually translated from
a (Sk)

moZm solution by a multiple of 2π
l
to give another equilibrium. These

translations give a total of lN fixed points, each with identical stability (due
to the 2π

l
periodicity of f).

The calculations proving Proposition 2.7 show which eigenvectors corre-
spond to zero eigenvalues and hence along which directions there may be
continuous families of equilibria. For example, with k = 1, m = N = 4 and
f(·) = sin(·), the nondiagonal zero eigenvector is (1,−1, 1,−1)T, which re-
flects the fact that equilibrium is preserved if ‘diametrically-opposite’ pairs
of oscillators are rotated independently.

Two-block periodic orbits

For f ′(0) 6= 0, equation (2.13) guarantees that the SN -invariant solutions
satisfy the nondegeneracy assumption of Theorem 2.4. Then, the Theorem
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(with m = 1) implies that for some δ(p) > 0, equation (2.2) has periodic
orbits with φji ∈ {0, δ(p), 2π − δ(p)} for all i, j. This occurs when two
blocks of p and N − p identical-phase oscillators are mutually out of phase
by δ; to avoid redundancy, we restrict 0 ≤ p ≤ bN/2c. The Jacobian from
linearizing around a SN−p×Sp solution has a four-blocked structure which
yields:

2.8 Proposition. (Kim and Lee [2000]) Let φ̄ be an (Sp×SN−p)-invariant
solution and 0 ≤ p ≤ bN/2c. Then for p ≥ 1 the eigenvalues of the Jacobian
from equation (2.2) are:

λ1 = α(b− p
N
(a+ b)), with multiplicity p− 1

λ2 = α( p
N
(a+ c)− a), with multiplicity N − p− 1

λ3 = 0, with multiplicity 1

λ4 = α(N−p
N

b+ p
N
c), with multiplicity 1




. (2.14)

Here, a = f ′(0), b = −f ′(δ(p)), c = −f ′(−δ(p)).

If f(·) is odd, two-block states with δ = π exist for any p since f(0) =
f(π) = 0; we write δ 6= δ(p) to indicate this p-independence of δ. Oddness
of f also implies b = c. This case was studied in Okuda [1993], where
expressions corresponding to (2.14) are presented.

2.9 Corollary. Assume that b = c, δ 6= δ(p), and that a, b > 0. If α > 0,
the two-block equilibria of equation (2.2) are orbitally stable if and only
if p = 0. If α < 0, the equilibria are stable if and only if p 6= 0 and
a < bp/(N − p), if the equilibria are stable for p = k for some k ≤ bN/2c,
then they are stable for p > k.

Proof. The results for α > 0 are immediate from λ4 of equation (2.14)
and (2.13). For α < 0, we note that λ1,2 ≤ 0 implies Na ≤ p(a+ b) ≤ Nb.
Upon rearranging, this yields a ≤ b(N − p)/p and a ≤ bp/(N − p); for p
in the given range, the latter inequality implies the first, and for fixed a
and b it is clear that if the second inequality is satisfied for p = k, then it
continues to be satisfied as p increases. In this case λ1, λ2 and λ4 are all
strictly negative, leading to the Corollary. ¥

We remark that if a, b < 0, the sign of α may be switched and the
Corollary applied, and that the result that stability of equilibria for p = k
implies stability for p = N/2 is stated in Okuda [1993].

The corollary indicates that for α < 0 and under certain conditions on
a, b, and N , orbital stability of two-block fixed points can change as p is
varied. For example, if a = 1, b = 2, and N = 5, the equilibria are unstable
for p = 0, 1 but are stable for p = 2. In the special case a = b = c (which
occurs, for example, if f(·) = sin(·)), note that λ1 = −λ2 = α(a − 2p/N),
λ4 = αa; thus the fixed points are unstable unless αa < 0, N is even
and p = N/2, in which case they are neutrally stable with N − 1 zero
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k1(i)

φi

x2(i)

k2(i)
...

xlB(i)

klB(i)

..
.

...

FIGURE 2.3. The labeling scheme used in Proposition 2.10. Given the reference
index i corresponding to the φ̇i being computed, blocks of oscillators are num-
bered by the index q in a counterclockwise fashion, starting with q = 1 for the
block containing φi itself. Each block contains kq(i) oscillators and is separated
from its neighbor by the angle xq(i) (by definition x1(i) ≡ 0).

eigenvalues. As above, inclusion of higher harmonics in the Fourier series
for f(·) generically unfolds this degeneracy.

We close this subsection by remarking that techniques used to prove
Propositions 2.7 and 2.8 could in principle be extended to calculate the
stability of general (Sk1 × Sk2)

m o Zm solutions for m > 1, where m(k1 +
k2) = N . We refer the reader to Ashwin and Swift [1992] for the specific

example (S2 × S1)
3 o Z3.

2.4 Existence of fixed lB-tori

2.10 Proposition. For φ contained in an invariant lB-torus Fix[(Sk1 ×
· · · ×SklB

)m oZm] with N = m(k1+ · · ·+ klB ), equation (2.2) reduces to:

φ̇i =
α

N

∑

l∈M(m)

{
belm

lB∑

q=1

kq(i) cos[lxq(i)] + bolm

lB∑

q=1

kq(i) sin[lxq(i)]

}
,

(2.15)
where the numbers kq(i) and the angles xq(i) are as explained in Figure
2.3. In particular (as found in Ashwin and Swift [1992]), if be,ol = 0 for all
l ∈M(m), then the lB-torus is a continuum of fixed points.

The vector field (2.15) may be calculated directly by plugging an arbi-
trary point on the invariant lB-torus (i.e., with arbitrary {x1(i), ..., xlB (i)}
for some i) into equation (2.2) and using the relationship discussed in con-
nection with the proof of Proposition 2.7. The existence of continua of fixed
points is obvious from equation (2.15). For odd f , the fixed tori may also
be found by showing that the potential (2.4) is always constant under this
same condition on the Fourier coefficients of f given in Proposition 2.10.

Ifm = N and be,ol = 0 for all l = 0 (mod N), lB = 1 and Proposition 2.10
simply gives the circle of equilibria that is the T 1 group orbit of the ZN -
symmetric equilibrium of Proposition 2.7 (with k = 1). If m = 1 then
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Proposition 2.10 gives no new information about fixed subspaces: be,ol = 0
for all l ∈ M(m) implies that the oscillators are uncoupled. Also, we note
that since S1 × S1 × · · · × S1 ⊆ Sk1 × · · · × SklB

, the lB-tori of fixed
points guaranteed by the theorem are actually contained in the (N/m)-
torus Fix[(S1 × S1 × · · · × S1)

m o Zm] = Fix[Zm].
The following examples illustrate implications of Proposition 2.10.

Example 1. Consider N = 4 and suppose be,ol = 0 for even l. For m = 4
the torus of fixed points guaranteed by the proposition is just the one-
torus Fix[Z4]. For m = 2, we get the two-torus of fixed points Fix[Z2].
This describes the set of points for which two oscillators are out of phase
by π, and the other two are also out of phase by π, corresponding to
(φ1, φ2, φ3, φ4) = (ξ1, ξ2, ξ1 + π, ξ2 + π). Fix[Z2] contains both Fix[Z4] =
{(ξ, ξ + π/2, ξ + π, ξ + 3π/2)} and Fix[(S2)

2 o Z2] = {(ξ, ξ, ξ + π, ξ + π)}.
Fix[Z2] also coincides with the (N−2 = 2)-dimensional ‘incoherent mani-

fold’ found for averaged arrays of Josephson junctions (Watanabe and Swift
[1997]). The incoherent manifold is defined as the set with zero centroid of
phases φi on the unit circle. Because Fix[Z2] is a fixed point subspace, the
two-dimensional incoherent manifold is dynamically invariant as found in
Watanabe and Swift [1997]; Proposition 2.10 gives conditions under which
it is also dynamically fixed as well as the expression for drift along the man-
ifold. Watanabe and Swift [1997] also show that the (N − 2) dimensional
incoherent manifold is not dynamically invariant when N ≥ 5.

However, this manifold contains dynamically invariant (and perhaps dy-
namically fixed) submanifolds: for φ in fixed point subspaces of isotropy
subgroups which have Zm as a subgroup (where m ≥ 2), the relevant
centroid is zero. Thus, these fixed point subspaces are contained in the in-
coherent manifold. Note that the invariant (or fixed) tori have dimension
lB ≤ N/m, which is less than N − 2 for N ≥ 5, m ≥ 2.

Example 2. Suppose N = 6 and f(·) = sin(·), and consider the ((S3)
2oZ2)-

invariant equilibria (e.g., (φ1, φ2, φ3, φ4, φ5, φ6) = (0, 0, 0, π, π, π) ≡ φ̄).
From Proposition 2.7, the eigenvalues for such equilibria are 0 with mul-
tiplicity five, and 6α with multiplicity one. The null eigenvectors may be
taken to be e1=(1, 1, 1, 1, 1, 1), e2=(2,−1,−1, 0, 0, 0), e3=(1, 1,−2, 0, 0, 0),
e4 = (2,−1,−1, 2,−1,−1), e5 = (1, 1,−2, 1, 1,−2). Figure 2.4 shows the
potential V corresponding to perturbations to φ̄ in the directions of these
null eigenvectors. V is flat for perturbations in the e1, e4, and e5 directions
(each with a corresponding one-dimensional continuum of fixed points,
overall giving a three-torus of equilibria), but not for perturbations in the
e2 and e3 directions. Proposition 2.10 guarantees the existence of the three-
torus of equilibria Fix[Z2] given by (φ1, φ2, φ3, φ4, φ5, φ6) = (ξ1, ξ2, ξ3, ξ1 +
π, ξ2 + π, ξ3 + π); note that perturbations to φ̄ in the e1, e4, and e5 direc-
tions keep the system in the Fix[Z2] subspace. The e2 and e3 perturbations
illustrate that every zero eigenvalue of Propositions 2.7 or 2.8 does not nec-
essarily imply a corresponding one-dimensional continuum of fixed points.
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FIGURE 2.4. Potential V for perturbations to φ̄ in the directions of the null
eigenvectors, as defined in the text.

3 Breaking the T 1 Symmetry: Product
Coupling

Reintroducing the h and g terms and going back to θ coordinates, we return
to the SN -equivariant system

θ̇i = ω +
α

N

N∑

j=1

f (θj − θi) + h(θi)
β

N − 1

N∑

j 6=i

g(θj) . (3.1)

The results of this section are valid for arbitrary C1 2π-periodic functions
g and h; without loss of generality, we assume that g takes values in [0, 1].

Additional assumptions on the product function G(θ)
4
= h(θ)g(θ) simplify

the discussion of bifurcations in Section 3.1.

3.1 Bifurcations of fixed points on the diagonal

Fix[SN ]

This section concerns analysis local to the diagonal of TN , defined by D
4
=

{θ|θi = θj ∀ i, j}, which is dynamically invariant. Restricted to D and with
θi ≡ θ, equation (3.1) becomes

θ̇ = ω + αf(0) + βG(θ). (3.2)

This equation has fixed points given by θ̄ = G−1
(
−ω+αf(0)

β

)
. To simplify

the analysis in this section, we assume that G has a single minimum θmin
with G′′(θmin) 6= 0, as it does for the ‘neurobiological’ coupling functions
to be considered in Section 4.

These conditions on G and ω > 0 imply that there are no, one, or two on-
diagonal fixed points, in the latter case denoted by θ̄1 < θ̄2. The eigenvalues
of the Jacobian of equation (3.1) linearized about these fixed points are

λk1 = −αf ′(0) + β
(
h′(θ̄k)g(θ̄k)−

1
N−1h(θk)g

′(θk)
)
, multiplicity N − 1,

λk2 = βG′(θ̄k), multiplicity 1.
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Stability in the transverse directions (with respect to the diagonal) is de-
termined by λ1, and in the axial direction by λ2; note that our hypothesis
on G implies that λ2(θ̄1) < 0, and λ2(θ̄2) > 0. As β is decreased through
β = (ω + αf(0))/|G(θmin)|, the two fixed points coalesce and disappear
in a saddle node bifurcation (the appearance of these fixed points as β
increases represents the phenomenon of oscillator death: Ermentrout and
Kopell [1990]; Taylor and Holmes [1998]). For the remaining values of β,
the orbit along D is the (SN symmetric) periodic orbit θD(t). We will in-
vestigate the period and stability of this orbit in the following sections.

3.2 Frequency and stability of the in-phase periodic

orbit

If β < (ω + αf(0))/|G(θmin)|, the period of the orbit on D is given by

τ =

∫ 2π

0

(
dθ

dt

)−1
dθ =

∫ 2π

0

dθ

ω + αf(0) + βh(θ)g(θ)
. (3.3)

Moreover, we have

3.1 Proposition. (Local stability of D.) The SN -symmetric periodic so-
lution θi(t) ≡ θD(t) along D is asymptotically stable if

α >
βN

(N − 1)τf ′(0)

∫ 2π

0

g(θ)h′(θ)

ω + αf(0) + βg(θ)h(θ)
dθ , (3.4)

where τ is the (generally α-dependent) period of θD(t) given in equation
(3.3) and we assume f ′(0) > 0.

Closely related results are found in Tsang, Mirollo, and Strogatz [1991];
Golomb, Hansel, Shraiman, and Sompolinsky [1992].

Proof. Linearized around θD(t), equation (3.1) becomes ξ̇i = [Ad(t)ξ]i.
The proof uses the fact that the (t-dependent) symmetric matrix Ad(t)
has a particularly simple structure, and that it can be diagonalized by
a t-independent similarity transformation. Specifically, the eigenvalues of
Ad(t), where t is viewed as a (fixed) parameter, are:

λ1(t)=−αf
′(0) + β

(
g(t)h′(t)−

1

N − 1
h(t)g′(t)

)
, multiplicity N − 1 ,

λ2(t)= βG′(t), multiplicity 1,

where g(t) is written for g(θD(t)), etc. The orthogonal eigenvectors of λ1(t)
(denoted by χ1, . . . , χN−1) may be chosen constant and orthogonal to the
eigenspace of λ2(t), which is spanned by the eigenvector (1, . . . , 1)T. Thus,
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χ1, . . . , χN−1 span the space normal to θD(t). In these eigencoordinates the
linearized system decouples as

ξ̇i = λ1(t)ξi, i = 1, . . . , N − 1, ξ̇N = λ2(t)ξN .

Define the (N −1)-dimensional plane
∑

= {χ|χN = 0} and consider the
Poincaré map P : U → U for some neighborhood U ⊂

∑
of 0. The orbit

θD(t) intersects
∑

at 0, which is a fixed point for P . For i = 1, . . . , N −
1, P : ξi 7→ (exp

∫ τ
0
λ1(t)dt)ξi so that 0 is a stable fixed point for P if∫ τ

0
λ1(t)dt < 0. (Due to the periodicity of G(t),

∫ τ
0
λ2(t)dt ≡ 0, as it must,

being the Floquet exponent along the periodic orbit). We have

∫ τ

0

λ1(t)dt

=

∫ τ

0

(
−αf ′(0) + β

[
g(t)h′(t)−

1

N − 1
h(t)g′(t)

])
dt

= −αf ′(0)τ +

∫ 2π

0

β

(
−
[h(θ)g′(θ) + h′(θ)g(θ)]

N − 1
+
Ng(θ)h′(θ)

N − 1

)
θ̇−1dθ

= −αf ′(0)τ −
1

N − 1
ln[ω + αf(0) + βh(θ)g(θ)]2π0

+

∫ 2π

0

βNg(θ)h′(θ)

(N − 1)(ω + αf(0) + βh(θ)g(θ))
dθ (3.5)

= −αf ′(0)τ +

∫ 2π

0

βNg(θ)h′(θ)

(N − 1)(ω + αf(0) + βh(θ)g(θ))
dθ , (3.6)

where the second term in equation (3.5) vanishes due to the 2π-periodicity
of h and g. Thus,

∫ τ
0
λ1(t)dt < 0 when the inequality of Proposition 3.1

is satisfied. Since stability of the fixed point 0 under P implies stability of
θD(t) for equation (2.1), the Proposition is proven. ¥

A simple calculation using integration by parts and the 2π-periodicity of
g and h shows that for α = 0 and asymptotically small β, the right-hand
side of (3.6) becomes βN

N−1f
′
s(0), which (cf. (2.13)) determines the stability

of the in-phase solution if synaptic coupling β
N−1h(θi)

∑
j 6=i g(θj) is taken

to be weak and then averaged to yield β
N−1

∑
j 6=i fs(θj−θi). This agreement

between the averaged and original versions of (3.1) for sufficiently small β is
expected from the averaging theorem (Guckenheimer and Holmes [1983]),
and reveals how (3.4) generalizes the stability result found in van Vreeswijk,
Abbot, and Ermentrout [1994]; Hansel, Mato, and Meunier [1995] forN = 2
and averaged synaptic coupling.

Equation (3.4) may be used to estimate a critical value αloc such that

θD(t) is asymptotically stable for α > αloc. Letting ĥ be a Lipschitz con-
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stant for h, we note that

∫ 2π

0

g(θ)h′(θ)

ω + αf(0) + βh(θ)g(θ)
dθ ≤

∫ 2π

0

ĥ

ω + αf(0) + βh(θ)g(θ)
dθ = ĥτ,

(3.7)
where the inequality follows from the bound on g and the definition of the

Lipschitz constant. Thus, from (3.4) we have stability if α > Nβĥ
(N−1)f ′(0)

4
=

αloc. With f(0) = 0 (e.g. if f is odd), this estimate can be refined: the
right-hand side of equation (3.4) is independent of α, so that the (smallest)
critical value α̃loc is

α̃loc =
βN

(N − 1)τf ′(0)

∫ 2π

0

g(θ)h′(θ)

ω + βg(θ)h(θ)
dθ. (3.8)

We now turn to the nonlinear stability properties of D.

Estimate for the domain of attraction of D

3.2 Proposition. (Nonlinear stability of D.) For some s > 1, assume
f ′(0) > 0 and let R > 0 be the smallest value for which either f ′(2R) =
f ′(0)/s > 0 or f ′(−2R) = f ′(0)/s > 0 (implying minθ∈[−2R,2R] f

′(θ) =

f ′(0)/s). Let Ĝ be the Lipschitz constant for G(·) = g(·)h(·), and define

ĥ1(θi) = maxθ{|h
′(θi)g(θ)| : |θi− θ| < 2R} and ĥ1 = maxθi

{ĥ1(θi)}. Then,
for

α > αglob
4
=
sβ(Nĥ1 + Ĝ)

(N − 1)f ′(0)
, (3.9)

the domain of attraction for D includes CR
4
= {θ|d(θ, θd(ψ)) ≤ R for some

ψ ∈ [0, 2π]} (cf. Figure 2.2).

Proof. Fix an arbitrary ψ ∈ [0, 2π). Consider the (non-orthogonal) basis
b ≡ {xi|i = 1, . . . , N − 1}, where xi ≡ θi − θi+1. We define Xψ, the N − 1
dimensional space perpendicular to the axis of CR at θd(ψ), as the copy of
span b containing θd(ψ). In other words, Xψ is the normal space N (θd(ψ)).

Now, define the squared ‘radius’ R =
∑N−1
i=0 x2i . We will show that Ṙ =

2
∑N−1
i=0 xiẋi ≤ 0 for all x ∈ CR. The cylindrical surfaces {x|R(x) = c} will

therefore be crossed ‘inward’ toward the axis of CR.
Take an arbitrary θ ∈ CR ∩Xψ. For such a θ, we also have θ ∈ BR(ψ) =

{θ|d(θ, θd(ψ)) < R}. Thus |θj − θi| < 2R ∀ i, j (and, in particular, |xi| <
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2R ∀ i). These inequalities allow us to find a bound on each ẋi:

ẋi = ˙θi − θi+1

=
α

N

N∑

j=1

f(θj − θi)−
α

N

N∑

j=1

f(θj − θi+1)

+
β

N − 1
h(θi)

N∑

j 6=i

g(θj)−
β

N − 1
h(θi+1)

N∑

j 6=i+1

g(θj)

=
α

N

N∑

j=1

[f(θj − θi)− f(θj − θi + xi)] +
β[h(θi)− h(θi+1)]

N − 1

N∑

j=1

g(θj)

+
β[h(θi+1)g(θi+1)− h(θi)g(θi)]

N − 1
. (3.10)

ẋi
< −α[f ′(0)/s]xi + β N

N−1 ĥ1xi +
β

N−1 Ĝxi
4
= kxi if xi > 0

> −α[f ′(0)/s]xi + β N
N−1 ĥ1xi +

β
N−1 Ĝxi

4
= kxi if xi < 0

}
. (3.11)

The inequalities (3.11) use the hypothesis on f ′, the bound g(θ) ≤ 1,

and the definitions of ĥ and Ĝ. Thus, for k < 0 (i.e. α > αglob), Ṙ =

2
∑N−1
i=0 xiẋi < 0 unless xi = 0, ∀i. This argument may be repeated for

any ψ and therefore for any arbitrary θ ∈ CR, so the Proposition follows. ¥

Since nonlinear stability implies local stability, it must follow from α >
αglob that inequality (3.4) is satisfied. This may be seen from the fact that
α > αglob implies α > αloc and comparing equation (3.9) with (3.7).

Finally, we note that Proposition 3.2 may be sharpened by refining the es-
timates in (3.11) in any manner that also implies sign(ẋi) = −sign(xi). For

example, a lower value ĥ2 can replace ĥ1 above, where ĥ2 = maxθi
ĥ2(θi)

and ĥ2(θi) = maxθ{h
′(θi)g(θ) : |θi− θ| < 2R} (note that although we have

dropped the absolute value in the maxθ, ĥ2 ≥ 0 since h is periodic). The

bound ĥ2 arises as follows. If the second term in (3.10) is of opposite sign to
xi, it favors the conclusion sign(ẋi) = −sign(xi) and hence may be ignored
for the purposes of bounding α such that k < 0. Thus the natural question
is: assuming that it is of the same sign as xi, can we find a smaller upper
bound than β N

N−1 ĥ1xi on the magnitude of this second term? The answer
is yes: since [h(θi) − h(θi+1)] = [h(xi + θi+1) − h(θi+1)], this difference

cannot exceed the upper bound β N
N−1 ĥ2xi, as desired.
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4 Application to a model of the locus

coeruleus

Here we apply the analysis above to a model of the locus coeruleus brain
nucleus. First, we introduce specific coupling functions f , g, and h appro-
priate to neuronal coupling.

4.1 Coupling functions

The functions f and g, h, corresponding to electrotonic and synaptic cou-
pling, were computed using both the strong attraction (SA) and phase re-
sponse (PR) methods mentioned in the introduction. The Hodgkin-Huxley
(HH) equations with input current 10 µA/cm2 were used (Hodgkin and
Huxley [1952]). In their original form these equations were derived from
the giant axon of a squid, so their use here merely represents a proof of
concept. Reduction of more realistic mammalian neuron models, which in-
clude calcium-dependent potassium channels and whose action potential
spikes occupy a much smaller fraction of the period than in the rescaled
HH equations, is in progress (Brown, Moehlis, Holmes, Aston-Jones, and
Clayton [2002]), and leads to coupling functions somewhat different from
those considered here, although the general structure of the phase equations
survives.

The effect of electrotonic coupling on the time derivative V̇i of neuron i’s
voltage was taken to be α

N

∑N
j=1(Vj−Vi) (cf. Johnston and Wu [1997]), and

the inhibitory synaptic effect to be (EK−Vi)
β

N−1

∑
j 6=iA(Vj , t), where EK

is the reversal potential for potassium and A(Vj , t) is an ‘alpha function’

which takes values in [0, Ã], Ã < 1, and represents the influence of neuron j
on post-synaptic cells. Specifically, A(Vj , t) = ((t− tjs− td)/τA) · exp(−(t−
tjs − td)/τA), where t

j
s is the time at which the voltage of neuron j spikes

(see below), td is the synaptic delay, and τA is the synaptic time constant
(e.g. Kim and Lee [2000]). The effective value of τA for LC neurons has been
observed to be much longer than those of typical synaptic connections due
to the slow dynamics of norepinephrine neurotransmitter uptake (Grant,
Aston-Jones, and Redmond [1988]; Aston-Jones, Rajkowski, and Alexinsky
[1994]). We parameterize the limit cycle of the uncoupled HH equations by
a time scaled so that the period T = 2π

ω
is 1/3 sec (to match our estimate

for LC neurons), and take τA = 0.025 sec and td = 0.150 sec. These neuron
and coupling models and parameters lead to the reductions of the coupling
functions to TN displayed in Figure 4.1.

Under the idealisation that neurons in the small LC nucleus are identical
(Williams, North, Shefner, Nishi, and Egan [1984]) and globally coupled,
our LC model simplifies to equation (1.2). As coupling becomes stronger,
modifications to f , g, and h may be required to maintain the accuracy of
phase reductions; for the purpose of this paper, these effects are neglected.
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FIGURE 4.1. Coupling functions derived from the (time-reparameterized)
Hodgkin-Huxley equations. The subscript e (s) refers to electrotonic (synaptic)
coupling, while the superscript PR (SA) indicates that the function was derived
using the phase reduction (strong attraction) method. The h’s and g are calcu-
lated for the synaptic coupling described in the text: fPR

s is obtained by averaging
the product of g and hPR, and fPR

e is obtained by averaging the electrotonic cou-
pling using a phase response method (cf. Kim and Lee [2000]). fSAe is obtained
by first assuming that the limit cycle is infinitely attracting, followed by averag-
ing (cf. Ermentrout and Kopell [1990]; Hoppensteadt and Izhikevich [1997]). The
‘spikes’ in hSA(θ) are associated with the projection of coupling functions near
turning points in the original phase variables; the tips extend to approximately
±30 (there is also an O(1) spike near θ = 0, not visible here).

However, Brown, Moehlis, Holmes, Aston-Jones, and Clayton [2002] in-
cludes a careful comparison of phase-reduced and ‘full’ conductance-based
LC models in the relevant parameter range.

4.2 Modeling synchrony in LC modes

This section demonstrates that cross correlograms qualitatively similar to
those of Figure 1.1(a) can arise in our phase-reduced LC model due to
increased coupling in the phasic LC mode relative to the tonic mode.

Cross correlograms are derived from solutions of (3.1) as follows. A spike
is deemed to occur when a rotator θi crosses through a threshold value
θs: the solution of {V (θs) = Vs, V

′(θs) > 0}, where Vs = −30mV is a
depolarized voltage characteristic of a neuron firing an action potential
and the function V (θ) is defined by V (t) = V (θ/ω) over the period of one
neuron action potential. The set of all pairwise differences between times at
which distinct spike events occur is computed according to this definition,
and the cross correlogram is the histogram of this set.
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PR PR PR PR SA
κ = 0 κ = 10 κ = 50 κ = 100 κ = 0

(Sk)
m o Zm

S, m = 1,2,4 1,2,4 1,4 1 1,3,4

U, m = 3,6,8,12 3,6,8,12 2,3,6,8,12 2,3,4,6,8,12 2,6,8,12

SN−p × Sp

S, p = 11,12 12 1,2 1-4 1-6

U, p = 1-12 1-12 1-12 3-12 7-12

TABLE 1.1. The linear stability of various ‘clustered’ periodic orbits of diagonal
flow for different phase difference couplings fe(θji) + κfs(θji), computed using
the PR or SA methods. (Sk)

m o Zm stability is given for allowable m (N = 24),
and SN−p × Sp stability for N = 24 and p = 1, ..., 12; a value of p being listed
twice indicates the correspondence of multiple δ’s. S and U indicate asymptotic
stability and instability, respectively, for them or p values given in the subsequent
columns.

Phase-difference coupling

In this section we assume that synaptic coupling β
N−1h(θi)

∑
j 6=i g(θj) is

sufficiently weak that it can be averaged to yield β
N−1

∑
j 6=i fs(θj − θi),

and we take β = κα, so that (3.1) becomes θ̇i = ω + α
N

∑
j f(θji), where

the phase difference function f(·) = fe(·) + κfs(·). We use the methods of
Section 2 to determine stability of periodic orbits. The results are shown
in Table 1.1 for various values of κ and coupling functions derived with the
PR and SA methods. The SA coupling functions give rise to a larger set of
distinct stable periodic orbits, the consequences of which will be discussed
below.

To model the phasic and tonic behavior of Figure 1.1, we consider equa-
tion (2.1) in the presence of noise represented as additive Brownian forcing
on the torus, so that:

dθi =


ω +

α

N

n∑

j 6=i

f (θj − θi)


 dt+ σdW i

t . (4.1)

The inclusion of random noise represents additional inputs currents to LC
neurons, a common stratagem in accounting for the influence of neural
subgroups neglected in the model. The stochastic averaging theorem (Zhu
[1988]; Freidlin and Wentzell [1998]) leads to the approximation above,
including σ being independent of θ; in particular, σ2 = z2γ, where γ
is the variance of Brownian input currents, z(θ) is the phase response
curve (PRC, cf. Kuramoto [1997]), and the overbar denotes the average

(̄·) = 1
2π

∫ 2π

0
(·)dθ. Simulations of equation (4.1) to be discussed below were

performed using a second order stochastic Runge-Kutta method (Honey-
cutt [1992]).
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The stability results of Table 1.1 will persist for α sufficiently larger
than σ, but solutions approach a constant-drift Brownian motion on TN as
the coupling/noise ratio α/σ decreases. These two regimes correspond to
the biological hypothesis discussed in the Introduction: that tonic behavior
can be expected for relatively weak coupling (αton) and phasic behavior for
larger αph. For αph, the presence of appropriate stable states can lead to
the phasic-mode cross correlogram via several mechanisms (see below and
Figures 4.2(b-e)). Meanwhile, for the lesser value of αton, the essentially
constant-drift Brownian motion on the torus leads to the flat cross correl-
ogram characteristic of this mode (i.e., no preferred firing time difference
between neurons); see Figure 4.2(a).

If a variety of diagonal flow solutions are simultaneously stable (as for
the SA coupling functions) the following mechanism can produce the ‘peak-
shoulder’ cross correlogram patterns characteristic of the phasic LC mode
(Figure 1.1(a)). For every revolution (of diagonal flow), (Sk1 ×Sk2)

moZm
states with δ 6= 0, π produce cross correlograms with m(k21 + k22 − k1 − k2)
counts at t = 0, m(k21 + k22) counts at times proportional to ±2πj/m,
j = 1, ...,m−1, and mk1k2 counts at times proportional to ± (2πj/m)± δ,
j = 0, ...,m − 1. If N ≥ 5, this leads to a dominant central peak in the
cross correlogram for (two-cluster) states with m = 1. Moreover, all peaks
except for the central peak at 0 will be differently spaced for each distinct
(Sk1 × Sk2)

m o Zm orbit. Thus, if the individual cross correlograms from
many of these states are combined (e.g. due to stochastic switching due
to random noise in (4.1)), the common central maxima would conspire to
produce a central peak in the cross correlogram while the combination of
many secondary maxima could give rise to the relatively flat shoulder. This
is demonstrated in Figure 4.2(c).

However, the stochastic switching mechanism does not apply to the PR
functions, which exhibit relatively few stable periodic orbits significantly
different from the in-phase mode (in particular, δ < 1 for the stable Sp ×
SN−p modes for all κ values in Table 1.1). For the PR functions, then, the
shoulders in the cross correlogram instead arise when the stable distribution
around the in-phase equilibrium is broad; this was found (Figure 4.2(b)) to
require high noise strengths, approximately σ > αmaxθ{|fe(θ)+κfs(θ)|}/3.
Faced with this perhaps unrealistically high value, in the next section we
explore the presence of random natural frequencies as another method for
creating the cross correlogram shoulders.

To check the validity of the SA and PR phase reductions, we compared a
few cases of our stability predictions with numerical simulations of the full
HH equations (cf. Kim and Lee [2000]); for κ = 0, stability was consistent
with the full equations for the PR reductions but not for SA. Thus, all
subsequent computations are given for the PR case; however, to illustrate
properties of (2.1) we will continue to refer to the SA functions when their
general form gives additional (e.g. contrasting) results.
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FIGURE 4.2. Cross correlograms for simulations of the tonic ‘low-coupling’ (a)
and phasic ‘high-coupling’ (b-e) LC modes using the phase-difference model (4.1).
To facilitate comparison, αph was chosen so that αph maxθ{|f(θ)|} = 2.25 for both
the SA and PR coupling functions; also, αton = αph/5, ω = 6π, and N = 24. (a)
PR model with κ = 0, σ = 0.8, and α = αton; (b) same except with α = αph;
(c) SA model with κ = 0 and σ = 0.2, α = αph. (d) As described in Section 4.2,
phasic PR simulation as in (a) but with randomly distributed frequencies (drawn
from the Cauchy distribution with parameter 0.2 and mean ω) and σ = 0.1.
(e) as in (b), but with the addition of phase-dependent (synaptic) coupling of
strength β = 0.23. The range of all histograms is [−.7τ, .7τ ], where τ = 1/3 sec
is the simulated natural period; all histograms are averaged over five simulated
recordings with uniformly distributed initial conditions, with each trial 2 min in
duration.

Breaking the SN symmetry with random natural frequencies

By the standard theorems for normally hyperbolic invariant manifolds
Fenichel [1971]; Wiggins [1994], many of our stability results persist un-
der small perturbations from fully SN × T 1- or SN -equivariant systems.
To study these effects, we performed numerical simulations: in particu-
lar, we considered the phase-difference system (4.1) with randomly dis-
tributed frequencies ω → ωi (so that the noise-free system has no nontriv-
ial isotropy subgroups). This is appropriate because individual LC neurons
exhibit a range of natural frequencies Grant, Aston-Jones, and Redmond
[1988]; Aston-Jones, Rajkowski, and Alexinsky [1994]. In Figure 4.2(d), we
show a reproduction of the phasic mode cross correlogram for the averaged
PR coupling function with κ = 0 and frequencies randomly distributed
around ω with a Cauchy distribution with parameter 0.2. This corresponds
to a tight distribution; nevertheless, the relatively low noise value σ = 0.1
is sufficient to reproduce patterns similar to those in Figure 1.1.

We note that there are some analytical results (e.g. Kuramoto [1984];
Strogatz [2000]; Crawford [1995]; Crawford and Davies [1999]) for the dis-
tributed frequency, phase-difference system as N →∞. However, a finite-N
analysis of the full equation (2.1) with distributed phases and phase prod-
uct coupling term remains open, to the best of our knowledge.
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Phase-dependent coupling

We now return to consider equation (3.1) with unaveraged synaptic (prod-
uct) coupling. Since f(0) = 0 for electrotonic coupling, we may use equa-
tion (3.8) to explicitly calculate a lower bound on α for this orbit to be
stable. The resulting α̃loc < 0 (Figure 4.3), so that the in-phase state is
stable for synaptic coupling and any positive α (since f ′(0) > 0). In ad-
dition, the domain of attraction may be estimated: for example, taking
s = 2.14 in Proposition 3.2 gives R = 1/4 and ĥ2 = 28.1 for PR coupling
functions with κ = 0. Thus, the domain of attraction of the in-phase orbit
includes CR if α > αglob = 7.11β (equation (3.9) for N →∞). Figure 4.2(e)
demonstrates the collapse of the cross correlogram (d) upon addition of the
synchronizing (cf. Section 4.2) product coupling.

For the SA coupling functions, the following observation is useful: since
the denominator in the integrand of (3.4) is always positive, if h′(θ) < 0 for
θ in the (essential) support of the positive function g then the integrand
itself will always be negative, giving stability for any α > 0. The plots in
Figure 4.1 show that for delays td (which correspond to translations of g)
taken in a wide range around 0.150 sec, stability holds for arbitrary g of
reasonably compact essential support and any α, β > 0 such that the in-
phase periodic orbit exists. We note here that related stability conditions
are derived in van Vreeswijk, Abbot, and Ermentrout [1994]; Ermentrout
[1996]; Gerstner, van Hemmen, and Cowan [1996], in which the time course
of g is also important.

4.3 Modeling firing rates in LC modes

Here we show that the depressed firing rates characteristic of the pha-
sic mode can be captured by our LC model if explicitly phase-dependent
synaptic terms are included.

Phase-difference coupling

Under the assumption that the period of the in-phase state largely deter-
mines average LC firing rates, the depressed firing rate observed in the
phasic mode cannot be reproduced with averaged (phase-difference), PR
coupling functions. The period of the in-phase state of (4.1) is 2π

ω+αf(0) ,

and Figure 4.1 shows that f(0) > 0 for any κ > 0, so that the period will
always decrease as α increases. Hence, the (highly-coupled) phasic state
would actually have an increased firing rate. In contrast, we shall see that
(3.1) allows us to correctly reproduce observed firing rates.

Phase-dependent coupling

For small β, where averaging is valid, the period of the SN symmetric
orbit must decrease with β. However, Figure 4.3 also shows that for β
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sufficiently large, the period increases with β (the term G(θ) in (3.2) slows
the flow). Since the SN symmetric orbit is attracting, its increasing period
indicates a mechanism for lower firing rates in the phasic mode. This shows
the importance in this case of considering the explicit product coupling
of (3.1); however, for other parameter values and neuron models phase-
difference coupling may correctly capture trends in firing rates (cf. Brown,
Moehlis, Holmes, Aston-Jones, and Clayton [2002]).
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FIGURE 4.3. The β-dependence of (left) bounds for stability and (right) the pe-
riod of the SN symmetric orbit with PR coupling functions, from equations (3.8)
and (3.3) in the large-N limit.

4.4 LC response to stimulus

Figures 1.1(b,c) show averaged histograms of the times at which spikes
were recorded in LC neurons, in data accumulated from many stimulus-
response trials. The phasic histogram displays a post-stimulus window in
which the probability of a given LC neuron firing in an arbitrary trial is
relatively high; this represents increased activity following stimulus. After
this burst the histogram exhibits a ‘refractory’ period in which there is a
lower firing probability, followed by a gradual return to equilibrium firing
probability. We now indicate a mechanism by which this pattern can emerge
from averages over many trials of oscillator dynamics with the appropriate
initial conditions.

As noted in the Introduction, the LC response in the phasic mode is
stronger than in the tonic mode. This effect can be shown to arise from
the fact that phasic-mode LC neurons tend to have lower firing frequen-
cies (Brown, Moehlis, Holmes, Aston-Jones, and Clayton [2002]). Here we
only study phase-difference models based on equation (4.1) for the phasic-
mode LC response. We assume that external stimuli act (via other neural
groups) by increasing the input current to each LC neuron identically via
a function I(t), contributing a term z(θ)I(t) to the phase velocities. Ap-
proximating the phasic mode as perfectly synchronized so that the average
α
N

∑n
j 6=i f (θj − θi) may be replaced by the constant f(0), equation (4.1)

becomes

dθ = [ω + αf(0) + z(θ)I(t)] dt+ σdWt
4
= v(θ, t)dt+ σdWt . (4.2)
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Initial conditions θ(0) = θ0 are drawn from the appropriate distribution
(see below).

The probability density of oscillator phases for this stochastic ODE (4.2)
evolves according to the forward Kolmogorov equation

∂ρ(θ, t)

∂t
= −

∂

∂θ
[v(θ, t)ρ(θ, t)] +

σ2

2

∂2ρ(θ, t)

∂θ2
, (4.3)

with ρ(θ, t = 0) = δ(θ − θ0). Due to the linearity of (4.3), histograms
to be compared with Figure 1.1 may be produced from (4.3) with initial
density representing an average over many trials, in which case ρ(θ, t)dθ
represents the probability that a given neuron observed in an arbitrary
trial has phase in the interval [θ, θ+ dθ) at time t. This ‘density’ approach
to modeling experimental firing time histograms is also employed in Ritt
and Kopell [2002]. The experimentally relevant initial condition ρ0 may be
found by reasoning as follows: if v lacks explicit t-dependence (i.e. I(t) = 0),
then the probability that an oscillator obeying (4.2) is in [θ, θ+ dθ] should
scale with 1/T (θ), where T (θ) is the time spent in this interval during one
cycle. To lowest order in dθ and neglecting noise, this implies ρ(θ, t = 0) =
C/v(θ) for some constant C; normalization gives ρ0 itself, which is simply
1/2π in this case. Histograms of firing times may be extracted from the
solutions of (4.3) by noting that the firing probability (for an arbitrarily
chosen neuron) at time t is proportional to the threshold probability flux

FL(t)
4
= v(θs, t)ρ(θs, t).

We can develop explicit solutions to (4.3) for certain classes of stimuli
and PRCs in the absence of noise for comparison with experimental data;
these analyses will appear in a future paper (Brown, Moehlis, Holmes,
Aston-Jones, and Clayton [2002]). Figure 4.4 illustrates preliminary results
relevant to the data of Figure 1.1(b,c) via numerical solutions of (4.3) and
direct simulations of (4.1) (with identical stimuli), which show that FL(t),
derived from (4.3), provides a reasonable approximation for post-stimulus
firing probabilities. We note that FL(t) displays the characteristic peak and
refractory period of Figures 1.1(b,c), but the subsequent return to equilib-
rium is slow and exhibits prolonged ‘ringing’ not seen in the experimental
data. The ringing is due to a ‘resonance’ between the stimulus duration
and the oscillator frequency; it is diminished or disappears entirely, giving
histograms more similar to Figures 1.1(b,c), when data is averaged over
a distribution of frequencies (Brown, Moehlis, Holmes, Aston-Jones, and
Clayton [2002]).

5 Conclusions

The dynamics of a finite set of identically (mean field) coupled oscilla-
tors were analyzed in general cases of phase-difference coupling and in
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FIGURE 4.4. LC firing rates (proportional to the probability that a neuron sam-
pled from the LC will fire at a particular time), computed using equation (4.3).
Upper plot: (a) FL(t), (b) firing time histogram for the corresponding finite-trial
simulation, see text. Parameters: N = 24, κ = 0, α = 0.032, σ = 0.8 (as in
Figure 4.2(b)). Lower plot (a,b): I(t) in µA/cm2.

specific cases of combined phase-difference and phase-dependent ‘product’
coupling. The existence of symmetric equilibria and fixed tori for SN ×T

1-
equivariant systems of coupled oscillators was demonstrated, as was the
dependence of their stability and degeneracy on the Fourier content of the
coupling functions. In particular, while single harmonic sine and cosine
functions are degenerate in that they give rise to steady states with multi-
ple zero eigenvalues, the inclusion of higher harmonics generically produces
equilibria with only a single (necessarily) zero eigenvalue in the relative
phase direction. Illustrative examples of such functions were derived from
Hodgkin-Huxley neural models, and stability and domains of attraction of
synchronized periodic orbits were investigated in detail.

This analysis of idealised oscillator networks guided the numerical sim-
ulations of Section 4, which demonstrate that networks of rotators can
reproduce phenomena observed in firing patterns of the brain organ locus
coeruleus. Specifically, the model suggests three mechanisms potentially re-
sponsible for broadening of the phasic cross correlogram (Figure 1.1(a)):
multiple equilibria with distinct phase differences, random external effects,
and randomly distributed natural frequencies (Figures 4.2(b-d)). The for-
mer is perhaps least likely, since it tends to give multi-peaked correlograms.
In addition, relatively strong synaptic (phase product) coupling appears
necessary to reproduce the depressed firing rates of the phasic state: aver-
aged (phase-difference) synaptic coupling actually produced the opposite
effect, and electrotonic coupling does not change in-phase firing rates. Fi-
nally, we note that these results depend subtly on synaptic delays and time
constants, and thus that details of the underlying cell membrane and chan-
nel dynamics must enter the phase oscillator description. In fact in ongoing
work (Brown, Moehlis, Holmes, Aston-Jones, and Clayton [2002]), we in-
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corporate an additional slow calcium-dependent potassium current, leading
to coupling functions differing from those of Figure 4.1, and, in some cases,
remarkably close to the degenerate pure sinusoids.

A general point of contact between the present study and neuroscience
lies in the relationship between explicitly modeling individual neurons and
their couplings, and averaging the behavior of a (sub-)population into a
single connectionist-type ‘unit’ (e.g. Rumelhart and McClelland [1986]).
Domain of attraction and probability density results for synchronized states
may inform conditions under which such approximations are justifiable.
In the present paper, a simple probabilistic evolution (equation (4.3)) for
coherent phase states produces acceptable results (Figure 4.4). Extension
of this result to a true population average for systems with distributed
frequencies and non-uniform couplings would bring it closer to the work of
Sirovich, Knight, and Omurtag [2000], and help unify detailed (Hodgkin-
Huxley type) neural models, simpler integrate-and-fire and phase models,
and connectionist networks.
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