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Abstract

To account for deficits in interval timing observed in Parkinson’s
Disease (PD) patients, we develop a model based on the accumulat-
ing firing rate of a neural population with recurrent excitation. This
model naturally produces the curvilinear accumulation of neural ac-
tivity introduced to timing psychophysics by Miall (Models of Neural

Timing, Elsevier Science, 1996), and implicated in Parkinsonian tim-
ing by Malapani and Rakitin (Functional and Neural Mechanisms of

Interval Timing, CRC Press, 2003). The parameters essential for our
model are the strength of the net neural feedback and the mean rate of
inputs to the population from external brain areas. Systematic varia-
tions in these parameters reproduce the PD migration effect, in which
estimates of long and short intervals drift towards each other, as well as
uniform slowing of time estimates observed under other experimental
conditions. For example, our model suggests that dopamine depletion
in PD patients increases the neural feedback parameter and decreases
the effective input parameter for populations involved in the production
of time estimates. The model also explains why the migration effect will
be associated with a violation of the scalar property, the linear increase
in the standard deviation of time estimates with the duration of the
target interval that is ubiquitous in healthy participants. We also show
that the effect of systematically decreasing the input rate parameter in
our model is equivalent to increasing thresholds, so that either of these
changes may be associated with the Parkinsonian state.

Theme: NEURAL BASIS OF BEHAVIOR
Topic: Cognition
Key Words: Interval timing, Parkinson’s Disease, scalar property, migration,
curvilinear accumulator, firing rate model
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1. INTRODUCTION

This paper is motivated by experiments that revealed specific deficits in the
interval timing behavior of Parkinson’s Disease (PD) patients [37, 41, 40, 42].
In the most developed of these experiments, the timing abilities of PD patients
were assessed using the Peak Interval (PI) timing task [54] immediately after
learning a pair of target time intervals with the assistance of behavioral feed-
back and 24 hours later without the benefit of such feedback [37]. The results
indicated two separable, dopamine-dependent error patterns associated with
storage of time intervals (i.e., encoding) and retrieval from temporal memory
(i.e., decoding) [37]. These patterns cannot be immediately reconciled with es-
tablished models of the timing process, especially Scalar Expectancy Theory,
or SET [17, 8, 16, 18]. Our goal is to present a modification of SET based
on simple models of the behavior of neural populations that can explain the
Parkinsonian timing phenomena.

The PI task requires participants to produce behavioral responses (i.e., a
burst of button presses) at one of two memorized time intervals. Originally
developed for animal research [7, 9, 57], it was adapted for human use in healthy
subjects (e.g, [54, 24, 25, 35, 53]) and patients with neurological disease (e.g.,
[37, 41, 36, 38]). Given the high ratio of variance associated with timing
versus motor components [52] (as motor requirements are minimal and time
ranges are of seconds in duration), the PI task is well suited for the assessment
of timing functions in patient populations encountering severe motor deficits,
as in PD. Indeed, PD patients experience specific problems when producing
movements, such as increased reaction time [6, 11, 39], movement time [5, 58]
and speech production time [34, 63], as well as deficits in programming and
synchronizing motor responses [48, 67, 51, 50]. These motor deficits may add
a constant (“motor”) variance in timing performance [68], particularly in tasks
with substantial motor requirements such as repetitive tapping [29, 51, 50, 67].

Demonstrating separable properties of interval storage and retrieval in PD
patients requires two distinct experimental sessions, the first performed in the
presence of behavioral feedback and immediately following demonstration of
a standard interval, and the second without feedback or demonstration. This
was originally reported as the “encode-decode” task design [37]. In this design,
during the first session the standard interval that subjects are to reproduce
is first demonstrated. Then, “production” trials begin, in which subjects are
asked to reproduce the standard intervals via timed button presses following a
cue; on a fraction of these trials, the standard interval is again demonstrated to
the subject. Additional behavioral feedback is delivered after other production
trials in the form of a histogram indicating whether the response was too short
or too long. Two separate blocks of such trials are performed, one with each of
a longer (17 sec) and a shorter (6 sec) standard interval. In the second session,
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performed on the following day, subjects produce both intervals (in separate
blocks) without further demonstration of the standard intervals and with no
behavioral feedback. Therefore, participants learn and store the target time
intervals only during the first session (henceforth referred to as the training
session), but retrieve these intervals from temporal memory during both the
training session and the second day’s testing session.

PD patients’ drug state (ON or OFF medication) on the two successive
days varied according to their assignment to one of four experimental groups.
The ON-ON group was provided with L-Dopa during both training and testing
sessions, and the OFF-OFF group was tested without L-Dopa for both sessions.
The ON-OFF group was provided with L-Dopa during the training but not the
testing session, and vice-versa for the OFF-ON group. Clinical measures for all
four groups are given in Table 1. The motivation was the hope that by crossing
patients’ drug state with the availability of information about the accuracy of
reproductions of the standard intervals, we could determine whether dopamine
(DA) deficiency (associated with being in an OFF state) selectively affected
memory storage (encoding), retrieval (decoding), or both.

Figure 1 summarizes the resulting behavioral performance during the test-
ing session. Correct estimates are obtained when both storage and retrieval
occur ON medication (see Panel (A), left). However, (B, left) shows that re-
trieving the trace of two different time intervals while OFF medication results
in “migration,” a pattern of bi-directional errors such that reproductions of
each interval drift in the direction of the midpoint of the intervals. This mi-
gration effect is seen for the OFF-OFF group (see panel (D, left)). However,
when time intervals are stored OFF medication, but retrieved ON, Panel (C,
left) shows that both intervals are overestimated. In addition to migration
and overestimation of mean time estimates, retrieval of time estimates OFF
medication results in a violation of the scalar property of timing variability
(Figure 1 (B,D, right panels)). (The scalar property implies a linear propor-
tionality between standard deviation and mean of time estimates, see below.)
By contrast, for retrieval ON medication, the scalar property holds, regardless
of whether intervals were encoded ON or OFF medication (A,C, right pan-
els). Note that migration is always accompanied by a violation of the scalar
property (specifically, by estimates for the shorter interval having a relatively
broad distribution), a fact we will return to in the modelling below. While
we show here only data from the testing session, similar migration and scalar
timing effects occur for patients OFF L-dopa during the training sessions. This
indicates that the availability of behavioral feedback is not a critical factor in
producing the statistical trends just discussed.

These results forced a rethinking of some underlying assumptions of Scalar
Expectancy Theory (SET), a framework for modeling timing originally devel-
oped by Gibbon in 1977 [15] and still strongly influential in the field [17, 8, 16,
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2, 14, 65]. SET is an information-processing model that describes the sources
of timing errors that lead to the scalar property, the behavioral phenomenon
in which distributions of time estimates for different length target intervals
appear as scaled versions of a single fundamental distribution and which is ro-
bustly observed in both animals [8, 14] and humans [54, 19, 28, 64]. According
to this model, pulses from an internal pacemaker are integrated by an accu-
mulator when attention is directed to time [32, 46, 69, 52]. The value of the
accumulator increases linearly with time, and is stored in memory upon the
occurrence of reinforcement or feedback [17, 30]. A ratio-based decision pro-
cess then compares values of the accumulator to remembered values in order
to determine responses on future trials [4, 3]. The SET model parameters can
fluctuate from trial to trial, but their overall statistics are independent of the
target time interval. This produces the scalar property [17, 8], and explains the
fact that most experimental manipulations produce monotonic changes across
a range of target intervals [40]. Indeed, SET could accommodate the unidi-
rectional, proportional rightward shift seen in the OFF-ON groups by relative
slowing of the pacemaker rate, which sets the temporal slope of the accumu-
lator (see [18] for a more detailed discussion). The migration effect, however,
cannot be reconciled with SET or other similar timing theories (e.g., [69]). The
same is true of the violation of the scalar property for times produced OFF
L-dopa. As a result, new modeling approaches are necessary.

Malapani and Rakitin [40] produced a theoretical account of both the mi-
gration effect and uniform overestimation trends in PD interval timing data
by modifying the accumulator so that its value increased with a curvilinear
dependence on time. The critical notion was that if L-dopa altered the curva-
ture of the accumulators, then functions associated with timing ON and OFF
L-dopa could be made to cross, and duration-dependent errors like migration
could emerge. The underlying computational model was a stochastic, neural
network-type architecture comprised of binary-valued neural units proposed
by Miall [47], in which the mean value of network activity exponentially ap-
proaches an equilibrium value from its initial state. In this paper, we establish
a different, idealized model that also produces curvilinear accumulation of net-
work activity, but which is immediately tractable analytically and which may
be more directly related to the firing rate dynamics of neural populations.

Specifically, we consider a related class of ‘leaky integrator’ models derived
from idealized equations for the firing rate of a recurrently connected neural
population receiving input from another, separate neural population. Models
of this type have a long history in neural modelling (cf. [59, 61, 66, 62, 26, 1, 45,
23]). The input to the recurrent population and its firing rate, respectively,
correspond to the pacemaker and accumulator components of SET. In the
variant that we use here, the time-dependent neural activation (firing rate) can
display three qualitatively different trajectories, either approaching a steady
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state (as for the model of [47]), increasing linearly in time, or increasing at
an accelerating rate. Therefore, this model can be used to further study the
effects of curvilinear accumulation in interval timing.

In particular, this variety of temporal dynamics allows us to address an
additional feature of the behavioral data not treated in [40] - that of the scalar
property of variability in time estimates. In particular, we show that model
parameter values corresponding to the ON-drug condition produce timing dis-
tributions with a fixed ratio of mean to standard deviation (the scalar prop-
erty). This results from a linear accumulation of firing rates in time, as in
classical models [16]. In contrast, parameter values modelling the OFF-drug
condition result in violation of the scalar property, with proportionally broader
distributions at shorter intervals (in agreement with experimental data).

The present paper extends the work of [40] in three additional ways. First,
we use explicit solutions to our simple firing rate-based model to show the
equivalence of timing models that use two distinct mechanisms to time differ-
ent intervals. We also group parameters into sets that have identical effects,
identifying only two combined parameters that determine the model’s dynam-
ics. Finally, we note that our model, while substantially removed from the
underlying physiology, is parameterized by values that may nevertheless be
related to averaged or ‘mean field’ descriptions of asynchronously firing neural
populations (e.g., [66, 12, 49]). Therefore, we are able to draw preliminary
conclusions about the changes in effective parameters in neural timing circuits
that may result from transitions from ON- to OFF-drug states.

The balance of the paper proceeds as follows. In the methods section, we
introduce the firing rate model, discuss the form of its solutions, and identify
simplifying parameter combinations. Next, we give the results of the model
for both trends in mean values of time estimates across the various experimen-
tal conditions, and adherence to or violation of the scalar property. Here, we
emphasize how parameters must vary across experimental conditions in order
to reproduce the trends observed in the data of [40], and develop several pre-
dictions that follow from these necessary variations in parameters. We then
show that these conclusions hold regardless of whether thresholds or accumu-
lator slopes are changed to time different intervals, and identify an equivalence
between increasing external input to the recurrent network and decreasing
thresholds. Finally, we discuss our findings in the context of physiological
mechanisms, covering both the model’s shortcomings and its predictions for
future experiments.
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2. METHODS

A self-excitatory firing rate model of interval timing

An idealized model for the firing rate r of a self-excitatory neural population
is

τ
dr

dt
= −r + f(βr + c) (1)

where τ is the effective recruitment timescale of the population and f(·) is the
population input-output function (i.e., the steady state firing rate vs. current
relationship). Additionally, β is the strength of excitatory recurrent connec-
tions, and c is the strength of inputs from areas external to the population
itself. See Fig. 2. We do not specify the location of the population, but
view it as a simplified aggregate model of the timing circuit. Therefore, the
variable r represents in a highly abstracted way the activity of dopamine mod-
ulated pathways of the basal ganglia, as well as their input and output struc-
tures (contrasting the region-specific modelling of, e.g. [44, 19, 10] as well as
architecturally-based models that are not directly related to timing [22, 13]).

We further assume that the net input βr + c remains in a range where f(·)
may be approximated by the linearization f(x) = gx, where g is the ‘gain’ of
the population, so that Eqn. 1 becomes

τ
dr

dt
= λr + I , (2)

where we have combined terms to define the overall neural feedback parameter
λ = βg − 1 and the effective input I = gc. Below, we will tacitly assume that
time is measured in units of τ , eliminating this parameter in the above. This
choice is for simplicity: we note that effects of changing τ can be captured by
simultaneously rescaling λ and I.

We take initial conditions r(0) = 0 for Eqn. (2), giving the solution

r(t) =
I

λ
(exp λt − 1) (3)

Fig. 3 displays the trajectories that this solution takes for different values of
the parameters λ and I, demonstrating that each plays a distinguished role: λ
sets the curvature of the accumulating firing rate while I determines its initial
slope. Note that in the special case λ = 0, r(t) is linear: r(t) = I t.

The firing rate r(t) produces time estimates as follows: the first time at
which r(t) reaches a preset threshold θ is the time estimate on that trial. To
time different intervals, there are two possibilities: (i) the parameters λ, I
could differ or (ii) the thresholds θ could differ between the intervals. We call
these options, respectively, the one-threshold and two-threshold models, and
show below that they are essentially equivalent.
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3. RESULTS

3.1 The two-threshold model and predicted interval tim-

ing behavior

Encoding and decoding time intervals

We assume that, during the training or encode phase of the experiments, pa-
rameters in the timing model are adjusted so that (the subject’s) estimates
match the target time intervals assigned by the experimenter. We first consider
a framework in which the threshold parameter θ̄ is the adjustable parameter,
so that for two-interval tasks there are two thresholds θ̄1, θ̄2. Later, however,
we will see that tuning of other parameters to the various intervals is in fact
equivalent.

Following [40], we allow the parameters describing accumulating firing rates
to vary depending on medication state (ON vs. OFF L-dopa) and on whether
the accumulator results in storage (encoding) or production (decoding) of time
estimates. The crucial notion is that one curve is used to set thresholds (de-
noted by rencode(t)), while another, possibly different, curve rdecode(t) is used
to translate these thresholds into time estimates (henceforth called time pro-
ductions). Disparities between target times and time productions arise when
the curves rencode(t) and rdecode(t) differ.

Specifically, we will show that the parameters of the accumulator (2) must
change as follows among experimental conditions to reproduce experimentally
observed effects on both mean time estimates and the scalar property:

0 = λON ≤ λOFF, encode < λOFF, decode (4)

IOFF, decode < ION ≤ IOFF, encode , (5)

where at least one of the ≤ relations must be a strict inequality. We specify
a single set of parameters (λON , ION) which applies to both encoding and
decoding in the ON-drug condition. Note that, for accumulators operating in
ON-drug conditions, recurrent feedback balances leak (giving λ = 0), but for
OFF-drug states, the neural feedback parameter λ must incrementally increase.
Additionally, for the decode OFF condition, the net input I must also decrease.
We now explain why these parameter orderings reproduce the experimental
data. Below, we will also show why the parameter orderings of (4)-(5), as well
as the value λON = 0, are the only choices that could have been made.

Trends in time estimates for the various experimental conditions

In our model the initial slope of the firing rate r(t) is I. Therefore, our pa-
rameter choices (4)-(5) guarantee that for all sufficiently early times, the firing
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rates for the different experimental contingencies are ordered as follows:

rOFF,decode(t) < rON(t) < rOFF,encode(t) . (6)

However, for sufficiently later times, the exponential growth of r(t) dominates
and we have

rON(t) < rOFF,encode(t) < rOFF,decode(t) . (7)

Following [16], we assume that mean threshold values for two standard inter-
vals T1 and T2 are determined by a memory system which stores the value of
the appropriate rate r(t) at these target times. Figure 4 shows the resulting
thresholds when this threshold encoding is done ON and OFF medication as
solid and chain-dotted lines respectively. Parameters have been chosen so that
the inequality (6) holds for the short interval T1 = 1, while (7) is valid for the
long interval T2 = 3.

Figure 4 also demonstrates the trends in time production that result from
the inequalities (6)-(7). Since the same accumulator is used to encode and
decode thresholds in the ON − ON experimental condition (upper left), time
productions will have the correct means. However, when thresholds that were
established using the accumulator rON(t) are later decoded using rOFF,decode(t)
(the ON-OFF condition), migration results: the short interval is overestimated,
while the longer is underestimated. To model the OFF−ON and OFF−OFF
conditions, thresholds are set using a third process rOFF,encode(t) and then
decoded into time productions via rON(t) and rOFF,decode(t), respectively. This
results in consistent overestimation of intervals in the OFF − ON case, and
migration in the OFF − OFF condition.

We emphasize that these general trends occur for any settings of the accu-
mulator parameters that satisfy the inequalities above. For Figure 4 and all
subsequent figures, we chose ION = 1, IOFF,encode = 1.25, IOFF,decode = 0.35 (as
per Eqn. (4)), and λON = 0, λOFF,encode = 0, λOFF,decode = 1 (all in accordance
with Eqn. (5)). Additionally, we took target intervals to be T1 = 1 and T2 = 3,
where time is in units of τ (for direct comparison with the experimental results
of [37], where T1 = 6 sec. and T2 = 17 sec., take τ ≈ 6 sec.).

The scalar property and its violation

Throughout this paper, we adopt Gibbon’s ‘ratio rule’ for determining thresh-
olds [16]. This results in Gaussian distributions of thresholds, with the stan-
dard deviations of these distributions assumed to be fixed proportions of their
means. As is well known, such distributions of thresholds, in conjunction with
linear accumulator processes, give rise to the scalar property (in particular,
distributions of time estimates also have standard deviations proportional to
their means). However, for curvilinear accumulators, as result from setting
λ 6= 0, the scalar property is violated in general.
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To see this, let pθ(θ) be the probability density of thresholds. We say that
a time estimate of duration t is produced if the accumulating rate reaches the
threshold for a given trial at time t; that is, if r(t) = θ. Therefore, the density
of interval estimates p(t) is described by p(t)dt = dr(t) pθ (r(t)), or

p(t) =
dr(t)

dt
pθ (r(t)) . (8)

For linear accumulators, r′(t) ≡ I (where ′ = d
dt

), so that p(t) is simply a
rescaled version of the threshold density p(θ). Thus the scalar property of the
threshold densities is directly inherited in densities of interval estimates.

However, for curvilinear accumulators, r′(t) is no longer constant, so these
arguments no longer apply. In particular, when λ > 0, r′(t) is an increasing
function, so we expect densities p(t) to be ‘tighter’ for longer intervals than
for shorter intervals, relative to the scalar distributions of thresholds p(θ) (see
Figure 5). This is the case whenever time estimates are produced OFF drug,
and, using the parameters described in the previous section, gives rise to the
densities of time productions in the various task conditions shown in Figure 6.
This figure shows that two key trends in variability of behavioral time produc-
tions are captured by the model: i) distributions possess the scalar property
whenever they are produced for parameters representing the ON L-dopa con-
dition, and ii) whenever times are produced OFF medication, distributions for
the shorter interval are relatively more variable than would be predicted by
the scalar property [37].

Taken as a whole, however, distributions of time estimates produced OFF
L-dopa are relatively less variable, in comparison with time estimates ON L-
dopa, for the model than for the data. We have verified that this discrepancy
can easily be remedied by assuming a broader distribution of thresholds in the
OFF vs. ON L-dopa condition (specifically, with twice the standard deviation).

Necessity of parameter settings

We now show that the parameter values and orderings of (4)-(5) are in fact
necessary. That is, there are no other choices for which our model would
reproduce the following primary features of the experimental data: i) time
estimates with correct means and satisfying the scalar property in the ON-ON
case, ii) migration and violation of the scalar property in the ON-OFF and
OFF-OFF conditions, and iii) overestimation of both intervals, but with the
scalar property, in the OFF-ON condition.

Experimental fact i) implies that there is a single accumulator rON(t) for
both the encode and decode processes, and that λON = 0. Next, from fact
ii), for migration in the ON-OFF case, we require λON < λOFF, decode and
IOFF, decode < ION (so that rOFF, decode(t) crosses rON(t) from below); similarly,
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for the OFF-OFF case we require λOFF, encode < λOFF, decode and IOFF, decode <
IOFF, encode. Finally, fact iii) implies λOFF, encode ≤ λON and IOFF, encode ≤
ION , where at least one of these relations must be strict inequality, (so that
rOFF, encode lies everywhere above rON). Putting these conclusions together
exactly yields Equations (4)-(5).

We remark additionally that the “less than or equals” ambiguity in the
relations λOFF, encode ≤ λON and IOFF, encode ≤ ION may be resolved by the
additional observation that the extent to which each interval is overestimated
in the OFF-ON experimental data is a fixed proportion of the target time for
each interval. This requires λOFF, encode = 0 = λON and hence IOFF, encode >
ION , which are the choices we have made in producing the figures in this
paper. However, this latter level of parameter specificity is not required for
the additional predictions of our model that we discuss next.

Predictions of the curvilinear accumulator model

Above, we showed that, if our accumulator model is to reproduce the basic
features i), ii), and iii) of the behavioral data listed there, then model param-
eters must be constrained as per Eqns. (4)-(5). This constraint allows us to
make separate, additional predictions for statistical patterns that should be
present in the existing behavioral data.

The first set of these predictions concerns the relative extent of overesti-
mation and underestimation of time intervals in the various experimental con-
ditions. For all parameter choices satisfying (4)-(5), underestimation of the
longer interval will be accentuated for the ON-OFF relative to the OFF-OFF
condition, because the curves rON(t) and rOFF, decode(t) are necessarily further
apart around the longer time than the curves rOFF, encode(t) and rOFF, decode(t).
Similar reasoning shows that the overestimation of the shorter interval will be
accentuated for test session in the OFF-OFF relative to the OFF-ON condi-
tion, and likewise for the OFF-OFF relative to the ON-OFF group. All three
of these model predictions are consistent with the experimental data of [37],
as statistical reanalysis of this data confirms.

In particular, overestimation of the short interval is significantly higher in
the OFF-OFF relative to the OFF-ON group (p < .005; F=9.6) and likewise
for the OFF-OFF relative to the ON-OFF condition (p < .05; F=4.2). The
predicted trend is present in the behavioral data for the accentuated under-
estimation of the longer interval in the ON-OFF relative to the OFF-OFF
group, but the difference did not reach significance. This may be due to the
low number of subjects included in the OFF-OFF group, which is a question
to be addressed in future experiments.

Our model, coupled with the necessary parameter values derived above,
also predicts that distributions of time estimates will be more skewed towards
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shorter times for all intervals produced in the OFF relative to the ON condi-
tion (in other words, the OFF distributions will have a greater “leftward” skew
or, equivalently, a lesser “rightward” skew). This follows from the fact that
λOFF, decode > 0, which leads to rates rOFF, decode(t) which accelerate in time
and hence, via Eqn. (8), to a compression of the tail of the distribution cor-
responding to longer estimates. However, statistical analyses have not found
this trend to be reliably present in the existing experimental data.

3.2 Equivalent models and parameters

As already mentioned, Gibbon’s rule for thresholds states that they are nor-
mally distributed with a standard deviation proportional to their mean θ̄.
Explicitly:

pθ(θ) =
1√

2πk2θ̄2

exp

(

−(θ − θ̄)2

2k2θ̄2

)

,

where k is the proportionality constant. Rewriting, this is

pθ(θ) =
1

θ̄

1√
2πk2

exp

(

−(θ/θ̄ − 1)2

2k2

)

≡ 1

θ̄
q(

θ

θ̄
) . (9)

Inserting this latter expression into (8), we have

p(t) = r′(t)
1

θ̄
q(

r(t)

θ̄
) . (10)

Then, substituting in the solution (3) gives

p(t) =
I

θ̄
exp(λt)q

(

I

θ̄

(exp(λt) − 1)

λ

)

. (11)

This expression reveals that densities of time estimates will be Gaussian only
when λ = 0, and will otherwise be skewed. Additionally, Eqn. (11) also shows
that the densities of response times predicted by our model depend on only
two quantities: λ and the ratio I/θ̄. This fact reduces the number of free
parameters in the model. As we now explain, it also implies that another
modeling paradigm is actually exactly equivalent to that discussed above, and
that different parameter variations can have the same effects on predicted
distributions of time productions.

The equivalent one-threshold model

An alternative mechanism for timing different intervals is suggested by firing
rate recordings from frontal brain areas during delayed match to sample tasks
[33, 56]. These data suggest that there is a single threshold that is used to
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time intervals of various duration, with the accumulation occurring at differ-
ent speeds for the different target times. We represent this situation via a
one-threshold model, in which there is a single threshold θ̄, but two different
values of I (one for each of the two intervals being timed) which are separately
adjusted during encoding so that r(T ) = θ̄ at each target time T .

As an example, Fig. 7 illustrates this situation for the ON-OFF condition.
For comparison with the results of the two-threshold model already discussed,
we take T1 = 1, T2 = 3, λON = 0, and λOFF,decode = 1, exactly as above.
Additionally, we take θ̄ = 3, and ‘tune’ inputs to the target times, so that
I1 = 3 and I2 = 1. Figure 7 (right) also shows the resulting distribution of
time estimates, which exactly match those for the corresponding two-threshold
model (compare with Fig. 6). We now explain why the distributions under the
one- and two-threshold models are identical.

The key observation is that, following encoding, either the mean threshold
θ̄ (in the two threshold model) or the input I (in the one threshold model) has
been adjusted so that, for the target time T , r(T ) = θ̄. Substituting this into
(3) gives

I

θ̄
=

λ

eλT − 1
. (12)

We emphasize that this relationship holds in both the one threshold and two
threshold models: although the values of I and θ̄ may be different in each case,
their ratio will be the same for fixed values of λ and T . This is a consequence
of the simple form of (3), in which the input I enters as a multiplicative
parameter; for a general accumulator, one would not expect that the different
learning procedures in which thresholds or inputs are adjusted during encoding
would both give the same accumulator dynamics.

We now consider how this encoded ratio of I

θ̄
is decoded to produce time

estimates in the one- and two- threshold models. As discussed above, I and
λ may be different for accumulators assumed to encode vs. decode target
times. We now show that, if these parameters are changed identically in the
one- and two-threshold models, then both of these models produce identical
distributions of time productions.

In particular, assume for both the one- and two-threshold models that
the value of I during decoding of an arbitrary time interval is varied by a
multiplicative constant k from its value during encoding. Then, because the
ratios I

θ̄
must be identical for both the one- and two-threshold models during

encoding, they will continue to take the same value during decoding. If we
additionally assume that the value of λ is the same for decoding in both the
one-threshold and two-threshold models, then we see that both values I

θ̄
and

λ, which completely determine the distribution of time productions p(t) via
Equation (11), are identical for decoding in both the one-threshold and two-
threshold models. In other words, these distributions are necessarily identical
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for the one-threshold and two-threshold models, no matter what the ‘fixed’
input level I is taken to be in the two-threshold model or what the ‘fixed’
single threshold is taken to be in the one-threshold model.

Therefore, all of the observations made above about migration when de-
coding is performed in the OFF condition, accuracy or overestimation in the
ON condition, and violation or preservation of the scalar property in these two
cases carry over exactly to the one-threshold model. Therefore, so do results
on the necessity of parameter settings given by Eqns. (4)-(5), as well as the
predictions for behavioral data that follow from these settings.

An equivalent hypothesis on parameter variations between task con-

ditions

Above, we allowed the parameters λ and I to differ for the accumulators r(t)
used in encoding vs. decoding time intervals ON and OFF L-dopa, but as-
sumed that there is no variation in the mean threshold θ̄ between these exper-
imental conditions. That is, we assumed that θ̄ is determined via Eqn. (12)
during the encode process, regardless of medication state, and that it is ex-
actly this same value of θ̄ which is later used for decoding, again regardless
of medication state. However, another possibility is that θ̄ changes between
experimental condition instead of I, while λ continues to vary as above. These
two possibilities are equivalent if the corresponding parameters are varied in-
versely, because Eqn. (11) shows that only the ratio I

θ̄
determines distributions

of time productions.
To explore this possibility, we assume that there is a multiplicative term

b, analogous to the ‘criterion factor’ of scalar expectancy theory [15], which
relates accumulator rates r(t) to threshold values. Specifically, during the
encode process we assume that rates r(T ) at target times T are encoded as
thresholds θ̄ = b r(T ), and that during decoding time estimates are made when
r(t) = θ

b
, where the value of b is specific to task condition (encode vs. decode,

OFF vs. ON). In this case, the parameter ordering

bOFF, decode < bON ≤ bOFF, encode (13)

along with the ordering of the associated λ values given by Eqn. (4) will yield
exactly the same results as those developed above for covariation of λ and I
between conditions.

4. DISCUSSION

In this paper, we have shown how a threshold-based mechanism for interval
timing, similar to that of scalar expectancy theory [17, 8] but extended to
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include accumulating firing rates that have a curvilinear dependence on time,
can reproduce both the migration and uniform overestimation trends observed
in two-interval timing experiments with Parkinson’s patients [37]. Our model
also accounts for the scalar property that these time estimates display whenever
they are produced ON L-dopa medication, and the violation of this property
OFF L-dopa: compare Figs. 1 and 6. For the model to reproduce these trends,
the dynamics of the accumulating firing rate must vary both between the
different experimental conditions (ON vs. OFF drug therapy) and between
the different task stages (encoding vs. decoding).

The model is based on an idealized model of a recurrent, excitatory neural
network, and is characterized by two parameters: λ, the net neural feedback,
I the external drive to the population. These parameters must vary among
experimental conditions as in Eqns. (4)-(5) to reproduce the primary features
of the experimental data. We have shown that this result continues to hold
regardless of whether one assumes that thresholds or accumulator slopes are
adjusted to time different intervals (i.e., the one-threshold vs. two-threshold
models). Additionally, we demonstrated that systematic biases in relating
thresholds to firing rates can play the role of variations of the neural drive I
among task conditions.

In the methods section, we rescaled and grouped parameters to define the
neural feedback λ = βg − 1 and the neural drive I = gc, which completely
determine the dynamics of our model. Here, β is the strength of the excitatory
recurrent connections, c measures inputs from areas external to the population,
and g is the input-output gain of the population. Informed by Eqns. (4)-(5),
we can assess how these values may vary in order to affect the required changes
in λ and I among task conditions. For example, the transition from ON-drug
encoding to OFF-drug decoding (in which λ increases and I decreases) could
be caused by an increase in the weight β with a (smaller) decrease in gain g, by
an increase in gain g with a (greater) decrease in external inputs c, or by other
covariations in parameters. Any of these choices results in the key dynamical
effect, that the putative neural accumulators which produce time estimates
OFF medication start increasing at relatively slow rates but accelerate over
time, due to diminished drive but excessive positive feedback relative to the
ON medication case. Despite these myriad options, if one views our recurrent
neural population as the simplest imaginable model of a dopamine-modulated
timing circuit, our general conclusions about parameter variations in the OFF
vs. ON L-dopa state do provide constraints on the dynamics of accumulator-
based interval timing in Parkinson’s patients.

Three remarks are appropriate in considering how the present, extremely
simple model might be implemented biologically. First, as emphasized in
[59, 60], we note that the single firing rate r may be thought of as charac-
terizing a distinguished subpopulation of cells whose activity increases along
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the ‘line attractor’ of a more complex recurrent network. Second, we note
that when λ = 0 (as in the ON-medication state) our model possesses a con-
tinuum of steady states in the absence of external drive I. Such systems are
often referred to as neural integrators, and have been studied widely in the
context of oculomotor control (e.g., [59, 61, 21]). However, as [59] and refer-
ences therein have pointed out, this neural integrator property requires fine
tuning of parameters (i.e., setting λ perfectly equal to 0), and even small de-
viations in this tuning result in errors that accumulate exponentially in time.
This raises the legitimate question of the plausibility of our model of inter-
val timing ON L-dopa, which does require λ = 0. Recent work addresses
the fine tuning problem by introducing bistability and hysteresis in subunits
of the recurrent network [31, 21]. While these papers do explore some cases
in which these properties enhance the robustness of neural integration, is not
clear whether bistability and hysteresis alone lead precisely to robust ramping
dynamics, or whether additional assumptions on network architecture, beyond
those already explored, will be required. Nevertheless, we note that in vivo
data from animals performing timing tasks does provide evidence for linearly
accumulating firing rates (e.g., [56, 33]) or linearly accumulating firing rates
in concert with other firing patterns [43]. A direction of our current work is to
determine whether physiologically motivated parameter changes can produce
instabilities in otherwise robust integrator models which result in the type of
curvilinear accumulation patterns that are attributed to the OFF-drug state
above.

Thirdly, we comment on the mechanisms of trial-to-trial variability in
time estimates. Above, we adopt Gibbon’s assumption of distributed thresh-
olds [17, 16]. However, we believe that our model would give similar results if,
as proposed by [55], this variability followed instead from the rapid stochastic
variations in r(t) itself that may be expected from fluctuations inherent in
finite size neural populations (or, similarly, from rapid variations in the sepa-
rate mechanism that detects threshold crossings, not modelled here). This is
because the mean value and temporal spread of time estimate distributions in
this case would still depend on the time and rate with which the mean value
of accumulating firing rates crosses through a range of values near threshold.

While our model explains the two-interval behavioral data of [37], without
further assumptions it cannot account for the results of experiments which
show that the migration effect vanishes when only a single interval must be
timed OFF L-dopa. Specifically, in tasks following the encode ON - decode
OFF protocol but in which only a single interval must be encoded and repro-
duced, each duration is typically overestimated [41]. Without modification,
the present model would predict that when this experiment was performed
with single, longer intervals, these longer intervals would in fact be underes-
timated, exactly as for the two-interval task studied above. To reconcile this
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situation, one can assume that accumulator parameters depend on the range of
time intervals being encoded, so that the crossing point of, for example, rON(t)
and rOFF,decode(t), itself varies from task to task (in particular, that this point
always lies to the ‘right’ on the time axis from the single intervals that were
tested in [41]), but this idea needs further investigation.

We also note that our model addresses only averages of time estimates pro-
duced over an entire block of trials, and that trial-to-trial variations in behavior
are beyond its scope. Future investigations into the trial-to-trial adjustment
of behavior and inferred trial-to-trial variations in model parameters could ad-
dress questions including that just raised, as they could enable studies of how
the ‘crossing point’ referred to above moves as additional intervals are added
to a subject’s timing repertoire. We further note that our model was developed
to account for timing of intervals in the seconds range using the peak interval
procedure, and it is an open question whether similar mechanisms apply to
other tasks and interval ranges [27, 20].

The present model makes a number of testable predictions. First, the mag-
nitudes of timing errors should differ in a predictable way across experimental
protocols, as explained and then verified via a reanalysis of experimental data
in the section “predictions of the curvilinear accumulator model.” Second, as
also discussed in that section, distributions of time estimates produced OFF
L-dopa should display relatively greater leftward skew (or less rightward skew)
relative to comparable distributions produced ON L-dopa. Statistical analyses
did not find this trend to be reliably present in the existing experimental data.

Other predictions of our model will require future experiments. The most
direct of these is that recordings from the timing circuits of animals that have
been, for example, pharmacologically induced to display migration behavior
in timing tasks should reveal firing rates with a curvilinear dependence on
time. Another, fourth prediction of the model is that for any task design
there will be a single critical interval duration toward which migration will
occur (as noted in [40]). In other words, regardless of the number of different
intervals encoded, intervals below this critical duration will be overestimated
while intervals above this duration will be underestimated. Fifth, we predict
that violation of the scalar property, with estimates of the shortest interval(s)
displaying excessive variability, will occur whenever migration in mean values
of time estimates are observed.
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Figure 1: Distributions of time productions for each experimental group dur-
ing the testing session, measured in actual laboratory time (left column) and
relative time (right column), from [37]. The distributions in relative time are
obtained by rescaling experimental time – specifically, the time axis for each
subjects distribution is rescaled so that it has the same median as the group-
averaged median, and then an average is taken across subjects. The smooth
curves are gaussian fits to the data. The ON-ON group (panel A), which re-
ceived L-dopa in both experimental sessions, exhibits veridical accuracy for
both the shorter, 6 sec. interval (thin curve, squares) and longer, 17 sec. inter-
val (heavy curve, circles). Distributions of time productions superpose when
rescaled (right), indicating normative, or “scalar,” timing when ON medica-
tion. Subjects trained ON medication but tested OFF medication without
further behavioral feedback (panel B) show migration in the OFF testing con-
dition (left) and violation of scalar timing (right). Panel C shows performance
for subjects trained OFF medication but tested ON medication. The ON test-
ing condition shows overestimation for both times (left), but the distributions
for the two time values superpose in relative time (right). Panel D shows data
for the OFF-OFF group, in which migration again occurs (left) and the scalar
property is violated (right).
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Figure 2: Schematic of a recurrently excitatory neural population.

25



0 0.5 1
0

0.5

1

1.5

2

t

r(
t)

0 0.5 1
0

0.5

1

1.5

t
0 0.5 1

0

0.5

1

1.5

2

t

λ>0

λ=0

λ<0

I =1
I >1

I <1

λ>0, I <1

λ=0, I=1

I =1 λ=0

Figure 3: Time course of firing rates r(t), from Eqn. (3). (left) concavity is
determined by the sign of λ; (center), initial slopes determined by I (λ = 0
for all curves shown); (right), firing rates can cross if parameters λ and I are
covaried.

26



0 1 2 3 4
0

1

2

3

4

ON-ON

t
0 1 2 3 4

0

1

2

3

4

ON-OFF

t

0 1 2 3 4
0

1

2

3

4

OFF-ON

t
0 1 2 3 4

0

1

2

3

4

OFF-OFF

t

r(t)

r(t)

r
ON

r
OFF,decode

r
OFF,encode

Figure 4: Accumulating firing rates r(t) in the different task protocols. In
the ON-ON and ON-OFF protocols, rON(t) (solid) is used to set thresholds
θ̄1 and θ̄2 for the two target intervals (1 and 3 time units). In the OFF-ON
and OFF-OFF protocols, rOFF,encode(t) (dash-dotted lines) is used to set these
thresholds. Following this threshold setting, these thresholds are used in the
‘test’ stage of the experiment in order to produce time estimates. Depend-
ing on the medication state, the times of intersection between either rON(t)
or rOFF,decode(t) (dotted) and the encoded thresholds determine the time es-
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to setting of thresholds for target times.
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produced in the OFF condition, the scalar property is violated. In particular,
the distribution of estimates for the shorter time interval T1 is relatively ‘too
broad’ in these cases, as observed in the behavioral data: compare with Fig. 1.
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Figure 7: (left), accumulators in the one-threshold model for the ON-OFF
condition. Two different accumulators (but a single threshold) are used to
time the target times T1 = 1 and T2 = 3. Input values I1 and I2 are set so that
the accumulators r1

ON(t), r2

ON(t) used for encoding reach the threshold θ̄ at
the target times T1, T2. Decoding using the accumulator rOFF,decode(t) in the
OFF condition results in drift in the median time estimates as indicated by
arrows. Solid lines represent rON(t); dotted, rOFF,decode(t). (right), densities of
time productions, which exactly match those for the two-threshold model in
the ON-OFF condition (and all other conditions); see text.
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Table 1: Clinical Motor and Neuropsychological Profiles of the Four PD Groups (Malapani, Deweer & Gibbon, 2002) 
 Group 1 (ON-ON) Group 2 (ON_OFF) Group 3 (OFF-ON) Group 4 (OFF-OFF) 
N 6 12 12 6 
F/M     2/4 5/7 4/8 3/3
Age 52 (5.2) 56.5 (2.7) 54.7 (3.03) 56.8 (2.9) 
Education 4.2 (0.2) 4.08 (0.58) 4.33 (0.4) 4.5 (0.56) 
Evolution (years) 10 (2.3) 9.67 (0.89) 10.75 (1.5) 11.3 (2.4) 
Hohen and Yahr 3.4 (0.5) 2.9 (0.4) 3.04 (0.2) 2.66 (0.3) 
UPDRS-ON  
              Tremor 
              Akinesia 
              Rigidity 

17.4 (3.01) 
0.4 (0.6) 
10.3 (5.6) 
6.0 (3.1) 

15.2 (2.5) 
0.3 (0.7) 
9.3 (4.5) 
5.1(3.2) 

13.54 (2.5) 
0.3 (2.7) 
9.7 (2.5) 
4.9 (2.3) 

15.8 (1.7) 
0.4 (1.5) 
10.2 (1.5) 
5.5 (2.1) 

UPDRS-OFF 
              Tremor 
              Akinesia 
              Rigidity 

51.2 (5.6) 
4.4 (3.2) 
22.6 (7.3) 
11.6 (4.1) 

43.4 (4.1) 
3.4 (2.3) 
19.6 (6.7) 
10.8 (3.8) 

42.7 (4.5) 
3.7 (3.3) 
19.8 (6.7) 
11.8 (2.8) 

43.5 (3.3) 
3.1 (2.3) 
20.2 (6.2) 
11.6 (2.9) 

% Improvement 66.2 (3.5) 66.7 (3.6) 70.9 (4.6) 62.8 (4.4) 
MMS 29.4 (0.4) 28.8 (0.4) 29.1 (0.2) 29.1 (0.4) 
 MATTISE  
              Global 
              Attention 
              Initiation 
              Constancy 
              Concept 
              Memory 

 
140.4 (1.2) 
36.4 (0.2) 
34.2 (1.2) 
5.8 (0.2) 
38.2 (0.6) 
24.8 (0.2) 

 
140.6 (1.05) 
36.7 (0.1) 
35.6 (0.5) 
5.9 (0.08) 
38.3 (0.4) 
24.3 (0.2) 

 
140.7 (0.8) 
36.5 (0.2) 
35.8 90.5) 
6 (0) 
37.8 (0.4) 
24.6 (0.18) 

 
141.1 (0.9) 
36.3 (0.3) 
36.5 (0.3) 
6 (0) 
38 (0.4) 
24.3 (0.2) 

Grober & Booschke 
               Encoding 
               Recognition 

 
16 (0) 
16 (0) 

 
16 (0) 
15.2 (0.2) 

 
16 (0) 
14.7 (0.3) 

 
16 (0) 
15.6 (0.3) 

1 

                                                 
1 All patients included in the study had bilateral symptoms at the time of testing. Subjects with severely disabling pharmacological 
side effects, such as involuntary movements (“off” or “on” state dyskinesias) were excluded. 




