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Abstract

In this dissertation I develop both general results on the dynamics of neural oscil-

lators and integrators and specific applications of these results to brain areas involved

in simple cognitive tasks. The scientific motivation is broad: neural networks inside

our brains are able to adapt to changing information processing demands by exercising

cognitive control, for example focussing on salient components of noisy sensory inputs

when making specific decisions based on these inputs, but relaxing this focus when

other needs become prominent. But what free variables or parameters can account for

the observed adaptability? And does this adaptation occur optimally, with respect to

simple economic metrics and physiological limitations? Here I address these questions

via reduced models of neurons and populations near bifurcations, which characterize

the dynamics of a brainstem nucleus involved in adaptive cognitive control, and via

variational problems arising from neural signal processing, which clarify the role of

this nucleus, and other dynamical mechanisms in decision tasks.

First, I study and apply nonlinear oscillator dynamics. I develop and extend phase

reductions for single compartment ordinary differential equation neuron models that

show how both type of, and distance from, the four codimension-one bifurcations

to periodic firing affect responses of neural populations to stimuli. I also extend

results from equivariant dynamics which describe how coupling functions determine

the existence and stability of phase-locked states in which subgroups of oscillators are

synchronized. These results are then applied to the firing rate dynamics of the locus

coeruleus (LC) brainstem nucleus, thereby characterizing the inputs that drive the

LC and suggesting a new biophysical mechanism for transitions among LC-mediated

states of cognitive performance.

LC-driven neuromodulation transiently adjusts the sensitivity (“gain”) of inte-
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grator units believed to determine simple cognitive decisions in response to sensory

stimuli, and these gain effects are the focus of the second part of this dissertation. I

study how transient parameter adjustments can optimize decision tasks for speed and

accuracy in the presence of noise. The results indicate a surprising match between

empirical data on the time course of LC firing rates and optimal gain trajectories

found via variational methods, providing an explicit hypothesis for the role of the LC

in decision tasks.
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Chapter 1

Introduction

Recent experimental developments, such as multineuron in vivo recording (e.g. [129,
33]) and functional magnetic resonance imaging (e.g. [28, 105]), are providing high
resolution data on neural activity during simple cognitive tasks. One result is an
unprecedented set of opportunities to ground theoretical work on the dynamics of
neural decisions in the underlying biophysics.

For example, a finding from cortical neural recordings made during behavioral
experiments is that certain simple visual discrimination processes can be described
by firing rates of neural subpopulations, each of which is responsive to alternative
sensory stimuli [18, 83, 156, 72, 145]. These subpopulations appear to accumulate
incoming sensory evidence by elevating their firing rates, in addition to receiving both
recurrent inputs and excitatory and inhibitory connections from other subpopulations.
When the firing rate of the first subpopulation crosses a threshold, a motor response
indicating the corresponding decision is made; see Figure 1.1. This makes contact
with connectionist theories of cognitive processing, which describe the dynamics of
abstracted neural units in cognitive tasks ([148, 134], cf. foundations in [121, 91, 87,
40]), and also with the classical drift-diffusion decision models of Laming, Ratcliff and
others (e.g. [113, 139, 140, 159]), since these latter models have recently been shown
to be special limits of connectionist networks [169, 21, 13]. Furthermore, Wang [184]
has demonstrated how an accumulation of decision-related firing rates can arise from
a detailed model of spiking cortical neurons, drawing on prior work on the population
dynamics of incoherently firing neural groups (e.g. [165, 63]).

While the cortical recordings just described are striking, they by no means imply
that averaged firing rates are the only currency of neural information. In particular,
the timing of individual spikes has been shown to play a direct role in encoding certain
neural information [12] and has been implemented in novel and powerful computa-
tional strategies [92, 93]. This said, I will assume a firing rate description in Part II
of this thesis, in which I develop neural integrator models of sensory discrimination
tasks of the types for which the experimental data described above was collected. In
Part I, I consider biophysically-based neural models that are intrinsic oscillators, and
hence preserve spike timing information and allow studies of synchronous oscillations.

A central issue in neuroscience is the control of cognitive processes: the modula-
tion of information processing to enact strategies that accomplish ever-shifting goals
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Figure 1.1: Firing rates of area FEF increase to a fixed threshold, at which the
decision is made. Note random walk type accumulation of firing rates. From [151].

[137, 153]. A classical example of the need for cognitive control is the tension between
‘exploration’ and ‘exploitation’ in which the benefits of flexibly processing a broad
variety of sensory and internal signals are balanced against commitment to signals
relevant to a particular predetermined task. Recent studies suggest that the forebrain
area anterior cingulate cortex (ACC) may be responsible for dynamically assessing the
appropriate level of this balance by monitoring the coactivation of neural representa-
tions for competing task alternatives and hence the degree of neural conflict [27, 15].
High values of this conflict on short timescales indicate the need for additional allo-
cation of cognitive resources to a task in order to, for example, enable more efficient
discrimination between alternatives. If this allocation proves unsuccessful, evidenced
by maintenance of high conflict levels over longer timescales, in the simplest scenarios
the more favorable strategy may be to decrease commitment to the task at hand and
explore for more rewarding pursuits.

The locus coeruleus (LC) brainstem nucleus has been proposed as a mechanism for
implementing changes in information processing strategy suggested by the time course
of conflict (or other means of assessing current attentional needs). Neural recordings
show that this nucleus possesses two distinct modes of operation, characterized as
phasic and tonic [10, 167]. In the phasic mode, cortical areas are committed to
respond selectively to the limited set of sensory stimuli directly relevant to a given
cognitive task: when such stimuli are presented, the LC emits the neuromodulator
norepinephrine to widely dispersed brain areas, resulting in a transient increase in
the sensitivity (or ‘gain’ [154]) of cortical units that selectively follows presentation of
task-relevant information ([175], cf. [70]). However, baseline levels of norepinephrine
release (and hence sensitivity) in the phasic mode are low. The tonic mode, by
contrast, is exploratory: there are higher levels of baseline norepinephrine release but
smaller stimulus-evoked impulses, allowing responses to a variety of inputs from the
environment with less commitment to a specific task.

Several interesting questions remain. For example, how do the changes between
tonic and phasic LC modes themselves come about? One possibility, proposed and
demonstrated via computations in [167], is that changes in coupling strength between
LC neurons result in the different modes. In Chapter 5 of this dissertation I suggest
another, simpler mechanism, by which synaptic contacts to LC from the ACC or
other brain areas can directly contribute to this change by setting baseline levels
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of LC firing. I also address how the varied LC firing patterns observed in different
cognitive tasks might arise.

Another key question is: How do we know that transient norepinephrine release
can truly be associated with enhancing task-specific processing and throughput of
decisions? Answering this question requires modelling cognitive tasks in the presence
of dynamic gain manipulations (as in [167, 70]) and assessing the benefits of these
manipulations, subjects pursued in Chapters 6 and 7. The results support the hy-
pothesis of [10, 167] that the LC can play a role in optimizing cognitive processing.
This hypothesis represents a shift in interpretation of the broader role of the brain-
stem, which is not typically associated with the details of cognition: in particular,
the classical view of norepinephrine is that it sets overall levels of arousal over long
timescales, not the timescale of tens and hundreds of milliseconds relevant to cortical
decision making.

The dynamics and role of norepinephrine and other neuromodulators in neuro-
science is a compelling field of study for additional reasons worth mentioning here.
First, such research seeks to identify general principles that may be operative in a
wide variety of cognitive tasks. As a consequence, the effects of mechanisms that
implement cognitive control must be broadly distributed throughout the brain, im-
plying that a wealth of existing neural data may eventually be applicable and possibly
making cognitive control effects easier to identify in future imaging or recording stud-
ies. Second, deficits in neuromodulator systems, associated with depleted capacity
for, e.g., selective attention and switching between competing task demands, are sig-
natures of most neuropsychiatric diseases [37, 57], adding impetus to the task of
understanding the dynamics of these systems and their effects on neural information
processing.

Progress on these topics requires understanding the dynamics of the underlying
neurons and neural groups on different scales. A first step is to establish general-
ized (and simplified) neuron models for the dynamics of an isolated spiking neuron,
starting with biophysically grounded conductance-based models of Hodgkin-Huxley
type [89, 41]. This need for reduced models of this type has been widely recognized
and is a broad area of research in mathematical neuroscience. The piecewise-linear
‘integrate and fire’ formalism, in which voltage increases to a fixed threshold at which
a spike is evoked, is perhaps the simplest reduction (e.g. [68]). Another approach
taken in developing the Fitzhugh-Nagumo and related relaxation oscillator models
[61, 102] is to exploit separations of timescales among gating variables to reduce the
dimension of a broad class of conductance based neural models and to develop general
approximations that capture the essential components of their dynamics with simple
polynomial vectorfields (see also [97]). A third, related approach relies on simplified
normal form equations that approximate the full conductance-based equations near
bifurcations to periodic firing: this is the ‘canonical model’ methodology of [94]. A
bifurcation-based analysis is also used in, for example, [142] and references therein to
explain how broad classes of neuron model can begin firing at either zero or nonzero
rates, can undergo bursting behavior, and can be reduced to phase descriptions by
projecting their dynamics onto the attracting invariant manifolds on which periodic
trajectories lie (see also, e.g., [52, 84, 171, 85, 50, 111]).
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In Part I of this dissertation I adopt and extend this latter phase reduction ap-
proach, thereby contributing to a general analysis of reduced neuron models with
applications to the cognitive control applications introduced above. In particular, I
address how ‘controlling’ afferent inputs can adjust the sensitivity of spiking neurons
to other stereotyped external (e.g. sensory) inputs, hence allocating different levels of
commitment or importance to those stimuli. This is done in Chapter 2 by assessing
how the sensitivity of phase models of neural oscillators to transient external inputs
scales with their baseline firing rates (which may be determined by the value of the
controlling afferents). This requires extensions and additions to the existing liter-
ature on phase reductions for the generic codimension-one bifurcations to periodic
firing. In Chapter 3, I develop a probabilistic model which explains how the sensi-
tivity of individual phase-reduced neurons scales up to determine the sensitivity of a
population of such neurons, and also determine temporal patterns in this population
response that are signatures of the different bifurcations. Chapter 4 then focusses on
synchrony induced by coupling among members of a neural population rather than
external inputs, thereby completing the general description of the dynamics of neural
oscillators that is applied to LC neurons, as already mentioned, in Chapter 5.

Part II of this dissertation addresses the impacts that norepinephrine-mediated
gain changes (driven by the LC dynamics studied in in Part I) have on the neural
integrators whose firing rates are assumed to determine cortical decision processes.
Chapter 6 begins by projecting the stochastic network dynamics corresponding to
a simple two-alternative choice task onto suitable one-dimensional slow manifolds,
and using this reduced representation to solve for the (qualitatively different) gain
schedules that optimize decision processing for three commonly used neural integrator
models. Next, in Chapter 7, the capacity of the LC to adaptively implement gain
schedules that are sufficiently close to these optima in order to improve decision
performance is tested numerically by (approximately) solving a series of optimization
problems constrained by the neurobiology of the LC. The metric of performance used
here is the rate of correct responses (or ‘reward rate’ [72]) achieved by the simulated
decision network. Significant improvements in reward rate are found to accompany
LC-mediated gain changes, supporting the hypothesis that the LC plays a role in
optimizing the dynamics of neural decisions. I conclude with a brief summary and
note some open problems and future directions in Chapter 8. Each chapter is prefaced
by a brief summary of its contents and major results.
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PART I: Neural Oscillators
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Chapter 2

Phase reduction of limit cycle
oscillators

2.1 Chapter outline

In this chapter, we compute simplifying reductions to phase variables valid near bifur-
cations to periodic firing for Hindmarsh-Rose, Hodgkin-Huxley, FitzHugh-Nagumo,
and Morris-Lecar single compartment models of neurons, encompassing the four
generic (codimension one) bifurcations. Section 2.2 discusses phase reduction tech-
niques for ordinary differential equations with attracting limit cycles. In the following
Section 2.3, we recall and compute phase response curves (PRCs) for familiar neuron
models near the four codimension-one bifurcations to periodic firing, using normal
forms and numerical calculations [51]. Thus, we review part of the broad literature
on the topic as well as providing new results: PRCs valid near degenerate Hopf and
homoclinic bifurcations, and the scaling of PRCs with the frequency of the neurons
from which they are derived. These results will enable much of the analysis in the
chapters to follow. Most of the results given here appear in the first part of [23].

2.2 Phase equations for nonlinear oscillators with

attracting limit cycles – general considerations

2.2.1 Reduction to phase coordinates

Phase reduction methods have a rich history, including numerous applications in
neuroscience. The fundamental coordinate change to phase variables described below
originated at least by 1949 [118], with the complementary asymptotic phase ideas
expanded in, e.g., [35, 182, 81, 183] and applied in, e.g., [52, 53, 54, 84, 171, 85, 50,
94, 111, 103, 16, 97, 51, 22, 115]; see also the related “spike response method” [69, 68]
and references therein.

Our starting point is a general, conductance-based single compartment model of
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a neuron:

CV̇ =
[
Ig(V,n) + Ib + I(V, t)

]
, (2.1)

ṅ = N(V,n) ; (V,n)T ∈ Rd . (2.2)

Here V is the voltage difference across the membrane, the (d− 1)-dimensional vector
n comprises gating variables and Ig(V,n) the associated membrane currents, and C
is the cell membrane conductance. The baseline inward current I b effectively sets
oscillator frequency, and will correspond below to a bifurcation parameter. I(V, t)
represents synaptic currents from other brain areas due to stimulus presentation;
below, we neglect reversal potentials so that I(V, t) = I(t). We write this equation
in the general form

ẋ = F (x) +G(x, t) ; x = (V,n)T ∈ Rd , (2.3)

where F (x) is the ‘baseline’ vector field, G(x, t) is the stimulus effect, and T denotes
transpose. In our simplification, G(x, t) = (I(t),0)T ; in a more general setting,
perturbations in the gating equations (2.2) could also be included.

We assume that the baseline (G ≡ 0) neural oscillator has a normally hyper-
bolic [82], attracting limit cycle γ. This limit cycle persists under small perturbations
[59], and hereafter we assume that such a limit cycle always exists for each neuron.

The objective is to simplify Eqn. (2.3) by defining a scalar phase variable θ(x) ∈
[0, 2π) for all x in some neighborhood U of γ (within its domain of attraction), such

that the phase evolution has the simple form dθ(x)
dt

= ω for all x ∈ U when G ≡ 0.
Here ω = 2π/T , where T is the period of (2.3) with G ≡ 0. From the chain rule, this
requires

dθ(x)

dt
=

∂θ

∂x
(x) · dx

dt
(x)

∣∣∣∣
G≡0

=
∂θ

∂x
(x) · F (x) = ω . (2.4)

Eqn. (2.4) defines a first order PDE that the scalar field θ(·) must satisfy. Here, we
describe the ‘asymptotic phase’ method of constructing θ(·) indirectly, i.e., without
solving the PDE itself. We construct this solution in two stages: first, we define θ(x)
for x ∈ γ ⊂ U , and then we extend to general x ∈ U .

Let xs be the point on the limit cycle γ with the maximum value of V (i.e.,
the tip of the voltage spike), and let θ(xs) = 0. To define θ for the rest of γ, we
let θ(xγ0(t)) = ωt, where xγ0(t) ∈ γ is the trajectory of the baseline system with
xγ0(0) = xs. This gives a simple parameterization of γ by θ. To extend θ(·) to general
x ∈ U , we define the isochron [183] corresponding to a point xγ(0) ∈ γ to be the
set of all initial conditions x(0) ∈ U such that the distance between xγ(t) and x(t)
approaches zero under the vector field F as t → ∞. Such points xγ(0) and x(0) are
said to have the same asymptotic phase θ(xγ(0)). See Fig. 2.1. Thus, isochrons are
level sets of the asymptotic phase. We note that [81], cf. [88, 82], shows that there is
a neighborhood of γ foliated by the (unique) family of isochrons, and we restrict our
U to lie within this neighborhood.

In fact, isochrons give an invariant foliation of U , i.e., the flow map takes isochrons
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1

nbhd. U

γ

xγγγγ(0)

xγγγγ(t)

x(0)

x(t)

Figure 2.1: The limit cycle γ, annular neighborhood U (between dot-dashed lines),
and isochrons (dotted lines) for a planar system. The two trajectories xγ(t) and x(t)
discussed in Sect. 2.2.1, here with initial asymptotic phase θ(xγ(0)) = θ(x(0)) =
2π/10, are shown.

to isochrons. Imagine, for example, two trajectories (as in Fig. 2.1) starting at time
t = 0 at the points xγ(0) ∈ γ and x(0) ∈ U on the isochron with the asymptotic
phase θ(xγ(0)) = θ(x(0)). For all t, the points xγ(t) and x(t) must also share an
isochron (because the distance between these points also approaches zero under the
dynamics as t→∞), and hence they also have the same asymptotic phase, i.e.,

θ (xγ(t)) ≡ θ (x(t)) . (2.5)

Differentiating (2.5) with respect to time, and recalling that by definition dθ(xγ(t))
dt

= ω,

we conclude that dθ(x(t))
dt

= ω for arbitrary x(t) in the neighborhood U of γ, as desired.
Finally, we demonstrate that, as in [81], the isochrons must be the level sets of any

scalar field θ(·) in U that solves (2.4). To see this, let Lθ be the level set of such a field
with (arbitrary) phase θ, and denote by xγ(θ) the intersection of γ and Lθ. Lθ must be
mapped into itself after flowing for time T under F , since by assumption dφ

dt
= ω = 2π

T

(i.e., it is an invariant foliation). Repeating this time-T mapping, we see that all
points on Lθ eventually tend to the same point xγ(θ) ∈ γ (since Lθ is in the domain
of attraction of γ). Thus, all points on Lθ have the same asymptotic phase θ, and Lθ

can be none other than an isochron. The solution to (2.4) is therefore determined by
the family of isochrons, and is hence (up to an additive constant determined by the
choice of origin where θ = 0) unique as claimed.

8



2.2.2 Incorporating inputs G(x, t)

We now re-introduce the stimulus term G(x, t) and determine its effects on the dy-
namics of θ. Using the chain rule, as in (2.4) but with G 6= 0, we have

dθ(x)

dt
= ω +

∂θ

∂x
(x) ·G(x, t) . (2.6)

The vector field on right-hand side of (2.6) depends on x ∈ U , so this equation is not
a phase-only (i.e., self-contained) description of the oscillator dynamics. However,
evaluating the vector field at xγ(θ) (as above, the intersection of γ and the θ(x)
isochron), we have

dθ(x)

dt
= ω +

∂θ

∂x
(xγ(θ)) ·G(xγ(θ, t)) + E , (2.7)

where E is an error term to be discussed below. Dropping this error term, we may
rewrite (2.7) as the one-dimensional phase equation

dθ

dt
= ω +

∂θ

∂x
(θ)·G(θ, t) , (2.8)

which is valid (up to the error term) in the whole neighborhood U of γ.
Next, we show that the error E in Eqn. (2.7) is of order

E = O
(
|G|2/λ

)
,

where |G|measures the magnitude of inputs and λmeasures the strength of attraction
to the limit cycle γ in a manner to be made precise below. Thus, the phase reduction
(2.8) is accurate for sufficiently weak stimuli or sufficiently attracting limit cycles (cf.
[183]).

Define λ > 0 such that −λ is an upper bound on exponents characterizing the flow
normal to γ of the vectorfield F , linearized around any point on γ; thus, λ bounds
the (linear) strength of attraction to the limit cycle. In other words, λ is defined
such that v ·DF (xγ)v < −λ‖v‖2 for any v normal to γ at xγ. (Here and below, ‖ · ‖
measures the (Euclidean) distance in Rd.) Also, let the scalar |G| be an upper bound
on G(x, t) over all components as well as over x and t.

We now show that

‖x(t)− xγ‖ ≤ k1 · |G|/λ+O(1/λ)2 , (2.9)

where xγ is the intersection of γ and the θ(x) isochron and k1 is a positive constant
depending on the geometry of the isochrons.

For any x in the neighborhood of γ, let xb be the point on γ closest to x and
define x⊥ = x− xb; see Fig. 2.2. Then we rewrite Eqn. (2.3) as

dxb
dt

+
dx⊥
dt

= F‖(xb + x⊥) + F⊥(xb + x⊥) +G‖(xb + x⊥) +G⊥(xb + x⊥) , (2.10)
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where the vectorfield has been (locally) split into components parallel ( dxb
dt
, F‖, G‖)

and orthogonal (dx⊥
dt
, F⊥, G⊥) to γ at xb. We study the dynamics of the orthogonal

component:
dx⊥
dt

= F⊥(xb + x⊥) +G⊥(xb + x⊥) . (2.11)

Anticipating small displacements from γ, we linearize the first term around xb:

dx⊥
dt

= DF⊥(xb)x⊥ +G⊥(xb + x⊥) +O(‖x⊥‖2) ; (2.12)

We define the matrix A(xb) = − 1
λ
DF (xγ), which, recalling our definition of λ, ex-

pands any vector normal to γ at xb by a factor greater than 1. Introducing the small
parameter ε = 1/λ and the fast time τ = t/ε we have

dx⊥
dτ

= −A(xb)x⊥ + εG⊥(xb + x⊥) + εO(‖x⊥‖2) . (2.13)

Next we expand in powers of ε:

x⊥ = x⊥,0 + εx⊥,1 + εO(‖x⊥‖2) , (2.14)

and substitute (2.14) into (2.13) to obtain at order ε0:

dx⊥,0
dτ

= −A(xb)x⊥,0 . (2.15)

Due to the fact that A expands the x⊥,0 by a factor greater than 1 (by definition),
‖x⊥,0‖ < ke−τ = ke−t/ε for some positive k. Thus, ‖x⊥,0‖ = 0 to all powers in ε.
Using this result, at order ε1 we have

dx⊥,1
dτ

= −A(xb)x⊥,1 +G⊥(xb) . (2.16)

Using the same property of A, we have

‖x⊥,1(τ)‖ = O(|G|). (2.17)

From here, we plug our order ε0 and ε1 results into (2.14). After recalling that ε = 1/λ
and scaling ‖x⊥‖ by k1 to account for the fact that xb and xγ may not coincide, we
have the desired result (2.9).

Next, we Taylor expand the second term on the right-hand side of (2.6) around
xγ:

dθ(x)

dt
= ω +

[
∂θ

∂x
(xγ) +D

∂θ

∂x
(xγ)(x− xγ) +O

(
(x− xγ)2

)]
· (2.18)

[
G(xγ, t) +DG(xγ, t)(x− xγ) +O

(
(x− xγ)2

)]
. (2.19)

10



xb(t)

x(t)

x � (t)

γ

Figure 2.2: Variables used in deriving the bound (2.9).

Comparing with (2.7), we have

E =
∂θ

∂x
(xγ)·DG(xγ, t)(x−xγ)+D∂θ

∂x
(xγ)(x−xγ)·G(xγ, t)+O

(
(x− xγ)2

)
. (2.20)

Thus, (2.9) yields E = O(|G|2/λ) as desired.

2.2.3 Computing the phase response curve

In the case of Eqns. (2.1-2.2), the only partial derivative we must compute to fully de-
fine (2.8) is with respect to voltage, and we define the phase response curve (PRC) [183]
as ∂θ

∂V
(θ) ≡ z(θ). Then, Eqn. (2.8) becomes

dθ

dt
= ω + z(θ)I(t) ≡ v(θ, t) , (2.21)

the population dynamics of which is the subject of Chapter 3 and is applied to the
locus coeruleus in Chapter 5. Note that Eqn. (2.21) neglects reversal potential effects
for the various synapses that contribute to the net I(t): if these were included, I(t)
would be replaced by I(θ, t). Furthermore, if G had nonzero components in more
than just the voltage direction, we would need to compute a vector-valued PRC; each
component of this could be computed in a similar manner to that below.

Direct method

We now describe a straightforward way to compute z(θ) that is useful in experimental,
numerical, and analytical studies. By definition

z(θ) = lim
∆V→0

∆θ

∆V
, (2.22)

where ∆θ =
[
θ(xγ + (∆V,0)T )− θ(xγ)

]
is the change in θ(x) resulting from a per-

turbation V → V + ∆V from the base point xγ on γ; see Fig. 2.3. Since θ̇ = ω
everywhere in the neighborhood of γ, the difference ∆θ is preserved under the base-
line (G = 0) phase flow; thus, it may be measured in the limit as t → ∞, when
the perturbed trajectory has collapsed back to the limit cycle γ. That is, z(θ) can
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3

level sets of θ (x)

limit cycle γ

∗ ∆V
∆θ

Figure 2.3: The direct method for computing ∂θ
∂V

at the point indicated by * is to
take the limit of ∆θ/∆V for vanishingly small perturbations ∆V . One can calculate
∆θ in the limit t→∞, as discussed in the text.

be found by comparing the phases of solutions in the infinite-time limit starting on
and infinitesimally shifted from base points on γ [183, 71]. This method will be used
in Section 2.3 to compute PRCs for the normal forms commonly arising in neural
models.

The adjoint method

Another technique for finding ∂θ
∂V

(θ) involves solving the adjoint problem associated
with Eqns. (2.1-2.2) [94, 54]; this procedure is automated in the program XPP [51]
and is equivalent to the direct method discussed above. We note that this equivalence,
described below, is implicit in the calculation of coupling functions presented in [94]
and [51].

Consider an infinitesimal perturbation ∆x to the trajectory xγ(t) ∈ γ at time
t = 0. Let x(t) be the trajectory evolving from this perturbed initial condition.
Defining ∆x(t) via x(t) = xγ(t) + ∆x(t),

d∆x(t)

dt
= DF (xγ(t))∆x(t) +O(‖∆x‖2) , ∆x(0) = ∆x . (2.23)

For the phase shift defined as ∆θ = θ(x(t))− θ(xγ(t)), we have

∆θ = 〈∇xγ(t)θ,∆x(t)〉+O(‖∆x‖2) , (2.24)

where 〈·, ·〉 defines the standard inner product (written as a dot product above),
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and ∇xγ(t)θ is the gradient of θ evaluated at xγ(t). We recall from above that ∆θ
is independent of time (after the perturbation at t = 0) so that taking the time
derivative of (2.24) yields, to lowest order in ‖∆x‖,

〈
d∇xγ(t)θ

dt
,∆x(t)

〉
= −

〈
∇xγ(t)θ,

d∆x(t)

dt

〉

= −〈∇xγ(t)θ,DF (x
γ(t))∆x(t)〉

= −〈DF T (xγ(t))∇xγ(t)θ,∆x(t)〉 . (2.25)

Here the matrix DF T (xγ(t)) is the transpose (i.e., adjoint) of the (real) matrix
DF (xγ(t)). Since the above equalities hold for arbitrary perturbations ∆x(t), we
have

d∇xγ(t)θ

dt
= −DF T (xγ(t))∇xγ(t)θ . (2.26)

Finally, recall that from (2.4) that

dθ

dt
= ∇xθ ·

dx

dt
= ∇xθ · F (x) = ω , (2.27)

which in particular must hold at t = 0. Thus, as in [94, 51, 54], we must solve (2.26)
subject to the condition

∇xγ(0)θ · F (xγ(0)) = ω . (2.28)

Since∇xγ(t)θ evolves in Rd, (2.28) supplies only one of d required initial conditions; the
rest arise from requiring that the solution ∇xγ(t)θ to (2.26) be T -periodic [94, 51, 54].

Note that equations (2.26) and (2.28) correspond to equations (9.16) and (9.17)
of [94], with the identification of ∇xθ → Q and a slightly different parametrization.
Indeed, this is the adjoint problem that XPP solves to numerically find the PRC
QXPP. The relationship is

∇xθ = ωQXPP . (2.29)

The strong attraction method

Since only partial derivatives ∂θ
∂x

evaluated on γ enter Eqn. (2.21), and not the value of
the phase function θ itself, it is tempting to compute these partial derivatives directly
from Eqn. (2.4). However, when viewed as an algebraic equation for the vector field
∂θ
∂x
, (2.4) yields infinitely many solutions, being only one equation for the d unknown

functions ∂θ
∂xj
, j = 1, ..., d . Some of these solutions are much easier to construct than

the phase response curve computed via the direct or the adjoint method. However, for
such a solution, which we write as ∂θ2

∂x
(6= ∂θ

∂x
) to distinguish it from partial derivatives

of the asymptotic phase θ, there is not necessarily a corresponding phase variable θ2
such that dθ2(x)

dt
= ω, x ∈ U (in the absence of stimulus): recall the uniqueness of the

solution θ(x) to Eqn. (2.4).
For example, the ‘strong attraction limit’ of a coordinate change to the phase
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variable θ2 discussed in, e.g., [53, 94] effectively sets

∂θ2
∂x

(x) =
F (x)

‖F (x)‖2ω , (2.30)

which clearly satisfies (2.4) but implicitly imposes d − 1 additional constraints: in
particular, level sets of θ2 are always orthogonal to γ, which is not generally the
case for isochrons. Furthermore, Eqn. (2.30) requires that F (x)

‖F (x)‖2ω is the gradient
of the scalar function θ2, which is only possible if it is curl-free in a neighborhood
of γ. Since it is proportional to the unit-normalized vector field which exhibits the
attracting limit cycle, F (x)

‖F (x)‖2ω will never meet this requirement, so the phase variable

θ2 cannot be extended to a neighborhood of γ. More practically, ∂θ
∂x
(xγ) and ∂θ2

∂x
(xγ)

can also give qualitatively different phase dynamics, with θ dynamics representing
more accurately the original ‘full’ equations: see Chapter 4 for an example involving
the stability of phase-locked states in coupled Hodgkin-Huxley systems.

2.2.4 Validity of the phase reduction

We shall always assume that the phase flow θ̇ is nonnegative at the spike point θs ≡ 0;
otherwise (2.21) does not make sense as a neuron model (neurons cannot cross ‘back-
wards’ through the spike and regain a state from which they can immediately fire
again). For oscillators giving PRCs z(θ) with z(θs) 6= 0, this assumption restricts ad-
missible perturbing functions I(t) (or, in the more general case of Eqn. (2.8), G(x, t))
to those satisfying

I(t)z(θs) > −ω . (2.31)

Thus, for z(θs) > 0, excitatory input (I(t) > 0) is always admissible, but there is a
lower bound on the strength of inhibitory input for which phase reductions hold. In
particular, if I(t) contains a noise component, it must be bounded below; this requires
‘trimming’ the white (diffusive) or Ornstein-Uhlenbeck noise processes commonly used
to model variability in synaptic inputs. These problems do not arise for continuous
PRCs having z(θs) = 0.

We note that z(θs) = 0 approximately holds for the Hodgkin-Huxley (HH) and
Hindmarsh-Rose (HR) neurons to be considered below, and indeed holds for any
neuron model with a ‘fast’ vector field surrounding the spike tip xs on the limit
cycle. In this case, asymptotic phase changes very little in a small neighborhood
near xs, since θ = ωt and only a short time is spent in the neighborhood. A small
perturbation in the V direction therefore takes trajectories to isochrons with similar
values of θ, and so has little effect on asymptotic phase. For the integrate and fire
systems investigated below, spikes are not explicitly modeled. While this may be
viewed as an artificial omission leading to z(θs) 6= 0, the population dynamics of such
systems are of interest because they are in rather common use.
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2.3 Phase equations for nonlinear oscillators with

attracting limit cycles – application to neural

models

In this section we derive or recall analytical approximations to PRCs for multi-
dimensional systems with limit cycles that arise in the four (local and global) codi-
mension one bifurcations [82]: these are appropriate to conductance-based models of
the form (2.1-2.2). We then give PRCs for one-dimensional (linear) ‘integrate-and-
fire’ models. Of these PRC calculations, results for the homoclinic and degenerate
Hopf bifurcation are new, while the results for other models, previously derived as ref-
erenced in the text, are summarized and recast to display their frequency dependence
and for application to population models in what follows.

2.3.1 Phase response curves near codimension one bifurca-
tions to periodic firing

Bifurcation theory [82] identifies four codimension one bifurcations which can give
birth to a stable limit cycle for generic families of vector fields: a SNIPER bifurcation
(saddle-node bifurcation of fixed points on a periodic orbit), a supercritical Hopf
bifurcation, a saddle-node bifurcation of limit cycles, and a homoclinic bifurcation:
see Fig. 2.4. All four bifurcation types have been identified in specific neuron models
as a parameter, here the baseline inward current I b, varies: for example, SNIPER
bifurcations are found for ‘Type I’ neurons [50] like the Connor model and its two-
dimensional Hindmarsh-Rose (HR) reduction [146], supercritical Hopf bifurcations
may occur for the abstracted FitzHugh-Nagumo (FN) model [102], a saddle-node
bifurcation of limit cycles is found for the Hodgkin-Huxley (HH) model [89, 143], and
a homoclinic bifurcation can occur for the Morris-Lecar (ML) model [142].

In this section, we calculate or summarize PRCs for limit cycles arising from all
four bifurcations. This is accomplished, where possible, through use of one- and
two-dimensional normal form equations. Normal forms are obtained through cen-
ter manifold reduction of Eqns. (2.1-2.2) at the bifurcation, followed by a similarity
transformation to put the linear part of the equation into Jordan normal form, and
finally by successive ‘near identity’ nonlinear coordinate transformations to remove
as many terms as possible, a process which preserves the qualitative dynamics of
the system [82]. To obtain the PRC in terms of the original variables, i.e., ∂θ

∂V
,

rather than in terms of the normal form variables (which we henceforth denote (x, y))
with associated PRCs ∂θ

∂x
and ∂θ

∂y
, it is necessary to ‘undo’ these coordinate trans-

formations. However, since the normal form coordinate transformations only affect
nonlinear terms, we obtain the simple relationship

∂θ

∂V
= νx

∂θ

∂x
+ νy

∂θ

∂y
+O(x, y), (2.32)
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where

νx =
∂x

∂V

∣∣∣∣
x=y=0

, νy =
∂y

∂V

∣∣∣∣
x=y=0

.

The remainder term in (2.32) is assumed to be small near the bifurcations of relevance
and is neglected below. This introduces vanishing error in the Hopf case, in which the
bifurcating periodic orbits have arbitrarily small radii; the same is true near SNIPER
and homoclinic bifurcations, where periodic orbits spend arbitrarily large fractions
of their period near the origin. When using the Bautin normal form, however, we
must tacitly assume that the nonzero ‘onset’ radius of stable bifurcating orbits is
small; failure of this assumption for the Hodgkin-Huxley model may contribute to
the discrepancy between PRCs derived via analytical and numerical methods; see
Sect. 2.3.3.

Before proceeding, a few notes regarding the normal form equations that we will
consider are in order. For the SNIPER bifurcation, we consider the normal form for
a saddle-node bifurcation of fixed points, which must be properly embedded globally
in order to capture the presence of the periodic orbit (the unstable branch of the
center manifold must close up and limit on the saddle node, cf. Fig. 2.4(a)). For the
saddle-node bifurcation of periodic orbits, we appeal to the sequence of bifurcations
for ‘Type II’ neurons such as the Hodgkin-Huxley (HH) model [89], namely a subcrit-
ical Hopf bifurcation in which an unstable periodic orbit branch bifurcates from the
rest state, turns around, and gains stability in a saddle-node bifurcation of periodic
orbits [143]. This sequence is captured by the normal form of the Bautin (degenerate
Hopf) bifurcation [112], cf. [82, §7.1]. Finally, for the homoclinic bifurcation we con-
sider only the linearized flow near the fixed point involved in the bifurcation; this is
not strictly a normal form, and as for the SNIPER bifurcation, a proper global return
interpretation is necessary to produce the periodic orbit.

Near the SNIPER, Hopf, and Bautin local bifurcations, there is a separation of
timescales between dynamics along versus dynamics normal to the one-or-two dimen-
sional attracting center manifold containing (or, in the SNIPER case, consisting of)
the periodic orbit. In particular, sufficiently close to the bifurcation point, the time
required for perturbed solutions to collapse back onto the manifold is negligible com-
pared with the period of the orbit. This implies that, as the bifurcation is approached,
(the tangent space of) any d − 1 dimensional isochron (computed at its intersection
with the periodic orbit) becomes normal to the (corresponding tangent space of the)
center manifold. Thus, sufficiently near these three bifurcations the only relevant con-
tributions that perturbations make to asymptotic trajectories is via their components
along the center manifold, as captured by the above terms νx and (additionally for
the Hopf and Bautin bifurcations) νy. Hence Eqn. (2.32) captures the phase response
curve for the full d-dimensional system. For the homoclinic global bifurcation, the
same conclusion holds, although for a different reason: in this case, there is no low
dimensional center (i.e. locally slow) manifold. However, because the dynamics which
asymptotically determine the PRC are linear for the homoclinic bifurcation (unlike
the SNIPER, Hopf, and Bautin cases), a PRC valid for full d-dimensional systems
can still be computed analytically, as described below.
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We use the direct method of Section 2.2.3 to compute PRCs from the normal
form equations. This involves linearizing about the stable periodic orbit, which is
appropriate because the perturbations ∆V to be considered are vanishingly small.
The explicit solution of the normal form equations yields ∆θ, and taking limits, we
obtain the PRC, cf. (2.22). Without loss of generality, the voltage peak (spike) phase
is set at θs = 0 and coordinates are defined so that phase increases at a constant
rate ω in the absence of external inputs, as in Section 2.2.1. Analogues of some of
the following results have been previously derived by alternative methods, as noted
in the text, and we also note that PRCs for relaxation oscillators have been discussed
in [97]. However, unlike the previous work, here we explicitly compute how the PRCs
scale with oscillator frequency.

Saddle-node in a periodic orbit (SNIPER)

A SNIPER bifurcation occurs when a saddle-node bifurcation of fixed points takes
place on a periodic orbit: see Fig. 2.4(a). Following the method of [50], we ignore the
direction(s) transverse to the periodic orbit, and consider the one-dimensional normal
form for a saddle-node bifurcation of fixed points:

ẋ = η + x2 , (2.33)

where x may be thought of as local arclength along the periodic orbit. For η > 0, the
solution of (2.33) traverses any interval in finite time; as in [50], the period T of the
orbit may be approximated by calculating the total time necessary for the solution to
(2.33) to go from x = −∞ to x = +∞ and making the solution periodic by resetting
x to −∞ every time it ‘fires’ at x =∞. This gives T = π√

η
, hence ω = 2

√
η.

Since (2.33) is one-dimensional, [50] immediately computes

∂θ

∂x
= ω

∂t

∂x
=

ω
dx
dt

, (2.34)

where dx
dt

is evaluated on the solution trajectory to (2.33). This gives

∂θ

∂x
=

2

ω
[1− cos θ] (2.35)

as first derived in [50], but with explicit ω-dependence displayed here.
Considering a voltage perturbation ∆V , we have

∂θ

∂V
= zSN =

csn
ω

[1− cos θ] , (2.36)

where csn = 2νx is a model-dependent constant (see (2.32) above). Note that ∂θ
∂V

is nonnegative or nonpositive according to the sign of csn. Since in ‘Type I’ neuron
models [50] a positive voltage perturbation advances phase (and hence causes the
neuron to fire sooner), in the following we will generally assume csn to be positive.
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Figure 2.4: (a) SNIPER bifurcation: two fixed points die in a saddle-node bifurcation
at η = 0, giving a periodic orbit for η > 0, assumed to be stable. (b) Supercritical
Hopf bifurcation: a fixed point loses stability as α increases through zero, giving a
stable periodic orbit (closed curve). (c) Bautin bifurcation: see text for details. At
α = c2

4f
there is a saddle-node bifurcation of periodic orbits. Both a stable (solid

closed curve) and unstable (dashed closed curve) periodic orbit exist for c2

4f
< α < 0;

the unstable periodic orbit dies in a subcritical Hopf bifurcation at α = 0. The fixed
point is stable (resp., unstable) for α < 0 (resp., α > 0). (d) Homoclinic bifurcation:
a homoclinic orbit exists at µ = 0, giving rise to a stable periodic orbit for µ > 0.
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Generalized and supercritical Hopf bifurcations

The normal form for the (generalized) Hopf bifurcation [82, 112] is:

ż = (α+ iβ)z + (c+ id)|z|2z + (f + ig)|z|4z ; (2.37)

in polar coordinates, this is

ṙ = αr + cr3 + fr5 , (2.38)

φ̇ = β + dr2 + gr4 . (2.39)

We study two cases, always treating α as the bifurcation parameter. In the first case,
we assume c < 0, yielding a supercritical Hopf bifurcation: for α < 0 there is a stable
fixed point at the origin that loses stability as α increases through zero, giving birth
to a stable periodic orbit with radius rpo,H =

√
−α/c: see Fig. 2.4(b). Crucially,

rpo,H = 0 when α = 0, so that only terms of cubic order in (2.38-2.39) are required to
capture (unfold) the supercritical Hopf dynamics. Hence we may set g = f = 0 for a
local analysis.

In the second case, we assume c > 0, so that Eqns. (2.38-2.39) have a subcritical
Hopf bifurcation at α = 0 and there is no stable periodic orbit for any value of α when
g = f = 0: hence we must reintroduce these terms to capture the relevant dynamics.
Assuming additionally that f < 0, for α < 0 there is a stable fixed point at the
origin that loses stability in a subcritical Hopf bifurcation at α = 0, giving rise to an
unstable periodic orbit as α decreases through zero. The branch of unstable periodic
orbits turns around at a saddle-node bifurcation of periodic orbits at α = c2

4f
; for

α > c2

4f
stable periodic solutions exist with radius rpo,B =

[
1
2f

(
−c−

√
c2 − 4αf

)]1/2
:

see Fig. 2.4(c). This is the generalized Hopf or Bautin bifurcation (identified by the
subscript B).

In either case, the angular speed is constant on the stable periodic orbit; hence,
we set the asymptotic phase θ equal to the polar angle φ on the periodic orbit itself.
(However, (radial) level sets of φ extending off of the periodic orbit are not isochrons,
since φ̇ varies with r.)

We calculate the PRC by linearizing about the attracting periodic orbit rpo.
Letting r = rpo + r′, we obtain ṙ′ = λr′ + O(r′2), where λ is the transverse Flo-
quet exponent (eigenvalue) for the stable periodic orbit. In the supercritical Hopf
bifurcation, λ = λH = −2α < 0 and rpo = rpo,H ; in the Bautin, λ = λB =
1
f

(
c2 − 4αf + c

√
c2 − 4αf

)
< 0 and rpo = rpo,B. Here and below we drop terms

of O(r′2) because we are concerned with arbitrarily small perturbations, cf. (2.22).
Solving the linearized radial equation with initial condition r(0) = r0, we obtain

r(t) = rpo + (r0 − rpo)eλjt , (2.40)
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with j = H or B. Next, integrating (2.39) yields

φ(t) =

∫ t

0

dφ =

∫ t

0

[β + d(r(s))2 + g(r(s))4]ds , (2.41)

and taking φ(0) = φ0, substituting (2.40) in (2.41), letting t → ∞, and dropping
terms of O(r′2), we obtain the phase θ associated with the initial condition (r0, φ0):

θ(t) = φ0 +
(
β + dr2po + gr4po

)
t− 2rpo(d+ 2gr2po)(r0 − rpo)

λB
. (2.42)

Here we have again used the fact that the polar angle φ and the phase θ are identical
on the periodic orbit.

Suppose that we start with an initial condition (xi, yi) on the periodic orbit, with
polar coordinates (rpo, φi). As t → ∞, the trajectory with this initial condition has
asymptotic phase φi + (β + dr2po + gr4po)t. Now consider a perturbation ∆x in the
x-direction to (xf , yf ) = (rpo cosφi + ∆x, rpo sinφi). To lowest order in ∆x, this
corresponds, in polar coordinates, to

(rf , φf ) =

(
rpo + cosφi∆x, φi −

sinφi
rpo

∆x

)
.

Setting (r0, φ0) = (rf , φf ) in (2.42) and subtracting the analogous expression with
(r0, φ0) = (rpo,j, φi), j = H or B, we compute the change in asymptotic phase due to
this perturbation:

∂θ

∂x
= −2drpo,j + 4gr3po,j

λj
cos θ − 1

rpo,j
sin θ , (2.43)

where we have substituted θ for the polar angle φi, again using the fact that the two
variables take identical values on the periodic orbit. Similarly, we find

∂θ

∂y
= −2drpo,j + 4gr3po,j

λj
sin θ +

1

rpo,j
cos θ . (2.44)

We now express rpo,j and λj in terms of the frequencies of the periodic orbits. In
the supercritical Hopf case (recall that we set g = f = 0 here), at the bifurcation

point the phase frequency ω is φ̇
4
= ωH = β, and from (2.39) we have ω−ωH = dr2po,H ,

yielding

rpo,H =

√
|ω − ωH |√
|d|

. (2.45)

Substituting for rpo,H , we have ω − ωH = −αd/c, which together with the expression
for λH gives

λH =
2c

d
(ω − ωH) . (2.46)
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In the Bautin case, we find that

ω − ωSN =

[
− d

2f
+

gc

2f 2

]√
c2 − 4αf +

g

4f 2
(
c2 − 4αf

)
, (2.47)

where ωSN is the frequency of the periodic orbit at the saddle-node bifurcation (α =
c2

4f
). Thus, from (2.47),

√
c2 − 4αf = k|ω − ωSN |+O

(
|ω − ωSN |2

)
, (2.48)

where k =
∣∣∣ 2f2

fd−gc

∣∣∣, and we may use the expressions for rpo,B and λB to compute:

rpo,B =

√−c
2f

+O (|ω − ωSN |) , (2.49)

λB =
ck

f
|ω − ωSN |+O

(
|ω − ωSN |2

)
. (2.50)

Next, we substitute these Eqns. (2.45-2.46) and (2.49-2.50) for rpo and λ into
(2.43-2.44). For the supercritical Hopf case, this gives

∂θ

∂x
=

1√
|ω − ωSN |

√
|d|
|c| [d cos(θ) + c sin(θ)] , (2.51)

∂θ

∂y
=

1√
|ω − ωSN |

√
|d|
|c| [d sin(θ)− c cos(θ)] , (2.52)

In the Bautin case, we get

∂θ

∂x
=

1

|ω − ωSN |

[
−2d

√−c
2f
− 4g

(−c
2f

)3/2
]
f

ck
cos θ +O(1) , (2.53)

∂θ

∂y
=

1

|ω − ωSN |

[
−2d

√−c
2f
− 4g

(−c
2f

)3/2
]
f

ck
sin θ +O(1) , (2.54)

where we have explicitly written terms of O(|ω − ωSN |)−1 which dominate near the
saddle-node of periodic orbits. Note that the only term involving the bifurcation
parameter α is the prefactor, so that, as this parameter is varied, all other terms in
(2.53-2.54) remain constant.

Equipped with (2.51-2.52), the PRC for a perturbation in the V -direction near a
supercritical Hopf bifurcation is found from (2.32) to be

zH(θ) =
∂θ

∂V
=

cH√
|ω − ωH |

sin(θ − φH) , (2.55)

where the constant cH =

√
|d|
|c|
√

(νxc+ νyd)2 + (νxd− νyc)2 and the phase shift φH =
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tan−1
(
νyc−νxd
νxc+νyd

)
. The form of this PRC was originally presented as Eqn. (2.11) of

[52]. See that paper, as well as Sect. 4 of [50] and [94], for earlier, alternative methods
and computations for the PRC near supercritical Hopf bifurcation.

For the Bautin bifurcation, we similarly arrive at

zB(θ) =
∂θ

∂V
=

cB
|ω − ωSN |

sin(θ − φB) . (2.56)

Here cB =

[
−2d

√
−c
2f
− 4g

(
−c
2f

)3/2]
f
ck

√
ν2x + ν2y is a constant (which can be positive

or negative depending on d and g), and φB = tan−1
(
νx
νy

)
is an ω-independent phase

shift.

Homoclinic bifurcation

Finally, suppose that the neuron model has a parameter µ such that a homoclinic
orbit to a hyperbolic saddle point p with real eigenvalues exists at µ = 0. Then
there will be a periodic orbit γ for, say, µ > 0, but not for µ < 0. Specifically,
we assume a single unstable eigenvalue λu smaller in magnitude than that of the all
stable eigenvalues, λu < |λs,j|, so that the bifurcating periodic orbit is stable [82]: see
Fig. 2.4(d).

If parameters are chosen close to the homoclinic bifurcation, solutions near the
periodic orbit spend most of their time near p, where the vector field is dominated
by its linearization. This may generically be written in the diagonal form:

ẋ = λux , (2.57)

ẏj = λs,j yj , j = 1, ..., d− 1 , (2.58)

where the x and yj axes are tangent to the unstable and a stable manifold of p,
respectively, and λs,j < 0 < λu are the corresponding eigenvalues. For simplicity, we
assume here that the segments of the axes shown in Fig. 2.5 are actually contained in
the respective manifolds; this can always be achieved locally by a smooth coordinate
change [82].

We define the box B = [0,∆]× · · · × [0,∆] that encloses γ for the dominant part
of its period, but within which (2.57-2.58) is still a good approximation; ∆ is model-
dependent but fixed for different periodic orbits occurring as a bifurcation parameter
varies within the model. We do not explicitly model γ outside of B, but note that the
trajectory is ‘re-injected’ after negligible time (compared with that spent in B) at a
distance ε from the stable manifold, where ε varies with the bifurcation parameter µ:
see Fig. 2.5. Thus, periodic orbits occurring closer to the bifurcation point correspond
to lower values of ε and have larger periods.

We approximate the period T (ε) as the time that the x coordinate of γ takes to
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Figure 2.5: The setup for deriving the PRC for oscillations near a homoclinic bifur-
cation, shown (for simplicity) with d = 2.

travel from ε to ∆ under Eqn. (2.57):

T (ε) =
1

λu
ln

(
∆

ε

)
. (2.59)

Notice that the x-coordinate of γ alone determines T (ε), and hence may be thought
of as independently measuring the phase of γ through its cycle. We set θ = 0 at x = ε
and, assuming instantaneous re-injection, θ = 2π at x = ∆. Then ω = 2π/T (ε), and
as in (2.34)

∂θ

∂x
=

ω
dx
dt

=
ω

λux(θ)
=

ω

λuε
exp(−λuθ/ω) . (2.60)

In the final equality we used the solution to (2.57), x(t) = ε exp(λut), with the
substitution t = θ/ω. Since, as remarked above, motion in the yj-directions does
not affect the phase of γ, only components of a perturbation ∆V along the x-axis
contribute to the phase response curve; thus, the PRC zHC = ∂θ

∂V
= νx

∂θ
∂x
, where νx

is as defined following (2.32). Using (2.59), ε = ∆exp(−2πλu/ω), which allows us to
eliminate ε from (2.60):

zHC(θ) =
∂θ

∂V
= chc ω exp

(
2πλu
ω

)
exp

(
−λu

θ

ω

)
, (2.61)

where chc =
νx
λu∆

is a model-dependent constant. This is an exponentially decaying
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function of θ with maximum

zmax = chcω exp

(
2πλu
ω

)
(2.62)

and minimum

zmin = zmax exp

(
−2πλu

ω

)
= chcω . (2.63)

Here and below we assume chc > 0. zHC is discontinuous at the spike point θs = 2π,
which forces us to take a limit in defining population-averaged firing rates below, but
does not otherwise affect the following analysis.

2.3.2 One-dimensional neuron models

Generalized integrate and fire models have the form

V̇ = F (V ) +G(V, t) , (2.64)

where V (t) is constrained to lie between a reset voltage Vr and a threshold Vth, and
the following reset dynamics are ‘externally’ imposed: if V (t) crosses Vth from below
a spike occurs and V (t) is reset to Vr. Here, nothing is lost in transforming to the
single phase equation (2.8); in particular, the error term of (2.7) vanishes. In fact,
as noted in, e.g., [48], the crucial quantity ∂θ

∂V
can be found directly from (2.64) with

G(V, t) ≡ 0:

z(θ) =
∂θ

∂V
= ω

∂t

∂V
=

ω

F (V (θ))
, (2.65)

where we recall that θ is defined such that θ̇ = ω. In the next two subsections we
compute phase response curves for two simple integrate and fire models.

Integrate and fire neuron

We first consider the simplest possible integrate and fire (IF) model:

CV̇ = (Ib + I(t)) ; Vr = 0 , Vth = 1 , (2.66)

where Ib is the baseline current, C is membrane capacitance, and G(V, t) = I(t).
Hereafter we set C = 1 for the IF model. The angular frequency of a baseline
(I(t) = 0) oscillation is ω = 2πIb, and Eqn. (2.65) gives

zIF (θ) =
ω

F (V (θ))
=
ω

Ib
≡ 2π . (2.67)

Thus, the IF PRC is constant in θ and frequency-independent.
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Leaky integrate and fire neuron

Next, we consider the leaky integrate and fire (LIF) model:

CV̇ = (Ib + gL(VL − V ) + I(t)) ; Vr = 0 , Vth = 1 < VL +
Ib
gL

, (2.68)

where Ib is the baseline current, gL > 0 and VL are the leak conductance and reversal
potential, C is the capacitance, and G(V, t) = I(t). As above, we also set C = 1
for this model. We assume Ib ≥ gL(1 − VL) so that, when I(t) = 0, the neuron fires
periodically with frequency

ω = 2πgL

[
ln

(
Ib + gLVL

Ib + gLVL − gL

)]−1
. (2.69)

This expression shows how Ib enters as a bifurcation parameter, with Ib = gL(1−VL)
corresponding to the bifurcation point at which ω = 0.

Solving (2.68) for V (t) with initial condition V (0) = Vr = 0, and then using θ = ωt
and Eqn. (2.65), gives

zLIF (θ) =
ω

gL

(
1− exp

(
−2πgL

ω

))
exp

(
gLθ

ω

)
, (2.70)

equivalent to formulas previously derived in [171, 115] and references therein. Thus,
the PRC for the LIF model is an exponentially increasing function of θ, with a
maximum that decreases with ω:

zmax(ω) =
ω

gL

(
exp

(
2πgL
ω

)
− 1

)
, (2.71)

and minimum

zmin(ω) = zmax exp

(
−2πgL

ω

)
=

ω

gL
(1− e−2πgL/ω) . (2.72)

Recall that the PRC near a homoclinic bifurcation is also an exponential function,
but with opposite slope: this is because both the essential dynamics near a homoclinic
bifurcation and the LIF dynamics are linear, while the trajectories accelerate following
spikes in the homoclinic case and decelerate in the LIF.

This is our final analytical PRC calculation; we summarize the results derived
above in Table 2.1 and Figs. 2.6-2.7.

2.3.3 Accuracy of the analytical PRCs

The range of parameters over which the PRCs of the full neuron models are well ap-
proximated by the analytical expressions derived above varies from model to model.
One overall limitation noted in [96] is that normal form calculations for the Bautin and
supercritical Hopf bifurcation ignore the relaxation nature of the dynamics of typical
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Figure 2.6: PRCs for the various neuron models, from the formulae of Sect. 2.3 and
numerically computed using XPP [51], all with θs = 0. The relevant bifurcations
are noted where applicable. Dot-dashed, dashed and dotted curves for each model
correspond to increasing frequencies, respectively: HR: ω = 0.0102, 0.0201, 0.0316
rad/msec (corresp. 1.62, 3.20, 5.03 Hz.) FN: ω = 0.204, 0.212, 0.214 (corresp. 32.5,
33.7, 34.1 Hz.), HH: ω = 0.339, 0.355, 0.525 rad/msec (corresp. 54.2, 56.5, 83.6 Hz.),
ML: ω = 0.0572, 0.0664, 0.0802 rad/msec (corresp. 9.10, 10.6, 12.8 Hz.), IF: (any
frequency), LIF: ω = 0.419, 0.628, 1.26 rad/msec (corresp. 66.7, 100, 200 Hz.). For
the LIF model, gL = 0.110. Normal forms (2.36), (2.55), (2.56), (2.61) for the PRCs
closest to bifurcation shown solid (scale factors ci fit by least-squares); the IF and
LIF PRCs are exact. PRC magnitudes decrease with ω for the HR, HH, ML, and
LIF models, are constant for the IF model, and increase with ω for the FN model.
The phase shifts φH and φB are chosen as π (yielding z(θs) = 0: see Sect. 2.2.4).
The inset to the ML plot displays the same information on a log scale, demonstrating
exponential decay.
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bifurcation z(θ) zmax zmin

SNIPER csn
ω
[1− cos(θ)] 2csn

ω
0

Hopf cH√
|ω−ωH |

[sin(θ − φH)] cH√
|ω−ωH |

− cH√
|ω−ωH |

Bautin |cB |
|ω−ωSN | [sin(θ − φB)] +O(1)

|cB |
|ω−ωSN | +O(1) − |cB |

|ω−ωSN | +O(1)

homoclinic chc ω exp
(
2πλu
ω

)
exp (−λuθ/ω) chcω exp

(
2πλu
ω

)
chcω

IF 2π 2π 2π

LIF ω
gL

(
1− e−2πgL/ω

)
egLθ/ω ω

gL

(
e2πgL/ω − 1

)
ω
gL
(1− e−2πgL/ω)

Table 2.1: Phase response curves for the different neuron models.

neural oscillators. However, the analytical PRCs (2.36), (2.55), (2.56), and (2.61) are
qualitatively, and in many cases, sufficiently close to the bifurcation point, quantita-
tively correct: see Fig. 2.6, which compares these formulas with PRCs calculated using
XPP [51] for the Hindmarsh-Rose (HR), FitzHugh-Nagumo (FN), Hodgkin-Huxley
(HH), and Morris-Lecar (ML) models near the relevant bifurcations (PRCs for the
integrate and fire (IF, LIF) models are exact). The companion Fig. 2.7 demonstrates
the scaling of PRC maxima with baseline frequency, which is also correctly predicted
by the normal form analysis. Frequencies ω were varied by changing the bifurcation
parameter: baseline inward current I b. Here and elsewhere, the neural models are
as given in [146, 127, 89], and [142]; all parameter values used here are reproduced
along with the equations in the Appendix to Part I. Finally, looking forward to the
next chapter, we note that the analytical PRCs derived here will correctly predict
key qualitative aspects of population responses to stimuli.
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Chapter 3

Response dynamics of phase
oscillator populations

3.1 Chapter outline

We undertake a probabilistic analysis of the response of repetitively firing neural
populations to simple pulselike stimuli. Equipped with the phase reductions derived
in the previous chapter, we use phase density equations to analyze the role of the
bifurcation, and the resulting phase response curve (PRC), in response to stimuli.
In particular, we explore the interplay between stimulus duration, baseline firing
frequency, and population level response patterns. We interpret the results in terms
of the signal processing measure of ‘gain,’ and discuss some further applications and
experimentally testable predictions.

This chapter is organized as follows. Following introductory material on popu-
lation models in neuroscience, Section 3.3 analyzes firing probabilities (and hence
population firing rates) in response to simple stimuli, enabling us to predict spike
histograms, to describe their dependence on parameters characterizing the stimuli
and neuron type, and to emphasize similarities and differences among the responses
of different models. These results are summarized in seven Roman-numbered bold-
face statements. Section 3.4 interprets these results in terms of the gain, or signal
amplification, of neural populations, and Section 3.5 analyzes effects of distributed
frequencies and noisy currents on the post-stimulus decay of evoked firing rate re-
sponses. Section 3.6 closes the chapter with comments on further applications and
possible experimental tests. Some of the results of this chapter appear in the second
part of [23].

3.2 Introduction and background

This chapter seeks to add to our understanding of how the firing rates of populations
of neural oscillators respond to pulselike stimuli representing sensory inputs, and to
connect this to mechanisms of neural modulation and computation. In particular,
we study how responses depend on oscillator type (classified by its bifurcation to
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periodic firing as in Chapter 2), baseline firing rate of the population, and duration
of the input. As in, e.g., [60, 86], our results also apply to the interpretation of Peri-
Stimulus Time Histograms (PSTHs), which represent averages over an ensemble of
independent neuronal recordings.

We are motivated by attempts to understand PSTHs of spike rates in the brain-
stem organ locus coeruleus (see Chapter 5), but there are many other situations in
which populations of spiking neurons are reset by stimuli. For example, the multiple-
oscillator and beat- frequency models of interval timing of Meck et al. [119] involve
cortical oscillators of differing frequencies, and the 40 Hz synchrony reported by Gray
and Singer and Eckhorn et al. (see [79, 46] for reviews) also suggest the onset of
coherent oscillations in visual cortex.

For most neuron models we find that the response of populations to a fixed stim-
ulus current scales inversely with the pre-stimulus ‘baseline’ firing rate of the pop-
ulation, reflecting the scaling of PRCs found in Chapter 2. While the firing rates
of individual neurons also display this inverse relationship (encoded in their ‘f − I’
curves [142]), the scaling of the population response differs from that of individual
neurons. This effect suggests a possible role of baseline firing rate in cognitive process-
ing by neural populations: decreasing baseline firing rates (via reduced inputs from
other brain areas or via neuromodulators (e.g. [167, 9, 8])) can adjust the ‘fraction’ of
an incoming stimulus that is passed on to the next processing module. Recent data
from the brainstem nucleus locus coeruleus (LC), for example, reflect this pattern:
greater responsivity and better cognitive performance are both correlated with slower
baseline firing rates [10, 167, 24], as described in Chapter 5.

We also find that, for certain common neuron models, the maximum population
response to a step stimulus of fixed strength can only occur (if it occurs at all)
after stimulus removal. Moreover, in all cases there are ‘resonant’ stimulus durations
for which there is no post-stimulus response. Thus, the magnitude and timing of
maximal population response depends strongly both on neuron type and stimulus
duration relative to baseline period.

Voltage density approaches, primarily undertaken in an integrate and fire frame-
work involving ‘re-injection’ boundary conditions and in some cases involving dis-
tributed conductances, are developed and applied in, e.g., [160, 181, 60, 67, 130, 133,
86, 29, 26, 63, 68] and references therein. In particular, density formulations derived
from integrate and fire models, e.g. [60, 86], demonstrate the inverse relationship
between peak firing rates and baseline frequency (for populations receiving pulsed
stimuli) that we extend to other neuron models in this chapter. The work of Brunel
et. al [26, 63] focusses on the transmission of stimuli by noisy integrate-and-fire pop-
ulations: it explains how components of incoming signals are shifted and attenuated
(or amplified) when “output” as firing rates of the population, depending on the fre-
quency of the signal component and the characteristics of noise in the population.
Some of the conclusions of our chapter (for integrate and fire neurons only) could pre-
sumably be reconstructed from the Brunel et al. results by decomposing our stepped
stimuli into Fourier components; however, simpler methods applicable to the noise-
free case permit different analytical insights into response properties. Experiments
on population responses to applied stepped and fluctuating currents have also been
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performed, e.g. by [116] in cortical neurons. Due to noise inherent in their biological
preparations, responses to stepped, but not fluctuating, stimuli are gradually damped
(cf. also [67, 68]); these effects are studied using a phase density approach in [144].

The phase density formulation is also used in [110, 162] and references therein,
where the emphasis is on coupling effects in populations with distributed frequencies,
generally without external stimuli. The approach closest to ours is that of [163],
which focuses on how pulsed input signals can desynchronize populations of noisy,
coupled phase oscillators that have clustered equilibrium states; of particular interest
is the critical stimulus duration Tcrit for which the maximum desynchronizing effect
is achieved. By contrast, the present chapter focuses on synchronizing responses of
independent oscillators (with uniform stationary distributions) and, using analytical
solutions to this simpler problem in the noiseless limit, stresses the influence of indi-
vidual neuron properties. Specifically, we contribute a family of simple expressions
for time-dependent firing rates in response to pulsed stimuli, derived from different
nonlinear oscillator models via phase reductions and the method of characteristics.
Our expressions allow us to identify a series of novel relationships between popula-
tion dynamics during and after stepped stimuli and the frequencies and bifurcation
types of the individual neurons making up the population. As already mentioned,
we consider only uncoupled neurons, but we note that our results remain generally
valid for weakly coupled systems. In particular, in Chapter 5 (and [24]) we show
that for a noisy neural population with synaptic and electrotonic couplings sufficient
to reproduce observed variations in experimental cross-correlograms, the uncoupled
limit is adequate for understanding key ‘first order’ modulatory effects.

3.3 Probabilistic analysis of firing rates

3.3.1 A phase density equation

We now describe how time-dependent firing rates in response to external stimuli
emerge from averages of oscillator population dynamics with appropriate initial con-
ditions. Let ρ(θ, t) denote the probability density of solutions of (2.21), the funda-
mental equation describing phase dynamics of an individual neuron from the previous
chapter. Thus, ρ(θ, t)dθ is the probability that a neuron’s phase (say in an arbitrary
experimental trial) lies in the interval [θ, θ + dθ] at time t. This density evolves via
the advection equation:

∂ρ(θ, t)

∂t
= − ∂

∂θ
[v(θ, t) ρ(θ, t)] . (3.1)

Boundary conditions are periodic in the probability flux: e.g., v(0, t)ρ(0, t) =
limψ→2π v(ψ, t)ρ(ψ, t), which reduces to ρ(0, t) = ρ(2π, t) for smooth phase response
curves z. A related phase density approach is used in [163, 144]. In the presence
of noise, there is an additional diffusion term in (3.1) [160, 163, 24]: see Section 3.5
below.

Multiple trials in which stimuli are not keyed to oscillator states may be mod-
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eled by averaging solutions of the linear PDE (3.1) over suitably distributed initial
conditions; since (unmodeled) noise and variable and/or drifting frequencies tend to
distribute phases uniformly in the absence of stimuli, we set ρ0 ≡ 1/2π. Histograms
of firing times may then be extracted by noting that firing probabilities for arbitrary
cells at time t are equal to the passage rate of the probability density through the
spike phase, i.e., the probability flux

FL(t)
4
= lim

ψ→θ−s
v(ψ, t) ρ(ψ, t) = lim

ψ→θ−s
[ω + z(ψ)I(t)] ρ(ψ, t) . (3.2)

The limit from below allows for discontinuities in z(θ) (as in the homoclinic and LIF
PRCs of Chapter 2), since the relevant quantity is flux across the spike threshold
from lower values of V and hence from lower values of θ. If the PRC z(θ) and hence
ρ(θ, t) are continuous at θs, (3.2) simply becomes FL(t) = [ω + z(θs)I(t)] ρ(θs, t).

We emphasize that the expression (3.2) equally describes the average firing rate
of an entire uncoupled population on a single trial, or the average firing rate of single
neurons drawn from such a population over many sequential trials, as in [86], or a
combination of both.

3.3.2 Patterns of firing probabilities and conditions for re-
fractory periods

Eqn. (3.1) can be explicitly solved for piecewise constant stimuli of duration d = t2−t1:
I(t) = Ī for t1 ≤ t ≤ t2 and I(t) = 0 otherwise. (Here and elsewhere we assume Ī > 0
unless explicitly noted.) Specifically, the method of characteristics ([176], or pp. 97-
100 of [55]) yields:

ρ(θ, t) = ρ0(Θθ,t(0)) exp

(
−
∫ t

0

∂

∂θ
v(Θθ,t(t

′), t′)dt′
)

=
1

2π
exp

(
−Ī
∫ t̃2

t1

z′[Θθ,t(s)]ds

)
, (3.3)

where t ≥ t1, t̃2 = min(t, t2) and we take the initial condition ρ0 = ρ(θ, 0) = 1/2π.
Here, Θθ,t(s) lies on the characteristic curve given by

d

ds
Θθ,t(s) = v(Θθ,t(s), s) , (3.4)

with ‘endpoint’ condition Θθ,t(t) = θ. When Θθ,t(s) coincides with a discontinuity in
z, the integrands in (3.3) are not defined, and we must appeal to the continuity of
probability flux or, equivalently, to the following change of variables.

We now simplify the expression (3.3). Using the fact that v(Θθ,t(s), s) = ω +
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Īz(Θθ,t(s)) for t1 ≤ s ≤ t2, and changing variables from s to Θθ,t(s),

∫ t̃2

t1

z′[Θθ,t(s)]ds =

∫ Θθ,t(t̃2)

Θθ,t(t1)

z′[Θθ,t(s)]

ω + Īz(Θθ,t(s))
dΘθ,t(s)

=
1

Ī
ln

[
ω + Īz(Θθ,t(t̃2))

ω + Īz(Θθ,t(t1))

]
, (3.5)

so that

ρ(θ, t) =
1

2π

[
ω + Īz(Θθ,t(t1))

ω + Īz(Θθ,t(t̃2))

]
. (3.6)

This expression is valid everywhere it is defined. To obtain the terms in (3.6), we
integrate (3.4) backward in time from the final condition at s = t until s = t1 or s = t̃2;
this may be done analytically for the normal form PRCs of Sect. 2.3 or numerically
for PRCs from full neuron models. The integration yields the PRC-independent
expression

Θθ,t(t̃2) = θ − ω(t− t̃2) ; (3.7)

for all neuron models, while Θθ,t(t1) is model-dependent via the PRC.
Note that while the stimulus is on (i.e. t1 ≤ t ≤ t2), t̃2 = t so that Θθ,t(t̃2) = θ.

After the stimulus turns off, v(θ, t) is independent of θ, and ρ is constant along curves
with constant θ−ωt. Thus, for t > t2, ρ(θ, t) is simply a traveling wave rotating with
frequency ω, with ρ(θ, t2) determining the phase density.

From the definition (3.2), we have:

FL(t) = lim
ψ→θs

ω + z(ψ)I(t)

2π

[
ω + Īz(Θψ,t(t1))

ω + Īz(Θψ,t(t̃2))

]
. (3.8)

Fig. 3.1 shows examples of FL(t) for the various neuron models, computed via
Eqn. (3.8) with both numerically and analytically derived PRCs z, as well as as
via numerical simulations of the full neuron models. The phase reduction (3.8) gives
qualitative, and, in some cases, precise matches to the full numerical data. We re-
call that the accuracy of phase reductions from full neuron models improves with
weaker stimuli Ī, and that the analytical PRCs better approximate their numerical
counterparts as the bifurcation point is approached (i.e., as Ib is varied).

Note that if limψ→θs z(ψ) = 0, I(t) does not directly enter (3.8), so FL(t) depends
only on variations in ρ resulting from the stimulus. However, (I) if limψ→θs z(ψ) 6= 0,
the firing probability FL(t) ‘jumps’ at stimulus onset and offset; see Fig. 3.1,
and recall that we set θs = 0. This is our first main result.

Some comments on the limit in Eqn. (3.8) are appropriate. Since for all neuron
models we always assume that v(θ) is positive and bounded, and is defined except
at isolated point(s), Θψ,t(s) is a continuous function of ψ, s and t. Nevertheless, as
Θψ,t(t1) and Θψ,t(t̃2) pass through θs as t advances, discontinuities in z(·) give discon-
tinuities in FL(t), but the limit in Eqn. (3.8) ensures that FL(t) is always defined. As
remarked above, if the PRC z(·) is continuous function, then the limψ→θs z(ψ) = z(θs)
and taking the limit is unnecessary.
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While the stimulus is on, solutions to (3.4) are periodic with period

P =

∫ 2π

0

dθ

ω + Īz(θ)
, (3.9)

(independent of the endpoint condition). Thus, (3.6) implies that ρ(θ, t) must also
be P -periodic, so that the distribution returns to ρ(θ, t1) ≡ 1

2π
every P time units:

i.e., ρ(θ, t1 + kP ) ≡ 1
2π

for integers k. If the stimulus is turned off after duration
d = t2 − t1 = kP , this ‘flat’ density therefore persists (recall that ρ evolves as
a traveling wave), giving our second result: (II) for stimulus durations that
are multiples of P , post-stimulus firing probabilities FL(t) return to the
constant value ω

2π
. This is illustrated in Fig. 3.2 (a) and corresponds to the absence

of post-stimulus refractory periods and ringing, and is related to the ‘black holes’
discussed in [163]; Figs. 3.1, 3.2 also illustrate the periodic regimes both during and
after the stimulus.

When the stimulus duration d is not a multiple of P (and provided z(θ) is not
constant), ρ(θ, t2) has at least one peak exceeding 1/2π, and at least one valley less
than 1/2π (see phase density plots of Fig. 3.1). Let the largest and smallest possible
ρ values be ρmax and ρmin, respectively. Eqn. (3.6) then gives

ρmax =
1

2π

[
ω + Īzmax
ω + Īzmin

]
; ρmin =

1

2π

[
ω + Īzmin
ω + Īzmax

]
, (3.10)

where zmin ≡ z(θmin) and zmax ≡ z(θmax) are the global extrema of the PRC; note the
relationship ρminρmax = 1/4π2. Recalling that Θθ,t(t̃2) = θ during the stimulus, com-
paring Eqns. (3.10) and (3.6) shows that ρmax occurs at θmin and ρmin at θmax. When
it exists, the stimulus duration dmax (resp., dmin) for which a distribution with peak
ρmax (resp., valley ρmin) occurs is essentially obtained by requiring (ignoring the lim-
its required for discontinuous PRCs) that a characteristic curve passes through θmax
(resp., θmin) at t1 and through θmin (resp., θmax) at time t2. Thus, (III) for stimulus
durations dmax (resp., dmin), post-stimulus firing probabilities FL(t) exhibit
their maximal deviation above (resp., below) the baseline rate ω

2π
. These

deviations may or may not be exceeded during the stimulus itself. See Fig. 3.2 for
examples and Fig. 3.1 for the evolution of phase density during a prolonged stimulus;
in particular, note that while dmax is not strictly defined for the LIF model, shorter
stimuli (of arbitrarily small duration) always give higher peaks.

We now determine whether maximal peaks and minimal valleys in firing rates
occur during or after stimulus for the various neuron types. Again using Θψ,t(t̃2) = ψ
during the stimulus, (3.8) yields

FLd(t) = lim
ψ→θs

ω + z(ψ)Ī

2π

[
ω + Īz(Θψ,t(t1))

ω + Īz(ψ)

]

= lim
ψ→θs

1

2π

[
ω + Īz(Θψ,t(t1))

]
, t1 < t ≤ t2 ; (3.11)
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Figure 3.1: (a)-(f) Phase density ρ(θ, t) in greyscale (darker corresponding to higher
values) (top) and firing probability FL(t) in msec−1 (bottom) for stimuli of length
3/2 × P (indicated by black horizontal bars), from Eqns. (3.6),(3.8) via the method
of characteristics. Dashed curves indicate FL(t) from the normal form PRCs of
Eqns. (2.36), (2.55), (2.56), (2.61), (2.67), (2.70); solid curves from numerical PRCs
computed via XPP. Baseline frequencies and values of Ī for HR, FN, HH, ML, IF,
and LIF models are (0.0201, 0.212, 0.429, 0.08, 0.628, 0.628) rad/msec (corresp.
3.20, 33.7, 68.3, 12.7, 100, 100 Hz.) and (0.1, 0.0015, 0.25, 0.0005, 0.05, 0.05)
µA/cm2, respectively. The vertical bars are PSTHs, numerically computed using
the full conductance-based equations (Appendix C) using 10,000 initial conditions,
with Ib set to match frequencies of the corresponding phase models. Initial conditions
generated by evolving the full equations for a (uniformly distributed) random fraction
of their period, from a fixed starting point. Note that FL(t) jumps discontinuously at
stimulus onset and offset for the IF and LIF models, since for these models z(θs) 6= 0
(point (I) in text). Also, during stimulus FL(t) does not dip below the baseline value
ω
2π

for the HR, IF, and LIF models, because zmin ≈ 0 in these cases (point V).
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Figure 3.2: (a)-(d) Firing probabilities FL(t) for the HH and HR models, with stimu-
lus characteristics chosen to illustrate the points in the text. Dashed and solid curves
and vertical bars denote data obtained as in Fig. 3.1. (a) A stimulus (Ī = 0.04
µA/cm2) of length exactly P = 232.50 msec (indicated by the horizontal black bar)
for the HR model (ω =0.0201 rad/msec) leaves no trace (point (II)). (b) A stimulus
(Ī = 0.25 µA/cm2) of duration dmax = 11.46 msec for the HH model (ω =0.429
rad/msec) yields maximum response after the stimulus has switched off (because
zmin < 0) but for the HR model (d) (ω =0.0102 rad/msec) with stimulus duration
dmax = 152.01 msec, the peak in FL(t) is achieved at t2 (because zmin ≈ 0), (points
(III,IVa)). Plots (c),(d) illustrate point (VI): the stimulus in (c) is identical to that
of (d), but the slower HR population (d) (ω=0.0102 vs. 0.0201 rad/msec) displays
the greatest response.
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the superscript on FLd(t) denotes ‘during’ the stimulus, emphasizing that this ex-
pression is only valid for t1 < t ≤ t2. After the stimulus has turned off, a different
special case of (3.8) is valid:

FLa(t) = lim
ψ→θs

ω

2π

[
ω + Īz(Θψ,t(t1))

ω + Īz(Θψ,t(t2))

]
, t > t2 ; (3.12)

here the superscript on FLa(t) denotes ‘after’ the stimulus. We now use these ex-
pressions to write the maximum and minimum possible firing rates during and after
the stimulus:

FLdmax =
1

2π

[
ω + Īzmax

]
(3.13)

FLamax =
ω

2π

[
ω + Īzmax
ω + Īzmin

]
(3.14)

FLdmin =
1

2π

[
ω + Īzmin

]
(3.15)

FLamin =
ω

2π

[
ω + Īzmin
ω + Īzmax

]
. (3.16)

From (3.13-3.16), we have

FLdmax − FLamax =
1

2π

[
ω + Īzmax
ω + Īzmin

]
Īzmin , (3.17)

FLdmin − FLamin =
1

2π

[
ω + Īzmin
ω + Īzmax

]
Īzmax . (3.18)

Since we restrict to the case where v(θ, t) > 0 (i.e., there are no fixed points for the
phase flow), the terms in the brackets of the preceding equations are always positive.
This implies, for Ī > 0,

FLamax ≥ FLdmax if and only if zmin ≤ 0 , (3.19)

FLamax ≤ FLdmax if and only if zmin ≥ 0 , (3.20)

FLamin ≤ FLdmin if and only if zmax ≥ 0 , (3.21)

FLamin ≥ FLdmin if and only if zmax ≤ 0 , (3.22)

where the ‘equals’ cases of the inequalities require zmax = 0 or zmin = 0. In other
words, (IVa) for the specific stimulus durations that elicit maximal peaks in
firing rates, these maximal peaks occur during the stimulus if zmin ≥ 0 but
after the stimulus switches off if zmin ≤ 0; (IVb) for the specific (possibly
different) stimulus durations that elicit minimal firing rate ‘dips,’ these
minimal dips occur during the stimulus if zmax ≤ 0 but after the stimulus
switches off if zmax ≥ 0. We recall that zmin < 0 is a defining condition for ‘Type II’
neurons [50]. The post-stimulus maximum (resp. minimum) firing rates are obtained
as the peak (resp. valley) of the distribution ρ(θ, t) passes through θs. As Fig. 3.2 (b)
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neuron model Response “jumps” with stimulus? Max. response after stimulus
(point I) and depressed firing

during stimulus?
(points IV, V)

HR NO NO
HH NO YES
FN YES YES
ML YES NO
IF YES NO
LIF YES NO

Table 3.1: Predictions using the numerical PRCs of Fig. 5.3. The conclusions follow
from the limiting value of z(θs) (point (I) in text), and the value of the PRC minimum
zmin (points (IVa, V)).

shows, the delay from stimulus offset can be significant for typical neuron models.
Defining the baseline rate valid for t < t1

FLb(t) ≡ ω

2π
, (3.23)

Eqn. (3.15) shows that FLdmin ≥ FLb if and only if zmin ≥ 0. Thus, (V) if zmin ≥ 0,
the firing rate does not dip below baseline values until (possibly) after
the stimulus switches off. Table 3.1 summarizes the above results for the neuron
models studied here.

In Section 3.5 we show via Fourier transformation of the analog of Eqn. (3.1) in
the presence of noise that FL(t) decays at exponential or faster rates due to noise
and averaging over distributions of neuron frequencies (cf. [163, 24]). For mildly
noisy or heterogeneous systems, the results (I)-(V) remain qualitatively similar but
are ‘smeared:’ e.g., ρ(θ, t) is no longer time-periodic during or after the stimulus, but
approaches a generally nonuniform equilibrium state via damped oscillations.

3.3.3 Frequency scaling of response magnitudes

We now determine how the maximum and minimum deviations from baseline firing
rates depend on the baseline (pre-stimulus) firing rate of the neural population. Fol-
lowing the discussion of the previous section, we separately compute the scaling of
maximal (minimal) responses that are possible during stimulus and the scaling of
maximal (minimal) responses that are possible after stimuli switch off. Eqns. (3.13-

39



3.16) and (3.23) yield:

FLdmax − FLb =
1

2π

[
Īzmax

]
(3.24)

FLdmin − FLb =
1

2π

[
Īzmin

]
(3.25)

FLamax − FLb =
ω

2π

[
Ī(zmax − zmin)
ω + Īzmin

]
(3.26)

FLamin − FLb =
ω

2π

[
Ī(zmin − zmax)
ω + Īzmax

]
. (3.27)

These expressions provide one set of measures of the sensitivity of population level
response at different baseline firing rates. Additionally, taking ratios with the pre-

stimulus firing rate (e.g. finding FLd
max−FLb

FLb ) determines the size of deviations relative
to baseline activity. We use the information summarized in Table 2.1 to compile these
measures for all neuron models in the following Tables 3.2-3.5. Note that in these
tables, ‘moving away from the bifurcation’ means varying parameters so that the fre-
quency varies away from its value at onset of firing, namely ω = 0 for the SNIPER
and homoclinic bifurcations and IF and LIF models, ωH for the supercritical Hopf
bifurcation, and ωSN for the Bautin bifurcation. The scaling of FLdmax − FLb, as
an example, is confirmed by comparing Fig. 2.7. In summary, (VI) different neu-
ral models and bifurcations imply different scalings of maximal response
magnitude with frequency.

Most measures of population firing rate responses increase for frequencies closer
to the bifurcation point (Tables 3.2-3.5). If these models are parameterized so that
frequency increases as the bifurcation parameter Ib increases through the bifurca-
tion point, this means that populations at lower frequencies tend to display greater
responses; see Fig. 2.7 for examples. This effect is further explored in the next section.

3.4 Gain of oscillator populations

In attempts to understand neural information processing, it is useful to understand
how input signals are modified by transmission through various populations of spiking
cells in different brain organs. The general way to treat this problem is via transfer
functions [154, 68]. Here we interpret the results of the previous section in terms of the
amplification, or attenuation, of step function input stimuli by the neural population.
We consider both extremal and average values of the firing rate FL(t) during stepped
stimuli of varying strengths, and illustrate for neurons near a SNIPER bifurcation.
We will use the word ‘gain’ to describe the sensitivity of the resulting input-output
relationship: systems with higher gain have a greater output range for a specific set
of input strengths. The average firing rate during stimulus is

〈FLd〉 ≡ 1

P
, (3.28)
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bifurcation FLdmax − FLb Lowest order scaling Stronger or weaker effect
near bifurcation as move away from bifurcation,

to lowest order
unnormalized (normalized by FLb)

SNIPER 1
2π

[
2Īcsn
ω

]
∼ 1

ω
weaker (weaker)

Hopf 1
2π

[
ĪcH√
|ω−ωH |

]
∼ 1√

|ω−ωH |
weaker (weaker)

Bautin 1
2π

[
Ī|cB |

|ω−ωSN |

]
∼ 1

|ω−ωSN | weaker (weaker)

homoclinic 1
2π
Īchc ω exp

(
2πλu
ω

)
∼ ω exp(k/ω) weaker (weaker)

IF Ī const. const. (weaker)

LIF 1
2π

Īω
gL

(
e2πgL/ω − 1

)
∼ ω exp(k/ω) weaker (weaker)

Table 3.2: Scaling of deviations in firing rate during stimulus FLdmax − FLb for the
different neuron models. The positive constant k differs from case to case.

where P is the period of an individual oscillator during the stimulus (Eqn. (3.9)), and
〈·〉 is the average over one such period. For the special case of a population near a
SNIPER bifurcation, PSN = 2π√

ω2+2csnI
so that

〈FLdSN〉 =
√
ω2 + 2csnI

2π
. (3.29)

These expressions describe the standard ‘f − I’ curve typically studied for single
neurons [142].

The instantaneous responses of neurons are perhaps of greater interest than av-
erages such as (3.28-3.29). To derive the extremal (i.e., maximally above or below
baseline) firing rates, we appeal to the expressions (3.11) and (3.12), which are valid
for both positive and negative values of Ī as long as v(θ, t) remains nonnegative. (How-
ever, the subsequent formulae of Section 3.3.2 require modification: ‘max’ and ‘min’
must be appropriately interchanged when dealing with negative Ī.) In particular, the
extremal value of FLd(t) for the SNIPER bifurcation is

FLd,extSN =
1

2π

[
ω +

2csnĪ

ω

]
. (3.30)

In Fig. 3.3, we plot FLd,extSN as a function of both baseline firing rate and stimulus
strength Ī, where the latter takes both positive and negative values. For (here,

41



bifurcation FLdmin − FLb Lowest order scaling Stronger or weaker effect
near bifurcation as move away from bifurcation,

to lowest order
unnormalized (normalized by FLb)

SNIPER 0 const. const. (const.)

Hopf − 1
2π

[
ĪcH√
|ω−ωH |

]
∼ − 1√

|ω−ωH |
weaker (weaker)

Bautin − 1
2π

[
Ī|cB |

|ω−ωSN |

]
∼ − 1

|ω−ωSN | weaker (weaker)

homoclinic 1
2π
Īchc ω ∼ ω stronger (const.)

IF Ī const. const. (weaker)

LIF 1
2π

Īω
gL

(
1− e−2πgL/ω

)
∼ ω stronger (const.)

Table 3.3: Scaling of deviations in firing rate during stimulus FLdmin − FLb for the
different neuron models.

negative) stimulus values, and frequencies, sufficient to cause the minimum of v(θ) to
dip below zero, fixed points appear in the phase model, giving firing rates FLd(t) =
〈FLdSN〉 = FLd,extSN = 0. Notice the increased sensitivity of extremal firing rates to
changes in stimulus strength at low baseline frequencies. This ‘increased gain’ is also
shown in Fig. 3.4 (a), which plots slices through Fig. 3.3 for two different baseline
frequencies. However, there is no analogous effect for the average firing rates of
Eqn. (3.29), which follow the standard frequency-current relationships for individual
neurons: see Fig. 3.4 (b).

Note that there is always a crossing point between firing rate curves for near-
SNIPER populations with high and low baseline frequencies (see Fig. 3.4 (a)). Above
this crossing point, stimuli are more greatly amplified by the low frequency popula-
tion; below the crossing point, they are more greatly amplified by the high frequency
population. This is analogous to increasing the slope (= gain) of a sigmoidal response
function as in [154], gain increase in Fig. 1 of that paper being analogous to decrease
of ω. Thus, if signal discrimination depends on extremal firing rates, the effects of
gain modulation on signal/noise discrimination of [154] could be produced by changes
in baseline rate.
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bifurcation FLamax − FLb Lowest order scaling Stronger or weaker effect
near bifurcation as move away from bifurcation,

to lowest order
unnormalized (normalized by FLb)

SNIPER 1
2π

[
2Īcsn
ω

]
∼ 1

ω
weaker (weaker)

Hopf 1
2π

[
2ĪcHω

ω
√
|ω−ωH |−ĪcH

]
∼ 1√

|ω−ωH |
weaker (weaker)

Bautin 1
2π

[
2Ī|cB |ω

ω|ω−ωSN |−Ī|cB |

]
∼ 1

|ω−ωSN | weaker (weaker)

homoclinic 1
2π

Īchcω
1+Īchc

(exp(2πλu/ω)− 1) ∼ ω exp(k/ω) weaker (weaker)

IF 0 const. const. (const.)

LIF ω
2π

Ī(1−e−2πgL/ω)(e2πgL/ω−1)
gL+Ī(1−e−2πgL/ω)

∼ ω exp(k/ω) weaker (weaker)

Table 3.4: Scaling of deviations in firing rate after stimulus, FLamax − FLb, for the
different neuron models. The positive constant k differs from case to case.

3.5 Effects of noise and distributed frequencies

We now consider two features of realistic neural populations: noise and heterogeneous
oscillator frequencies, and determine how these effects damp post-stimulus “ringing”
of the population, thereby generalizing formulas in [163] to treat populations with
distributed frequencies. Specifically, we assume that baseline frequencies in the neural
population (or collection of experimental trials) of interest are distributed with a
density r(ω), so that

〈FL(t)〉 =

∫
r(ω)FL(t, ω)dω . (3.31)

Extending Eqns. (2.1)-(2.2) to allow for variable inputs, we consider a population
of conductance-based neurons, indexed by i:

CV̇i =
[
Ig(Vi,ni) + Ibi + I(t) + σηi(t)

]
, (3.32)

ṅi = N(Vi,ni) . (3.33)

Each neuron may have a different baseline current I bi (leading to distributed frequen-
cies across the population) and receives an independent white noise process σηi(t)
with r.m.s. strength σ2 which represents unmodeled ‘fast’ synaptic inputs. Reducing
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bifurcation FLamin − FLb Lowest order scaling Stronger or weaker effect
near bifurcation as move away from bifurcation,

to lowest order
unnormalized (normalized by FLb)

SNIPER − 1
2π

[
2Īcsn

ω+2csnĪ/ω

]
∼ −ω stronger (const.)

Hopf − 1
2π

[
2ĪcHω

ω
√
|ω−ωH |+ĪcH

]
∼ − 1√

|ω−ωH |
weaker (weaker)

Bautin − 1
2π

[
2Ī|cB |ω

ω|ω−ωSN |+Ī|cB |

]
∼ − 1

|ω−ωSN | weaker (weaker)

homoclinic Īchcω
2π

exp(− 2πλu
ω )−1

exp(−2πλu
ω

)+Īchc
∼ −ω stronger (const.)

IF 0 const. const. (const.)

LIF ω
2π

Ī(e2πgL/ω−1)(e−2πgL/ω−1)
gL+Ī(e

2πgL/ω−1) ∼ −ω stronger (const.)

Table 3.5: Scaling of deviations in firing rate after stimulus FLamin − FLb for the
different neuron models.

(3.32)-(3.33) to phase variables via (2.8), we obtain

dθi =

[
ωi + z(θi)I(t) +

σ2

2
z(θi)z

′(θi)

]
dt+ σz(θi)dWi(t) .

(3.34)

The O(σ2) term is the ‘Ito correction’ resulting from changing variables from the
stochastic differential equation (3.32) [65]. Following stimulus offset (so that I(t) =
0), and in the limit of small r.m.s. noise strength σ, stochastic averaging ([185],[64,
Thm. 3.1]) may be applied to (3.34). As in the averaging theory of determinis-
tic dynamical systems [82], this amounts to replacing the small deterministic term
σ2

2
z(θ)z′(θ) by its average z̃ω

4
= 1

2π

∫ 2π

0
σ2

2
z(θ)z′(θ)dθ; additionally, the coefficient of

the noise term, σz(θ), is replaced by the r.m.s. value σẑω
4
=
(

1
2π

∫ 2π

0
σ2z(θ)2dθ

)1/2
,

yielding
dθ = [ω + z̃ω] dt+ σẑωdW (t) , (3.35)

where we have dropped the subscript i. To simplify the calculations below, we assume
z̃ω = 0, as may be directly computed from the formulas in Table 2.1 for the SNIPER,
Hopf, and Bautin bifurcations as well as the IF model.

The corresponding Fokker-Planck equation for the density of phase oscillators with
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Figure 3.3: Extremal (i.e., maximally above or below baseline) firing rates FLd,extSN

for a population of stimulated HR neurons in Hz., as a function of baseline frequency
(Hz.) and applied current strength Ī (µA/cm2).

baseline frequency ω is

∂ρ(θ, t, ω)

∂t
= − ∂

∂θ
[ω ρ(θ, t, ω)] +

σ2ẑω
2

2

∂2

∂θ2
[ρ(θ, t, ω)] (3.36)

may then be Fourier transformed for each ω, as in [163], to yield

ρ(θ, t, ω) =
∞∑

n=−∞
an(t, ω) exp(inθ) , where ȧn = −iωnan −

σ2ẑω
2

2
n2an . (3.37)

Solving the latter equations with ‘initial’ values an(t2, ω) representing the state at
stimulus end, we get:

FL(t, ω) = ω
∞∑

n=−∞
an(t2, ω) exp

[
−
(
iωn+

σ2ẑω
2n2

2

)
(t− t2)

]
. (3.38)

Carrying out the average in (3.31), we obtain

〈FL(t)〉 =
∫

r(ω)ω
∞∑

n=−∞
an(t2, ω) exp

[
−
(
iωn+

σ2ẑ2ωn
2

2

)
(t− t2)

]
dω (3.39)
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Figure 3.4: Maximum/minimum firing rate of a population of stimulated HR neurons
(a), and average firing rate (b) in Hz., as a function of applied current strength for
two different baseline frequencies: 1.3 Hz. (dot-dashed line), and the higher frequency
2.9 Hz (dotted). The increased gain effect at lower baseline frequencies discussed is
evident for maximum/minimum, but not average, firing rates (see text).

so that

〈FL(t)〉 − 〈ω〉
2π

=

∫ ∞

−∞
r(ω) ω ×

∞∑

n=−∞,n6=0

an(t2, ω) exp

[
−
(
iωn+

σ2ẑ2ωn
2

2

)
(t− t2)

]
dω , (3.40)

where 〈ω〉 denotes the mean of r(ω). We will now estimate how the average spike

rate 〈FL(t)〉 relaxes to its baseline value 〈ω〉
2π

.
Choosing a ‘maximal’ frequency ωm beyond the essential support of the integrand,

breaking the integral into pieces, and applying the triangle inequality, (3.40) yields

∣∣∣∣FL(t)−
〈ω〉
2π

∣∣∣∣ ≤
∣∣∣∣∣

∫ ωm

0

r(ω)ω
∞∑

n=−∞,n6=0

an(t2, ω) exp

[
−
(
iωn+

σ2ẑ2ωn
2

2

)
(t− t2)

]
dω

∣∣∣∣∣

+

∣∣∣∣∣

∫ ∞

ωm

r(ω)ω
∞∑

n=−∞,n6=0

an(t2, ω) exp

[
−
(
iωn+

σ2ẑ2ωn
2

2

)
(t− t2)

]
dω

∣∣∣∣∣
(3.41)

Noting that the exponential in the second term is bounded in modulus by 1, and that∑∞
n=−∞,n6=0 an(t2, ω) = FL(t2, ω)− ω/2π, we can bound the second term of (3.41) as
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follows:
∣∣∣∣∣

∫ ∞

ωm

r(ω)ω
∞∑

n=−∞,n6=0

an(t2, ω) exp

[
−
(
iωn+

σ2ẑ2ωn
2

2

)
(t− t2)

]
dω

∣∣∣∣∣ ≤

∫ ∞

ωm

∣∣∣∣∣r(ω)ω
∞∑

n=−∞,n6=0

an(t2, ω) exp [− (iωn) (t− t2)] dω
∣∣∣∣∣ =

∫ ∞

ωm

r(ω)ω

∣∣∣∣ρ̃(θ = 0, t− t2, ω)−
1

2π

∣∣∣∣ dω ≤
∫ ∞

ωm

r(ω)ωmax
θ

∣∣∣∣ρ̃(θ, t2, ω)−
1

2π

∣∣∣∣ dω
4
= E .

Here, ρ̃(θ, t − t2, ω) is the density function that would result from evolution at fre-
quency ω with σ = 0. Because zω(θ) ∼ 1/ω, the effective stimulus strength declines
with ω, so that for sufficiently large ω the perturbation of ρ(θ, t2, ω) from equilibrium
ρ ≡ 1/2π is negligible. Because, additionally, ωr(ω) decays for sufficiently large ω
(since r is a PDF), ωm may be chosen so that E is arbitrarily small. As for the first
term in (3.41), noting that ẑω decays with ω we can replace ẑω in the exponential
with its least value ẑωm and also replace n by 1 to obtain an upper bound on the
decaying flux. This allows us to remove the exponential from the integral, giving

∣∣∣∣FL(t)−
〈ω〉
2π

∣∣∣∣ ≤ exp

[
−σ

2ẑ2ωm(t− t2)
2

]

∣∣∣∣∣

∫ ωm

0

r(ω)ω
∞∑

n=−∞,n6=0

an(t2, ω) exp [−iωn(t− t2)] dω
∣∣∣∣∣+ E .

(3.42)

Next, we note that

∣∣∣∣∣

∫ ωm

0

r(ω)ω
∞∑

n=−∞,n6=0

an(t2, ω) exp [−iωn(t− t2)] dω
∣∣∣∣∣ =

∣∣∣∣∣

∫ ∞

0

r(ω)ω
∞∑

n=−∞,n6=0

an(t2, ω) exp [−iωn(t− t2)] dω−

∫ ∞

ωm

r(ω)ω
∞∑

n=−∞,n6=0

an(t2, ω) exp [−iωn(t− t2)] dω
∣∣∣∣∣

≤
∣∣∣∣∣

∫ ∞

0

r(ω)ω
∞∑

n=−∞,n6=0

an(t2, ω) exp [−iωn(t− t2)] dω
∣∣∣∣∣+ E
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which, together with (3.42), implies

∣∣∣∣FL(t)−
〈ω〉
2π

∣∣∣∣ ≤ exp

[
−σ

2ẑ2ωm(t− t2)
2

]
×

∣∣∣∣∣

∫ ∞

0

r(ω)ω
∞∑

n=−∞,n6=0

an(t2, ω) exp [−iωn(t− t2)] dω
∣∣∣∣∣ . (3.43)

up to the arbitrarily small error 2E. For each n, the integral in (3.43) is the Fourier
transform of r(ω)ω an(t2, ω) evaluated at [n(t − t2)]. This integral decays for suffi-
ciently large t − t2 (by the Riemann-Lebesgue Lemma), giving an additional decay
factor. Thus, (3.43) supplies our final main finding: (VII) Response decays ex-
ponentially or faster with t due to noise and heterogeneous frequencies.

In the special case that r(ω) is Gaussian and varies rapidly compared with ω an(t2, ω),
for each n contributing significantly to the sum, we have

r(ω) ω an(t2, ω) ≈
1√
2πγ

exp

(
−(ω − 〈ω〉)2

2γ

)
〈ω〉 an(t2, 〈ω〉) , (3.44)

and the integral in (3.43) may be evaluated to give the following upper bound on
decay rate:

∣∣∣∣〈FL(t)〉 −
〈ω〉
2π

∣∣∣∣ ≤ exp

[
−σ

2ẑ2ωm(t− t2)
2

− γ(t− t2)2
2

] ∣∣∣∣∣

∞∑

n=−∞,n6=0

〈ω〉an(t2, 〈ω〉)
∣∣∣∣∣

= exp

[
−σ

2ẑ2ωm(t− t2)
2

− γ(t− t2)2
2

] ∣∣∣∣〈FL(t2, 〈ω〉)〉 −
〈ω〉
2π

∣∣∣∣ .

(3.45)

Here 〈FL(t2, 〈ω〉)〉 is the value of FL at time t2 under the condition that r(ω) =
δ(ω−〈ω〉). In Chapter 5, we study a specific application involving a (narrow) Gaussian
distribution of frequencies for which (3.44) holds; and the corresponding Fig. 5.9
shown there illustrates that (3.45) provides a good decay estimate.

3.6 Applications and experimental predictions

We now provide further comments on how the mechanisms studied in this chapter
could be applied and tested. As discussed in Section 3.4 and with regard to the locus
coeruleus (LC) in the Introduction, baseline frequency-dependent variations in the
sensitivity of neural populations to external stimuli could be used to adjust gain in
information processing. The effect could be to engage the processing units relevant
to specific tasks, and, as in [154, 167], to additionally sensitize these units to salient
stimuli. See Chapter 5 and [24] for details of the LC application.

We recall that Section 3.3.2 described the different types of post-stimulus ‘ringing’
of firing rates FL(t) that occur for the various neuron models. This ‘phase-resetting’
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effect has long been studied in theoretical and experimental neuroscience (e.g. [183,
163, 117]). As we show here (Eqn. (3.19), Fig. 3.2), for neuron models having a phase
response curve z(θ) that takes negative values, the greatest deviations from baseline
firing rates can occur significantly after stimulus end. Subpopulations of such neurons
could be used in detecting offsets of sensory stimuli. Elevated firing rates FL(t) that
remain (or are enhanced) after the stimulus ends are an example of persistent neural
activity, a general phenomenon implicated in short-term memory, interval timing, and
other cognitive functions. However, physiological evidence suggests that some of the
persistent activity observed in vivo results from desynchronized, not phase-clustered,
neural groups.

Finally, stimulus-induced ringing of population firing rates (which occurs at the
natural baseline frequency of the neuron population, see Eqn. (3.6)) could play a
role in generating the periodic patterns of coherent activity that accompany salient
events in psychological tests (e.g. ‘alpha-ringing’); the possible relevance of this effect
is well-known and is a topic of current debate in the EEG community [117, 14].

The results presented here are experimentally testable. As noted in the Introduc-
tion, the predictions for average firing rate FL(t) are equally valid for multi-channel
recordings from a (weakly coupled) population and for sequences of single-unit record-
ings from members of such a population. Thus, the FL(t) predictions of this chapter
can be compared with Peri-Stimulus Time Histograms (PSTHs) formed from both
types of data. The scaling of response magnitudes predicted in Sect. 3.3.3 could be
tested in any experiment in which baseline neural firing rates are modulated pharma-
cologically while stereotyped stimuli are presented. This is essentially what is done
in many experiments on the effects of different neuromodulators, neurotransmitters,
and other agents. For example, direct application of the neuropeptide corticotropin
releasing factor (CRF) has been found to increase LC baseline activity and simulta-
neously decreases responses to sensory stimuli [123] in some, but not all, protocols.
Many other examples of such ‘modulatory’ effects of neurotransmitters or exogenous
inputs exist for neurons in other brain areas [8]. However, a general difficulty is that
these substances may change many parameters in neurons besides the bifurcation (or
frequency) parameter Ib that is the focus of this chapter, hence making it difficult to
determine what mechanism leads to changes in averaged response. Furthermore, the
presence of noise tends to diminish the scaling results reported here (cf. [86, 24]),
and while it seems that coupling can in some circumstances amplify the scaling [24],
we are still working to clarify this effect.

We close by mentioning another experimental test of the predictions presented
here, suggested by John Rinzel. First, one could determine what pharmacological
manipulations would cause a given in vitro neuron to transition from periodic firing
near a SNIPER bifurcation to periodic firing near a Bautin bifurcation. Then, one
could measure how trial-averaged responses to stereotyped stimuli vary as this ma-
nipulation is performed. In particular, this chapter predicts that maximal responses
should occur during the stimulus in SNIPER firing, but after the stimulus switches
off following a manipulation to Bautin firing.
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Chapter 4

Globally coupled oscillator
networks

4.1 Chapter outline

Chapter 3 was primarily concerned with the (partial, transient) synchronization of
uncoupled oscillators due to external stimuli. In this chapter we consider the syn-
chronous states of identical oscillators, with differing phase relationships, that arise
due to coupling.

In particular, we study a class of permutation-symmetric, globally-coupled phase
oscillator networks on N -dimensional tori. Following the introductory material of
Section 4.2, in Section 4.3 we focus on the effects of rotation and reflection sym-
metries and of the spectral content of coupling functions on the existence (Sec-
tions 4.3.1-4.3.4), stability, and degeneracy (Sections 4.3.5-4.3.7) of phase-locked so-
lutions in which subgroups of oscillators share common phases. We also estimate
domains of attraction for the completely synchronized state. Richer coupling func-
tions, which break some of the symmetry exploited in Section 4.3, are introduced
in Section 4.4. In Section 4.5, the results are applied to coupling functions derived
from the Hodgkin-Huxley conductance-based neuron model (i.e., Eqns. (2.1-2.2)). In
particular, implications for stochastically forced networks are illustrated numerically
via cross-correlograms of spike times, and effects of phase-difference- and individual-
phase-dependent coupling on the frequency of the fully synchronized state are briefly
discussed. Many of the results in this Chapter were published in [22].

4.2 Introduction and background

We consider networks of N rotator oscillators with constant forcing and pairwise
phase-difference and absolute-phase ‘product’ coupling, described by:

θ̇i = ωi +
1

N

N∑

j=1

αijfij(θj − θi) + hi(θi)
1

N − 1

N∑

j 6=i
βijgj(θj), (4.1)
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where (θ1, . . . , θN)
T ∈ TN , αij, βij and fij, hi, gj are, respectively, coupling parameters

and 2π-periodic functions, and ωi are the natural frequencies of the uncoupled rota-
tors. This chapter focuses on networks with identical frequencies and global (mean
field) coupling, so that equation (4.1) becomes

θ̇i = ω +
α

N

N∑

j=1

f(θj − θi) + h(θi)
β

N − 1

N∑

j 6=i
g(θj) , (4.2)

although we include some results with additive random noise. The denominators (N ,
N − 1) are introduced to normalize coupling effects.

Rotator (phase-only) models of coupled oscillators have been widely studied, es-
pecially in the contexts of neuroscience and coupled Josephson junctions. As seen
in Chapter 2, the phase equations offer, respectively, significant simplification of
more realistic neuron models of Hodgkin-Huxley or Fitzhugh-Nagumo type (see also
[126, 102, 94]), and of the Josephson circuit equations: e.g. [173, 174, 178]. As also
noted in Chapter 2, in the case that the N uncoupled oscillators have strongly at-
tracting limit cycles in their full phase space, the persistence of normally hyperbolic
invariant manifolds [59] under small perturbations (weak coupling) may be used to
reduce the system to the N -torus by a suitable coordinate transformation. The dis-
tinct ‘strong attraction’ (SA) [53, 94] and ‘phase response’ [50, 111] (PR) techniques
for approximating the reduced system (discussed in Section 2.2.3 of Chapter 2) will
be applied, to differing results, in Section 4.5 of this chapter.

In motivating Eqn. (4.2), we assume an additional separation of scales between the
“electrotonic” and “synaptic” types of neural coupling (introduced in Section 4.5).
We take electrotonic coupling to be weaker than synaptic, so that it can be averaged to
give the phase-difference functions αfij and assume that this does not affect the βhigj
terms at leading order. Sections 4.3 and 4.4 consider the dynamics of equation (4.1)
for various values of α and β, without a priori restricting to the |α| ¿ |β| ¿ O(1)
required in this derivation of the phase equations.

When β = 0 but frequencies differ between oscillators, equation (4.2) is referred
to as the Kuramoto model ([110]), on which there is an extensive literature; see
the recent review of [162] and references therein (e.g. [42]). Much of this work
has been done in the continuum limit N → ∞, and [162] adopts this viewpoint;
specifically, stability analyses of some stationary (continuous) states are discussed.
Finite-dimensional results, including a Liapunov function and dimension reduction,
are found in the context of Josephson junction models in [173]. Many earlier studies
take only the leading term in an odd Fourier expansion of f , so that f(·) = sin(·);
as we shall see this is a very degenerate case for the mean field coupled system (4.2)
(e.g. [128, 75]). Moreover, as shown in [97], relaxation oscillators of Hodgkin-Huxley
or Fitzhugh-Nagumo type lead to much richer phase difference functions than sin(·).
Others have recognized the importance of higher Fourier harmonics: see [44, 75,
128, 174]. Additional work on finite dimensional oscillator networks includes [106,
108, 107], which consider directed coupling, [17], which considers integrate-and-fire
models derived from coupled spiking neurons, and [131], which will be discussed in
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Section 4.3. Recently, [32] has studied the effects of spike shape on electrotonically
coupled integrate-and-fire networks. The authors find that the existence and stability
of splay states depends on the spike shape in a manner that would be interesting to
compare with the present results.

The present chapter draws on [6], which addresses a class of SN × T 1-equivariant
oscillator networks (of which (4.2) is an example when β = 0). We now summarize
the properties of symmetric dynamical systems necessary to present and apply these
results; for more background, see [76, 77].

Consider the ODE
dx

dt
= G(x) , x ∈ manifoldM , (4.3)

and let Γ be a group acting onM . The ODE is said to be Γ-equivariant if f commutes
with the group action, i.e.

G(γx) = γ̂G(x) ∀γ ∈ Γ, x ∈M , (4.4)

where the derivative map γ̂ ([4]) acts on the tangent space TM ; for linear actions
of γ, γ̂ = γ. The symmetry of a solution x0 ∈ M is characterized by the isotropy
subgroup Σx0 = {γ ∈ Γ : γx0 = x0}, that is, the set of all group elements which leave
the solution x0 unchanged. Associated with an isotropy subgroup is a fixed point
subspace Fix[Σx0 ] = {x ∈ M : σx = x ∀σ ∈ Σx0}: the set of points fixed by all
elements of Σx0 . Two immediate consequences of Γ-equivariance are that (1) for any
solution x(t) to equation (4.3), γx(t) is also a solution, and (2) fixed-point subspaces
are invariant under the flow generated by G. We will refer to this latter property
as dynamical invariance. As in [6], we study special classes of symmetric systems
defined by the following groups: the circle group T 1 = {δ : δ ∈ [0, 2π)} (with action
on TN , θi 7→ θi+ δ, ∀ i), the cyclic subgroups Zm ∈ T 1 (with action θi 7→ θi+2π/m),
the subgroups of permutations on j-many coordinates, Sj, and the reflection group
Zr
2 with action θi 7→ −θi, ∀ i.
The remainder of the chapter proceeds as follows. In Section 4.3 we study (4.2)

with β = 0 (SN × T 1 equivariant), emphasizing the influence of general coupling
functions and obtaining additional results for odd functions f . In Section 4.4 the
T 1 symmetry is broken through re-introduction of h(θi)g(θj) terms. Finally, Section
4.5 applies the results of previous sections to two different phase reductions of the
Hodgkin-Huxley equations with electrotonic and synaptic neural coupling. Thus,
Sections 4.3 and 4.4 are largely abstract and general, while Section 4.5 concerns a
specific neural application.

4.3 Existence and stability of phase locked solu-

tions for systems with a rotation symmetry

In this section we study dynamical systems of the general form

θ̇ = ω +G(θ) ; θ ∈ TN (4.5)
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equivariant under rotation and permutation (actions of SN×T 1), or equivariant under
rotation, permutation, and reflection (SN × T 1+̇Zr

2). In both cases we immediately
transform to coordinates φj = θj − ωt rotating with the natural frequency, so that
(4.5) becomes

φ̇ = G(φ) ; φ ∈ TN , (4.6)

and seek phase locked solutions, in which all phase differences φj − φi ≡ φji are
constant. In particular, we look for ‘diagonal flow’ periodic solutions φ̄ such that

˙̄φi ≡ c, i = 1, . . . , N, (4.7)

where c is a constant, nonzero in general. These solutions are also periodic for (4.5),
and, employing a second rotating frame θi − (ω + c)t, they become fixed points.

Sections 4.3.1 and 4.3.3 obtain solutions for general systems of the form (4.6),
using tools from equivariant dynamics. In Sections 4.3.2 and 4.3.4, we consider the
special case of (4.6) in which coupling is of a pairwise phase-difference form, so that

φ̇i =
α

N

N∑

j=1

f (φj − φi) , i = 1, . . . , N, (4.8)

and thereby obtain additional results as well as simplified proofs. As discussed above,
this type of coupling corresponds to generic weakly-coupled oscillator systems. The
function f(·) is assumed to be continuously differentiable and 2π-periodic. To state
some of the results below, it is useful to express f in a Fourier series with coefficients
bol and b

e
l :

f(φji) =
∞∑

l=0

(bol sin(lφji) + bel cos(lφji)) . (4.9)

While several of the following results appear in the literature as noted below,
no unified presentation seems to exist, so we provide a summary here, including
extensions and new examples of our own.

4.3.1 Existence of phase locked solutions for general SN × T 1

equivariant systems

We now discuss isotropy subgroups: subgroups of the ‘original’ equivariant group
SN × T 1 which fix a (group orbit of) linear subspace(s) of TN (by definition, their
fixed point subspaces). Recall that the importance of this lies in the fact that fixed
point subspaces of isotropy subgroups are dynamically invariant.

Ashwin and Swift [6] found all of the isotropy subgroups of SN ×T 1 acting on TN.
To understand what these are, it is easiest to study configurations of phases which
comprise their fixed point subspaces. The first step is to partition the N phases φi
into m blocks, each containing k phases. Then, further partition each of these m
blocks into lB subblocks each containing kj phases (k = (k1+ · · ·+ klB)). See Fig. 4.1
(a). Let Skj ⊂ SN be the subgroup of permutations of phases within each subblock
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k1

k2
...kl B

..
.

...

block 
(repeated 
m times)

...

..
.

...

a) b)subblocks

Figure 4.1: A general element of Fix
[
(Sk1 × · · · × SklB )

m+̇Zm(ρm)
]
, shown twice to

emphasize different features. (a) Partition of oscillators among m blocks and klB
subblocks. (b) Labelling of phases. Action of Zm(ρm) is rotation by 2π

m
(shown)

followed by relabelling of phases (see text).

of kj phases. Then the subgroup (Sk1 × · · · × SklB )
m ⊂ SN leaves our partition of

oscillators invariant, no matter how the blocks and subblocks of phases are arranged
around the circle.

We now address spacing among the subblocks. Consider the cyclic subgroups
Zm ⊂ T 1 (with action generated by φi 7→ φi + 2π/m). If the m blocks are regularly
spaced as in Fig. 4.1, the resulting configuration will be invariant under the additional
subgroup Zm(ρm) ⊂ SN×T 1, which, following [6], is defined as follows. Let l = 1, ...,m
index the blocks in order of increasing phase, and fix some ordering of the k phases in
the lth of the m blocks as φl,1, ..., φl,k, where φl,1, ..., φl,k1 belong to the 1st subblock
of the lth block, φl,k1+1, ..., φl,k1+k2 belong to the 2nd, etc. See Fig. 4.1 (b). Then the
generator of the m-element subgroup Zm(ρm) ⊂ SN × T 1 acts via the shift φi 7→ φi+
2π/m, followed by the permutations (φm,1, φ(m−1),1, ..., φ1,1), (φm,2, φ(m−1),2, ..., φ1,2),
..., (φm,k, φ(m−1),k, ..., φ1,k), which ‘relabel’ the rotated oscillators between sequentially
ordered blocks.

Taking the (semi) direct products of the two subgroups discussed above gives
(exactly) the whole family of isotropy subgroups:

Theorem 4.3.1. (Ashwin and Swift [6]) Every isotropy subgroup of a general SN×T 1-
equivariant vector field is of the form:

Σk,m ≡ (Sk1 × · · · × SklB )
m+̇Zm(ρm) ,

where N = m(k1 + · · ·+ klB).

The permutations all commute, hence the direct products, while the Zm action does
not commute with the permutations, hence the semi-direct product denoted by +̇.
See Fig. 4.2 for examples.

Overall, the fixed-point subspace Fix[Σk,m] is an lB-torus: there are lB−1 degrees
of freedom setting the spacings between the blocks, plus an additional degree of
freedom determining a ‘reference’ φ1; this represents the T

1 group orbit.
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N-p
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k1

k2

φ1

d)

δ

Figure 4.2: Illustrations of equilibria fixed under the actions of various isotropy sub-
groups. (a) An element of Fix[(Sk1×Sk2)3+̇Z3]. Each square represents k1 oscillators
mutually in phase, and successive squares denote groups differing in phase by 2π/3
(similar for circles). Elements of this fixed point subspace are parameterized by two
angles φi and δ, so it is a 2-torus. (b) (Sk)

m+̇Zm (rotating block modes) with m = 6,
(c) Sp × SN−p (two-block modes), and (d) SN (in-phase mode).

Ashwin and Swift then show that there exist periodic orbits with diagonal flow
having maximal symmetry given by certain of these isotropy subgroups:

Theorem 4.3.2. (Ashwin and Swift [6]) SN × T 1 equivariant flows on the N-torus
generically have periodic orbits of diagonal flow with maximal isotropy (Sk1×Sk2)m+̇Zm,
for each m, k1 6= k2 such that m(k1 + k2) = N .

This theorem is proved by noting that, without loss of generality, the phases of the
oscillators can be ordered as φ1 ≤ φ2 ≤ · · · ≤ φN ≤ φ1 + 2π. The oscillators
retain their ordering under the dynamics, i.e., they can never ‘pass’ each other, since
this would involve crossing an invariant fixed-point subspace. Projecting the phases
onto the manifold φ1 = 0 (by subtracting the instantaneous value of φ1 from each
phase) gives a simplex called the ‘canonical invariant region’ (CIR). The intersection
of Fix[(Sk)

m+̇Zm] with the CIR is a zero-dimensional invariant subspace, i.e., an
equilibrium. In the unprojected system, this corresponds to a periodic orbit (or a
circle of equilibria if φ1 = 0 for all time) with isotropy (Sk)

m+̇Zm. Furthermore, the
intersection of Fix[(Sk1×Sk2)m+̇Zm] with the CIR is a one-dimensional line segment.
The end points of this segment have isotropy (Sk1+k2)

m+̇Zm, and are equilibria with
stability in the direction of the line segment determined by the same eigenvalue.
Provided this eigenvalue does not vanish (this is the nondegeneracy condition satisfied
for generic functions f), this can only happen if there is at least one equilibrium
in the interior of the line segment. In the original system, this corresponds to a
periodic orbit (or one-torus of equilibria if φ̇1 = 0 for all time) with isotropy (Sk1 ×
Sk2)

m+̇Zm. If k1 = k2, the midpoint of the line segment is an equilibrium with isotropy
(Sk1)

2m+̇Z2m; this can serve as the necessary equilibrium in the interior of the line
segment. With an additional nondegeneracy condition, Ashwin and Swift’s result can
be extended to show that periodic orbits of diagonal flow exist with maximal isotropy
(Sk1 × Sk2)m+̇Zm with k1 = k2 as well.
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4.3.2 Additional results and simplified proofs for pairwise
phase-difference SN × T 1 equivariant systems

As discussed in the previous section, Ashwin and Swift [6] developed their existence
proof for systems coupled with general T 1-equivariant functions (4.6). The special
additive, pairwise-coupled form of the coupling in (4.8), which we study in this section,
allows a much simpler argument to prove (a restricted version of) Theorem 4.3.2.

For a (Sk1 × Sk2)m+̇Zm solution with each pair of clusters separated by phase δ
(see Figure 4.2(a)) to have diagonal flow requires φ̇i ≡ c(δ) ∀i, for some fixed δ. This
condition reduces to

c1(δ) = c2(δ) , where (4.10)

c1(δ) = k1

m−1∑

j=0

f

(
2πj

m

)
+ k2

m−1∑

j=0

f

(
2πj

m
+ δ

)
(4.11)

c2(δ) = k2

m−1∑

j=0

f

(
2πj

m

)
+ k1

m−1∑

j=0

f

(
2πj

m
− δ
)

(4.12)

are the (constant) phase velocities for oscillators in k1 or k2-clusters, respectively (cf.
[103] form = 1). A quick sketch shows that at least one δ ∈ (0, 2π/m) satisfying (4.10)
must exist if c′1(0)/k2 = −c′2(0)/k1 is nonzero, since c′1,2(0) = c′1,2(2π/m). Thus, the

nondegeneracy condition becomes
∑m−1

j=0 f
′(2πj

m
) 6= 0; for SN−p×Sp solutions, m = 1,

implying f ′(0) 6= 0. Further, for (Sk)
m+̇Zm rotating blocks the equality φ̇i ≡ γ is

automatic. Finally, we note that if k1 = k2, δ = π/m always satisfies (4.10), so that
the corresponding (Sk1×Sk1)m+̇Zm solutions may also have symmetry (Sk1)

2m+̇Z2m.
These arguments extend in a natural way to show the existence of weak solutions to

the partial differential equations derived from (4.8) as N →∞ (see [43] for the deriva-
tion of this PDE). These are symmetrically-spaced combinations of delta distributions
rotating at the frequency c(δ) found above, with the kj-cluster distributions weighted
by kj(N)/m(k1(N) + k2(N)), j = 1, 2. Here, kj(N) is the number of oscillators in
a cluster when the total number of oscillators is N , and the N → ∞ limit is taken
over a subsequence of configurations ([45]) with constant kj(N)/m(k1(N) + k2(N))
such that m (fixed) divides k1(N) + k2(N). Under the same nondegeneracy condi-
tions as above, their existence may be shown for any values of kj/m(k1+k2) and any
m. Furthermore, if f lacks m-th Fourier harmonics and their multiples, families of
Zm-symmetric solutions analogous to the fixed tori of Section 4.3.7 also exist.

Despite the variety of these equilibria, we can prove a result on the non-existence
of fixed points in a region surrounding the in-phase solution. Define the open N -

cylinder CR1

4
= {θ|d(θ, θd(ψ)) ≤ R1 for some ψ ∈ [0, 2π]}. Here, d(·, ·) is the Euclidian

metric on RN (and hence on TN) and θd(ψ) is the N -vector with all coordinates equal

to ψ (so that the axis of CR1 is the diagonal D 4
= {θ|θi = θj ∀ i, j}; see Figure 4.3).

Proposition 4.3.1. Let R1 > 0 be such that either f restricted to (0, 2R1) or f
restricted to (−2R1, 0) is of one sign (i.e., f is strictly negative or positive in the
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C

D

Figure 4.3: The diagonal D and cylinder C of Proposition 4.3.1. The cube represents
the N -torus.

region). Then there are no fixed points of (4.8) in CR1 \ D.

Proof. First we note that for φ ∈ CR1 , there exists a ψ s.t. φ ∈ BR1(ψ)
4
= {φ|d(φ, θd(ψ)) <

R1)}. Thus in particular |φj − ψ| < R1 ∀j; summing two of these inequalities and
applying the triangle inequality gives |φji| < 2R1 ∀ i, j. Next, consider an arbitrary
N -vector φ ∈ CR1 \ D, where without loss of generality φ1 ≤ φ2 ≤ · · · ≤ φN . If the
chosen interval in the hypothesis is (0, 2R1), note that 2R1 > φj − φ1 ≥ 0 ∀ j and

φj − φ1 > 0 for at least one j (since φ /∈ D). Thus, φ̇1 = α
N

∑N
j=1 f(φj − φ1) 6= 0,

because each term in the sum is either zero or of the same sign (the continuity of
f implies that f(0) is either 0 or of the same sign as f(φ) for φ ∈ (0, 2R1)) and at
least one term is nonzero. If the chosen interval is (−2R1, 0), we use the facts that
0 ≥ φj − φN > −2R1 ∀ j and φj − φN < 0 for at least one j. Similarly, then,

φ̇N = α
N

∑N
i=1 f(φj − φN) 6= 0. Hence φ is not a fixed point.

This result does not exclude orbits with nonzero diagonal flow, which may exist within
CR1 \ D, but only if f is not odd (see below).

4.3.3 Existence of phase locked solutions for general SN ×
T 1+̇Zr

2 equivariant systems

We now consider systems with an additional reflection symmetry, e.g. in the case
that f is an odd function, so that the complete symmetry group is SN × T 1+̇Zr

2 ;
recall that the nontrivial action of the two-element group Z r

2 on TN is the reflection
θi 7→ −θi ∀ i. For the general system (4.6), Zr

2 equivariance implies G(−θ) = −G(θ).
We now define the isotropy subgroups of SN ×T 1+̇Zr

2 . The set of these subgroups
obviously contains those identified in Thm. 4.3.1. We ask if more isotropy subgroups
may be found in the presence of the additional Zr

2 symmetry. Our strategy is to
construct configurations invariant under various subgroups of SN × T 1+̇Zr

2 .
We begin with the same initial partition as in the previous section: break the

N phases into m blocks, each containing k phases. We then partition each of these
m blocks into 2lB + 1 subblocks, where subblocks j, j + 1 each contain kj phases,
j = 1, ..., lB, and the final subblock (j = 2lB+1) has klB+1 phases (k = 2k1+· · ·+2klB+
klB+1). See Fig. 4.4(a). The subgroup (Sk1 ×Sk1 × · · · ×SklB ×SklB ×SklB+1)

m ⊂ SN
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k2

k1

k1

δ1

-δ1

2π /mδ1

2k1 + k2

φφφφL

δ1 =0

φφφφR

k2

2k1

a)

b) c)

Figure 4.4: (a) A general element φ of Fix
[
(Sk1 × Sk1 × Sk2)m+̇Zm(ρm)+̇Zr

2(ρ
r
2)
]

for m = 3, shown twice to highlight different features. Left, partition and spacing of
phases. Right, phase labelling and action of the Zr

2 flip φj → −φj, which is undone by
the permutation ρr2 ∈ SN . This fixed point subspace is 2 dimensional in the original
coordinates, the degrees of freedom being δ1 and a rigid rotation. (b) The special
“left” endpoint element of φL of Fix

[
(Sk1 × Sk1 × Sk2)m+̇Zm(ρm)+̇Zr

2(ρ
r
2)
]
obtained

by setting δ1 = 0. (c) The other endpoint φR, with δ1 = π/m.

leaves our partition of oscillators invariant. Additionally, if the m blocks are evenly
distributed as in Fig. 4.4(a), the configuration will be invariant under

Σk,m ≡ (Sk1 × Sk1 × · · · × SklB × SklB × SklB+1)
m+̇Zm(ρm) ,

exactly as in Section 4.3.1.
If we make an additional restriction on the configuration so that pairs of subblocks

are arranged on either side of a ‘central point’ (to be explained), the configuration
will be fixed under an additional subgroup of SN×T 1+̇Zr

2 . Without loss of generality
(i.e., up to rigid rotation due to T 1 symmetry), we define our configuration as follows.
Let 2πl

m
be the center for the lth block, meaning that the (lB+1)th subblock of the lth

block will have phase 2πl
m

and that the (j+1)st subblocks will have phase 2πl
m
− δj and

2πl
m

+ δj, respectively, j = 1, 3, 5, ..., 2lB − 1. See Fig. 4.4(a) for the example lB = 1,
m = 3. In what follows, we refer to a general configuration of this type simply as φ.

Next, motivated by [5], define the two-element subgroup Zr
2(ρ

r
2) ⊂ SN ×T 1+̇Zr

2 as
follows. Fix some ordering of the k phases in the lth of the m blocks as φl,1, ..., φl,k,
where, as in Section 4.3.1, φl,1, ..., φl,k1 belong to the 1st subblock of the lth block, etc.
Then (the nontrivial element of) Zr

2(ρ
r
2) acts via the flip φi 7→ −φi ∀i, followed by the
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permutations (φl,j , φ(m−l),(j+1)), for all combinations of subblock indices j = 1, ..., lB
and block indices l = 1, ..., bm/2, c; (φl,j , φ(m−l),j) for subblock index j = lB + 1 and
block indices l = 1, ..., bm/2, c; and (φl,j , φl,(j+1)) for subblock indices j = 1, ..., lB
and block index l = m.

Now, note that general configurations of the form of “φ” introduced in the previous
configurations are fixed by

Tk,m ≡ (Sk1 × Sk1 × · · · × SklB × SklB × SklB+1)
m+̇Zm(ρm)+̇Z

r
2(ρ

r
2) ,

so that the Tk,m are isotropy subgroups of SN ×T 1+̇Zr
2 . Therefore we have identified

new isotropy subgroups:

Proposition 4.3.1. Isotropy subgroups of SN × T 1+̇Zr
2 include those of the form:

Σk,m ≡ (Sk1 × · · · × SklB )
m+̇Zm(ρm) ,

where N = m(k1 + · · ·+ klB)
and of the form

Tk,m ≡ (Sk1 × Sk1 × · · · × SklB × SklB × SklB+1)
m+̇Zm(ρm)+̇Z

r
2(ρ

r
2)

where N = m(2k1 + · · ·+ 2klB + klB+1).

We conjecture that Proposition 4.3.1 actually lists all of the isotropy subgroups (up
to conjugacy) of SN × T 1+̇Zr

2 .
In analogy with Theorem 4.3.2, we now identify particular isotropy subgroups

which give the maximal symmetry of diagonal flow-periodic solutions. In this case an
inequality will distinguish the open sets of oscillator systems which are guaranteed to
have periodic solutions with the desired maximal isotropy; this is a difference from
Theorem 4.3.2, in which the solutions of interest existed for generic systems.

Proposition 4.3.2. If the eigenvalues λL and λR defined in the proof below are
nonzero and of the same sign, then the SN × T 1+̇Zr

2 equivariant flow (4.8) on the
N-torus has a periodic orbit of diagonal flow with maximal isotropy (Sk1 × Sk1 ×
Sk2)

m+̇Zm(ρm)+̇Z
r
2(ρ

r
2), where m, k1, and k2 are such that m(2k1 + k2) = N .

An element of the fixed point subspace Fix
[
(Sk1 × Sk1 × Sk2)m+̇Zm(ρm)+̇Zr

2(ρ
r
2)
]
is

shown in Fig. 4.4.

Proof. The proof follows the pattern of that given by Ashwin and Swift [6] for The-
orem 4.3.2 above. The two dimensional dynamically invariant space
Fix

[
(Sk1 × Sk1 × Sk2)m+̇Zm(ρm)+̇Zr

2(ρ
r
2)
]
has a one dimensional intersection with

the space defined by φ1 = 0. Therefore, transforming to coordinates rotating with
φ1 and w.l.o.g. setting φ1 = 0 we obtain in these new coordinates a one dimensional
invariant space of configurations of the form shown in Fig. 4.4 and parameterized by
δ1.

This one dimensional space is itself split into invariant line segments defined by
ordering of the subblocks; the canonical invariant region in which phases are arranged
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in increasing order (discussed above in the context of Theorem 4.3.2) corresponds to
a segment with endpoint values of δL = 0, δR = π

m
at which certain subblocks coincide

(the subscripts here stand for left and right). See Fig. 4.4. The configurations φL and
φR at these left and right endpoints have isotropy (S2k1+k2)

m+̇Zm(ρm)+̇Z
r
2(ρ

r
2) and

(S2k1 × Sk2)
m+̇Zm+̇Z

r
2 , respectively. Note that, since they have different isotropy,

the the stability of these two phase locked states in the direction of the invariant line
segment (parameterized by δ1) connecting them is not identical, unlike the case of
Theorem 4.3.2.

In particular let λL be the eigenvalue corresponding to the eigenvector of the Jaco-
bian of (4.6) at φL pointing toward φR and λR be the eigenvalue for same eigenvector
of the Jacobian at φR. If λL and λR are nonzero and of the same sign then there must
be least one fixed point in the interior of the line segment. In the original coordinate
system, this point corresponds to a periodic orbit (or one-torus of equilibria if φ̇1 = 0
for all time) with maximal isotropy (Sk1 × Sk1 × Sk2)m+̇Zm(ρm)+̇Zr

2(ρ
r
2).

4.3.4 Additional results and simplified proofs for pairwise
phase-difference SN × T 1+̇Zr

2 equivariant systems

For the case of pairwise phase-difference coupling (4.8), Zr
2 equivariance implies f(θj−

θi) = −f(θi − θj); in other words, coupling functions f(·) must be odd.

Existence of phase-locked solutions

We may use the phase-difference form of (4.8) to explicitly calculate the eigenvalues
λL and λR of Proposition 4.3.2, yielding the companion result:

Proposition 4.3.3. If

λL ≡ −(2k1 + k2)
m−1∑

j=0

f ′
(
2πj

m

)
= −(2k1 + k2)m

∑

l∈M(m)

lbol (4.13)

and

λR ≡ −2k1
m−1∑

j=0

f ′
(
2πj

m

)
− k2

m−1∑

j=0

f ′
(
2πj

m
+
π

m

)
(4.14)

= −2k1m
∑

l∈M(m)

lbol − k2m
∑

l∈M(m)

lbol cos(
lπ

m
) (4.15)

are nonzero and of the same sign, then the system (4.8) has a periodic orbit of diagonal
flow with maximal isotropy (Sk1 × Sk1 × Sk2)m+̇Zm(ρm)+̇Zr

2(ρ
r
2), where m, k1, and

k2 such that m(2k1 + k2) = N . A sufficient condition for this to occur is

k1 >
1

2
k2

∣∣∣∣∣

∑m−1
l=0 f ′

(
2πl
m

+ π
m

)
∑m−1

l=0 f ′
(
2πl
m

)
∣∣∣∣∣ . (4.16)
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Figure 4.5: Phase velocities (i.e. values of φ̇j) for the different subblocks; labeling as
used in Remark 4.3.1.
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Figure 4.6: The phase velocity c1(δ1) of Remark 4.3.1 Examples 1 and 2. (a) for
m = 3 and f(·) = sin(3·) + sin(2·), a (Sk1 × Sk1 × Sk2)

m+̇Zm+̇Z
r
2 solution exists

for k1 = 2, k2 = 3. (b) However, no such solution exists for k1 = 1, k2 = 5. (c)
For m = 3 again but f(·) = sin(6·) + sin(2·), all combinations of k1 and k2 give
(Sk1 × Sk1 × Sk2)m+̇Zm+̇Zr

2 phase locked solutions; plotted, k1 = 1, k2 = 5.

Proof. This result follows from direct calculation. The relevant eigenvector is

vδ = (−1, ...,−1︸ ︷︷ ︸
k1

, 1, ..., 1︸ ︷︷ ︸
k1

, 0, ..., 0︸ ︷︷ ︸
k2︸ ︷︷ ︸

, ...︸︷︷︸,−1, ...,−1︸ ︷︷ ︸
k1

, 1, ..., 1︸ ︷︷ ︸
k1

, 0, ..., 0︸ ︷︷ ︸
k2︸ ︷︷ ︸

(repeated m times)

) (4.17)

which reflects variations in δ1: the central blocks of k2 oscillators remain unchanged,
while the distance δ1 separating them from the flanking blocks of k1 oscillators is
contracted or expanded. Multiplying by the Jacobian matrix J(φL) gives J(φL)vδ =
λLvδ, with λL as given in the Proposition; likewise, J(φR)vδ = λRvδ (see Fig. 4.4 for
illustrations of φL and φR).

Remark 4.3.1. In direct analogy to Section 4.3.2 above, we can write down the phase
velocities c1(δ1) and c2(δ1) of the first (i.e., with least-positive phase) and second k1
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sublocks and the phase velocity c3(δ1) of the k2 subblocks. See Fig. 4.5. Our objective,
as above, is to check under what conditions there exists a value of δ̄1 ∈ (0, π/m) for
which all three of these phase velocities are identical: c1(δ̄1) = c2(δ̄1) = c3(δ̄1). This
δ̄1 would correspond to a phase locked solution with maximal isotropy (Sk1 × Sk1 ×
Sk2)

m+̇Zm+̇Z
r
2 . A calculation shows that

c1(δ̄1) = k1

m−1∑

j=0

f

(
2πj

m
+ 2δ̄1

)
+ k2

m−1∑

j=0

f

(
2πj

m
+ δ̄1

)
(4.18)

c2(δ̄1) = 0 (4.19)

c3(δ̄1) = −c1(δ̄1) . (4.20)

Therefore, the desired solution exists if and only if c1(δ̄1) = 0 for some δ̄1 ∈ (0, π
m
).

Such a δ̄1 is guaranteed to exist if c
′
1(0) and c

′
1(

π
m
) have the same sign. This condition

on the derivatives of c1(·) reduces to precisely the same requirement as that for λL
and λR to take same sign in Proposition 4.3.3.

Example 1. For a fixed number m of blocks, let f(·) = sin(m·)+sin(q·), where q is
not a multiple of m (in other words, q 6=M(m). Then,

λL = −m2(2k1 + k2) (4.21)

λR = −m2(2k1 − k2) . (4.22)

Therefore, if k1 > k2/2, there exists a solution of maximal isotropy (Sk1 × Sk1 ×
Sk2)

m+̇Zm(ρm)+̇Z
r
2(ρ

r
2). We verify this by choosing m = 3, q = 2, k2 = 3, and

k1 = 2 > k2/2 and plotting the quantity c1(δ1) discussed in Remark 4.3.1. See
Figure 4.6(a); note that c1(δ̄1) = 0 for some δ̄1 ∈ (0, π/m), as expected.

Now, if we redistribute the phases among subblocks so that k2 = 5, and k1 =
1 < k2/2, such a solution is no longer guaranteed; indeed, plotting c1(δ1) in this case
(Figure 4.6(b)), we see that c1(δ1) 6= 0 for δ1 ∈ (0, π/m), so there is no solution with
the desired maximal isotropy.

Example 2. For a fixed number m of blocks, let f(·) = sin(2m·) + sin(q·), where q
is not a multiple of m. Then,

λL = −2m2(2k1 + k2) (4.23)

λR = −2m2(2k1 + k2) . (4.24)

Since λL and λR have the same sign for any k1 and k2, there will always exist a
solution of maximal isotropy (Sk1 × Sk1 × Sk2)

m+̇Zm(ρm)+̇Z
r
2(ρ

r
2). We verify this

via the plot of Figure 4.6(c) for m = 3, q = 2, k2 = 5, and k1 = 1: there exists a
δ̄1 ∈ (0, π/m) such that c1(δ̄1) = 0, giving the expected phase locked solution.
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Gradient dynamics and consequences

We observe as in Theorem 9.15 of [94] that:

Proposition 4.3.2. Equation (4.8) is a gradient dynamical system on TN with po-
tential

V =
α

N

N−1∑

i=1

N∑

j=i+1

F (φj − φi), where f(θ) = F ′(θ). (4.25)

Proof. Note that

−∂V
∂φi

=
α

N

∑

j<i

f(φj − φi)−
α

N

∑

j>i

f(φi − φj); (4.26)

the oddness of f implies that φ̇i = −∂V/∂φi.

Proposition 4.3.2 implies that

V̇ =
N∑

i=1

∂V

∂φi
φ̇i = −

N∑

i=1

φ̇2i ≤ 0 , (4.27)

with equality only at equilibria. Thus, equation (4.8) with odd f(·) has no periodic or
homoclinic orbits or heteroclinic cycles: all solutions approach equilibria, and almost
all approach stable equilibria. In particular,

Corollary 4.3.3. For f odd, equation (4.7) has no solutions unless c = 0.

This immediately implies a corollary to Proposition 4.3.1, which shows that, for
odd f , all phase locked solutions (not just fixed points) can be ruled out in the cylinder
of phase space introduced there:

Corollary 4.3.4. Let R1 > 0 be such that either f restricted to (0, 2R1) or f restricted
to (−2R1, 0) is of one sign (i.e., f is strictly negative or positive in the region). If f
is odd then there are no phase locked solutions of (4.8) in CR1 \ D.

4.3.5 Linear stability of periodic orbits for pairwise phase-
difference coupling

Rotating blocks

We study solutions with isotropy (Sk)
m+̇Zm(ρm) (rotating block modes), Sp × SN−p

(two-block modes), and SN (in-phase mode) for pairwise phase-difference systems
(4.8); see Fig. 4.2. Since the Jacobian of (4.8) is constant along these periodic orbits
with diagonal flow, this problem reduces to computation of eigenvalues ([6]). Stability
will be discussed in terms of orbital stability, which implies asymptotic stability with
respect to all perturbations transverse to the (continuous) T 1 group orbit of the
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solution (hence excluding the corresponding zero eigenvalue). Note that if c 6= 0 in
equation (4.7), the group orbit and periodic orbit coincide.

For (Sk)
m+̇Zm symmetric solutions we have, as in [131] and (for m = 1) [174]:

Proposition 4.3.5. Let N = mk and let φ̄ be an (Sk)
m+̇Zm(ρm)-invariant fixed

point or periodic orbit with diagonal flow. Then the eigenvalues of the Jacobian J(φ̄)
obtained by linearization of Equation (4.8) are

λ = λ0 = 0, with multiplicity 1
λ = λjr, j = 1, ...,m− 1 : ‘rotation eigenvalues’
λ = λp, with multiplicity m(k − 1) : ‘permutation eigenvalues’



 ,

λjr =
α

m

m−1∑

k=1

f ′
(
2πk

m

)(
exp

(
2πkji

m

)
− 1

)

=
α

2


 ∑

l∈M(m)j1

l (bol + ibel ) +
∑

l∈M(m)j2

l (bol − ibel )− 2
∑

l∈M(m)

lbol


 (4.28)

λp = −
α

m

m−1∑

k=0

f ′
(
2πk

m

)
= −α

∑

l∈M(m)

bol l, (4.29)

where

M(m)j1 = {mh− j|h = 1, 2, ...} , M(m)j2 = {mh+ j|h = 0, 1, 2, ...} ,
M(m) = {mh|h = 1, 2, ...} .

Remark 4.3.6. A fact useful in interpreting Eqn. (4.28) is that unless m is even
and j = m/2, conditions (ii) and (iii) above are not simultaneously violated by any
l. Thus, unless j = m/2 the sets Mj

1, Mj
2, and M are mutually disjoint; for j =

m/2, Mj
1

⋂Mj
2 = {m/2 +mh|h = 0, 1, 2, ...}.

Remark 4.3.7. As required since J(φ̄) is real, and as noted in [174], the rotational
eigenvalues λrj (excepting λ

r
N/2 if N is even) come in complex conjugate pairs. The

relationship λrj = λrm−j follows from the facts that l ∈ Mj
2 implies l ∈ Mm−j

1 and

l ∈Mj
1 implies l ∈Mm−j

2 .

The ‘rotation’ and ‘permutation’ terminology is due to [6], where general formulae for
eigenvalues and eigenvectors are presented. The proof of Proposition 4.3.5 repeatedly
uses the following simple fact. Define the setM = {l|l = qm for some q ∈ Z} and let
γ = exp(2πi/m); then for l̄ ∈ Z \M,

∑m−1
r=1 γ

l̄r = −1. From here, the m×m-blocked
structure of the Jacobian along with results on the eigenvectors of Toeplitz matrices
leads to the desired conclusion. For details, see the appendix to this chapter.
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If m = 1, then the proposition addresses the SN -invariant (in-phase) solutions.
Here there are no rotation eigenvalues, and the permutation eigenvalues are simply

λp = −αf ′(0) , (4.30)

with multiplicity N − 1. Nonlinear stability of these solutions is discussed in Section
4.4.2 (Proposition 4.4.2 with β = 0). At the other extreme, if m = N , the proposition
addresses the ZN -invariant solutions in which the phases of the oscillators are equally
spaced; these are called ‘rotating wave’ solutions by [6], and correspond to the ‘splay
state’ in the Josephson junction literature. In this case, there are no permutation
eigenvalues, and (4.28) reduces to equation (63) of [174].

We now give examples to illustrate several interesting stability behaviors implied
by Proposition 4.3.5. Including only the first harmonic in the coupling function
(f(·) = bo1 sin(·) + be1 cos(·)), we have for m > 1:

λp = 0,with multiplicity m(k − 1)

λjr =

{
α
2
(bo1 − ibe1) and α

2
(bo1 + ibe1) for j = 1 and m− 1

0 otherwise (multiplicity m− 3),

in addition to λ0. In this case the (Sk)
m+̇Zm solutions are highly degenerate and,

for αbo1 > 0, unstable. For m = N (k = 0), there are N − 2 zero eigenvalues. This
result is well-known from the Josephson junction literature; in [173], it is shown to
be related to the integrability of the equations for this choice of f .

On the other hand, we note that inclusion of higher harmonics in f(·) generically
unfolds the degeneracy in the sense that all but one (λ0) of the eigenvalues become
nonzero, implying instability or orbital stability. For example, adding the mth har-
monic (f(·) = bo1 sin(·) + be1 cos(·) + bom sin(m·) + bem cos(m·); m 6= 1), we obtain

λp = −αbomm, with multiplicity m(k − 1)

λjr =

{
α[1

2
(bo1 − ibe1)− bomm], c.c. if j = 1, m− 1

−αbomm otherwise (multiplicity m− 3),

so that any (Sk)
m+̇Zm solution is orbitally stable if αbom > α

bo1
2m

and αbom > 0. As
a third example, consider the case where only odd Fourier modes are included in f
(bl = 0 for even l) andm is even. ThenM(m) andM(m)j1,2 contain only even integers
for j even, and so the corresponding terms in (4.28)-(4.29) make no contribution.
Thus, Proposition 4.3.5 shows that at least m/2− 1 of the rotational eigenvalues are
zero, and all m(k − 1) of the permutation eigenvalues are zero. With λ0 = 0, this
gives at least N −m/2 zero eigenvalues, so this is another degenerate case.

Remark 4.3.8. For coupling functions whose harmonic indices belong entirely to
M(l), any oscillator may be individually translated from a (Sk)

m+̇Zm solution by a
multiple of 2π

l
to give another equilibrium. These translations give a total of lN fixed

points, each with identical stability (due to the 2π
l
periodicity of f). Using calculations
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similar to those above, the eigenvalues are:

λp = 0,with multiplicity m(k − 1)

λjr =

{
αl
2
(bol − ibel ), c.c. if j = 1, m− 1

0 otherwise (multiplicity m− 3)

}
.

We also note that the calculations which yield Proposition 4.3.5 also show which
eigenvectors correspond to zero eigenvalues and hence along which directions there
may be continuous families of equilibria. For example, with k = 1, m = N = 4 and
f(·) = sin(·), the nondiagonal zero eigenvector is (1,−1, 1,−1)T, which reflects the
fact that equilibrium is preserved if ‘diametrically-opposite’ pairs of oscillators are
rotated independently.

Two-block periodic orbits

For f ′(0) 6= 0, equation (4.30) guarantees that the SN -invariant solutions satisfy
the nondegeneracy assumption of Theorem 4.3.2. Then, the Theorem (with m =
1) implies that for some δ(p) > 0, equation (4.8) has periodic orbits with φji ∈
{0, δ(p), 2π − δ(p)} for all i, j. This occurs when two blocks of p and N − p
identical-phase oscillators are mutually out of phase by δ; to avoid redundancy, we
restrict 0 ≤ p ≤ bN/2c. The Jacobian from linearizing around a SN−p × Sp solution
has a four-blocked structure which yields (see Appendix for details):

Proposition 4.3.9. ([103]) Let φ̄ be an (Sp × SN−p)-invariant solution and 0 ≤ p ≤
bN/2c. Then for p ≥ 1 the eigenvalues of the Jacobian from equation (4.8) are:

λ1 = α(b− p
N
(a+ b)), with multiplicity p− 1

λ2 = α( p
N
(a+ c)− a), with multiplicity N − p− 1

λ3 = 0, with multiplicity 1

λ4 = α(N−p
N
b+ p

N
c), with multiplicity 1




. (4.31)

Here, a = f ′(0), b = −f ′(δ(p)), c = −f ′(−δ(p)) We remark that the result for p = 0
also follows from Proposition 4.3.5.

If f(·) is odd, two-block states with δ = π exist for any p since f(0) = f(π) = 0;
we write δ 6= δ(p) to indicate this p-independence of δ. Oddness of f also implies
b = c. This case was studied in [131], where expressions corresponding to (4.31) are
presented.

Corollary 4.3.10. Assume that b = c, δ 6= δ(p), and that a, b > 0. If α > 0, the
two-block equilibria of equation (4.8) are orbitally stable if and only if p = 0. If α < 0,
the equilibria are stable if and only if p 6= 0 and a < bp/(N − p), if the equilibria are
stable for p = k for some k ≤ bN/2c, then they are stable for p > k.

Proof. The results for α > 0 are immediate from λ4 of equation (4.31) and (4.30).
For α < 0, we note that λ1,2 ≤ 0 implies Na ≤ p(a + b) ≤ Nb. Upon rearranging,
this yields a ≤ b(N − p)/p and a ≤ bp/(N − p); for p in the given range, the latter
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inequality implies the first, and for fixed a and b it is clear that if the second inequality
is satisfied for p = k, then it continues to be satisfied as p increases. In this case λ1,
λ2 and λ4 are all strictly negative, leading to the Corollary.

We remark that if a, b < 0, the sign of α may be switched and the Corollary
applied, and that the result that stability of equilibria for p = k implies stability for
p = N/2 is stated in [131].

The corollary indicates that for α < 0 and under certain conditions on a, b, and
N , orbital stability of two-block fixed points can change as p is varied. For example,
if a = 1, b = 2, and N = 5, the equilibria are unstable for p = 0, 1 but are stable for
p = 2. In the special case a = b = c (which occurs, for example, if f(·) = sin(·)), note
that λ1 = −λ2 = α(a − 2p/N), λ4 = αa; thus the fixed points are unstable unless
αa < 0, N is even and p = N/2, in which case they are neutrally stable with N − 1
zero eigenvalues. As above, inclusion of higher harmonics in the Fourier series for f(·)
generically unfolds this degeneracy.

We close this subsection by remarking that techniques used to prove Proposi-
tions 4.3.5 and 4.3.9 could in principle be extended to calculate the stability of general
(Sk1 × Sk2)m +̇Zm solutions for m > 1, where m(k1 + k2) = N . We refer the reader
to [6] for the specific example (S2 × S1)

3 +̇Z3.

4.3.6 Nonlinear stability of periodic orbits – domains of at-
traction

Global stability for sin coupling

In the special case that f(·) = sin(·), it is possible to characterize the global dy-
namics of the system (4.8). In particular, Watanabe and Strogatz [173] define the
(codimension 2) incoherent manifold as the set where the centroid of the phases is
zero:

r ≡
∑

j

exp(iφj) = 0 (4.32)

(i =
√
−1) and the (codimension N−1) coherent manifold as the set where φj ≡ c, ∀j,

for some c. We will also refer to the coherent manifold as the perfectly synchronized
state (i.e., the diagonal D in Fig. 4.3). Watanabe and Strogatz show, using a change
of coordinates, that almost every initial condition asymptotically approaches the in-
coherent manifold when α < 0 (i.e., the incoherent manifold is globally attracting in
this case), and that the coherent manifold is globally attracting when α > 0. Here, we
obtain these results via an elementary proof independent of the Watanabe-Strogatz
coordinate change. The present method of proof, based on the gradient function of
Prop. 4.3.2 (valid since sin(·) is odd), is a special case of that independently used in
[98] to obtain more general results. We show

Proposition 4.3.4. The incoherent manifold is globally attracting when α < 0.

Proposition 4.3.5. The coherent manifold D (i.e. perfectly synchronized state) is
globally attracting when α > 0.
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Proposition 4.3.4 will find application in Section 5.4.2 below.
First, we classify the equilibria of

φ̇k =
α

N

N∑

j=1

sin (φj − φk) . (4.33)

Note that the condition φ̇k = 0 ∀ k implies

[
∑

j

ei(φj−φk) −
∑

j

ei(φk−φj)

]
= 0 (4.34)

∑

j

ei(φj−φk) =
∑

j

ei(φk−φj) (4.35)

e−iφk
∑

j

eiφj = eiφk
∑

j

e−iφj (4.36)

This final equation is clearly satisfied for all states on the incoherent manifold (in
which case

∑
j exp(iφj) = 0 which immediately implies

∑
j exp(−iφj) = 0). That is,

the incoherent N−2 dimensional incoherent manifold consists entirely of fixed points.
For equilibria not on the incoherent manifold, i.e.

∑
j exp(iφj) 6= 0, (4.36) gives

e−2iφk =

∑
j e
−iφj

∑
j e

iφj
∀k . (4.37)

Note that the right hand side is independent of k. This implies that φk = c + nkπ
∀ k, for some integers nk. In other words, all phases differ by 0 or π. Hence, the
only equilibria not on the incoherent manifold are “two-block” states or are on the
synchronized manifold (when all phases differ by 0).

In summary, we have shown

Lemma 4.3.1. For α 6= 0, all equilibria of Eqn. (4.33) are either (i) on the incoherent
manifold, or (ii) are “two-block states” with φ1, ..., φp ≡ c and φp+1, ..., φN ≡ c+π for
some c ∈ [0, 2π) and some value of p ∈ {1, ..., dN/2e−1}, or (iii) are on the coherent
manifold.

Note that the incoherent manifold contains states with no permutation or cyclic
symmetries; i.e., solutions other than the rotating-block or two-block types (for ex-
ample, N = 5 and θ1 = 0, θ2 = θ3 = δ, θ4 = θ5 = −δ, where δ = cos−1

(
1
4

)
and

δ < π).

Proof of Proposition 4.3.4. A direct calculation (see Corollary 4.3.10 above) shows
that, for the system (4.33), the coherent manifold and all two block states are unstable
unlessN is even and each of the two blocks (separated by π) contains the same number
N/2 of phases. These latter states are on the incoherent manifold. Together with
Lemma 4.3.1, this shows that all equilibria of (4.33) not on the incoherent manifold
are unstable, so that all stable equilibria lie in the incoherent manifold.

68



Thus, since almost every initial condition flowing under the gradient dynamics of
(4.33) must a approach a stable equilibrium, we have our desired result: the incoherent
manifold is globally attracting.

Proof of Proposition 4.3.5. To obtain this result we must show that all two-block
states (p > 0) and all states on the incoherent manifold are unstable. Therefore
almost all initial conditions must flow to the only possible stable equilibria, the co-
herent manifold. As above, direct calculation [22] shows that the two-block states are
unstable with α > 0. We now show the instability of all incoherent states.

It suffices to show that the potential V obtains its global maximum value only on
the incoherent manifold. Then, if a trajectory initially on the incoherent manifold
is perturbed off of this manifold, the potential will decrease, and, due to (4.27), the
trajectory will never return to the incoherent manifold, demonstrating its instability.

This property of V is easy to show. Since it is defined over the torus, the extreme
values of V occur (only) where ∇V = 0, i.e., at equilibria of (4.33). We now calculate
V at these equilibria.

V = − α
N

N∑

j=1

∑

k≥j
cos(φj − φk) (4.38)

= − α
N

N∑

j=1

N∑

k=1

cos(φj − φk) +
α

N

N∑

j=1

∑

k<j

cos(φj − φk) (4.39)

= − α
N

N∑

j=1

N∑

k=1

cos(φj − φk) +
α

N

N∑

j=1

∑

k≤j
cos(φj − φk)− α (4.40)

= − α
N

N∑

j=1

N∑

k=1

cos(φj − φk) +
α

N

N∑

j=1

∑

k≥j
cos(φj − φk)− α (4.41)

so that

V = − α

2N

N∑

j=1

N∑

k=1

cos(φj − φk)−
α

2
(4.42)

We now compute V at one of the two-block equilibria (groups of p andN−p angles out
of phase by π) described in Lemma 4.3.1. To directly calculate the sum in Eqn. (4.42)
we note that, each of the p times that φj lies in the block of p phases, the argument
of the sum over k takes the value 1, p times, and it takes the value −1, N − p times,
(and similarly when φj lies in the block of N − p phases). Thus, at a two-block state,

V = − α

2N
[p(p− (N − p)) + (N − p)((N − p)− p)]− α

2
(4.43)

= − α

2N
[p− (N − p)]2 − αN

2N
≤ −α

2
, (4.44)

with equality only if N is even and p = N/2 (in which case the two-block state lies
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on the incoherent manifold). Note that plugging p = 0 into (4.44) gives the potential
on the coherent manifold.

On the incoherent manifold, we expand the cos terms in (4.42), giving

V = − α

2N

N∑

j=1

cos(φj)
N∑

k=1

cos(φk) +
α

2N

N∑

j=1

sin(φj)
N∑

k=1

sin(φk)−
α

2
(4.45)

= 0 + 0− α

2
. (4.46)

Thus, comparing (4.44) and (4.46), which give all of the (local and global) extrema
of V , we see, as desired, that the potential reaches its maximum, −α/2, only on the
incoherent manifold and everywhere on this manifold, so the proposition follows.

Estimate for the domain of attraction of D for arbitrary phase-difference
coupling functions f

We now give a nonlinear stability result for the globally synchronized state that allows
for more general coupling. The following is valid for systems of the form (4.8):

Proposition 4.3.11. (Nonlinear stability of D.) For some s > 1, assume f ′(0) >
0 and let R > 0 be the smallest value for which either f ′(2R) = f ′(0)/s > 0 or
f ′(−2R) = f ′(0)/s > 0 (implying minθ∈[−2R,2R] f

′(θ) = f ′(0)/s). Then, if

α > 0

the domain of attraction for D includes CR 4
= {θ|d(θ, θd(ψ)) ≤ R for some ψ ∈ [0, 2π]}

(cf. Figure 4.3).

Proposition 4.3.11 follows from setting β = 0 in the more general Proposition 4.4.2,
the proof of which is given below.

4.3.7 Existence of fixed lB-tori

Proposition 4.3.12. For φ contained in an invariant lB-torus Fix[(Sk1 × · · · ×
SklB )

m+̇Zm] with N = m(k1 + · · ·+ klB), equation (4.8) reduces to:

φ̇i =
α

N

∑

l∈M(m)

{
belm

lB∑

q=1

kq(i) cos[lxq(i)] + bolm

lB∑

q=1

kq(i) sin[lxq(i)]

}
, (4.47)

where the numbers kq(i) and the angles xq(i) are as explained in Figure 4.7. In
particular (as found in [6]), if be,ol = 0 for all l ∈ M(m), then the lB-torus is a
continuum of fixed points.

Proof. Consider φ̇i = α
∑N

j=1 f (φji) for arbitrary i. First we calculate the contribu-

tions to φ̇i from odd (sine) modes of the coupling function. Computing the vectorfield
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k1(i)

φi

x2(i)

k2(i)
...

xlB(i)

klB(i)

..
.

...

Figure 4.7: The labeling scheme used in Proposition 4.3.12. Given the reference index
i corresponding to the φ̇i being computed, blocks of oscillators are numbered by the
index q in a counterclockwise fashion, starting with q = 1 for the block containing φi
itself. Each block contains kq(i) oscillators and is separated from its neighbor by the
angle xq(i) (by definition x1(i) ≡ 0).

in Eqn. (4.8) separately for each cluster of m blocks of kq(i) oscillators, the l
th Fourier

mode adds to φ̇i/[αkq(i)]:

bol

m−1∑

j=0

sin

(
lxq(i) + l

2πj

m

)
= bol sin(lxq(i))

m−1∑

j=0

cos

(
l
2πj

m

)

+ bol cos(lxq(i))
m−1∑

j=0

sin

(
l
2πj

m

)

=
bol
2
sin(lxq(i))

m−1∑

j=0

(
γlj + γ−lj

)
+

bol
2i

cos(lxq(i))
m−1∑

j=0

(
γlj − γ−lj

)
, (4.48)

where γ = e2πi/m. But, from Lemma 4.5.1,
∑m−1

j=0 γ
lj = 0 if l /∈ N (m) and = m

otherwise. Summing over the lb clusters, this gives the contribution of the odd Fourier
modes in Eqn. (4.47).

Repeating this analysis for the even modes, we obtain

bel

m−1∑

j=0

cos

(
lxq(i) + l

2πj

m

)
= bel cos(lxq(i))

m−1∑

j=0

cos

(
l
2πj

m

)

− bel sin(lxq(i))
m−1∑

j=0

sin

(
l
2πj

m

)

=
bel
2
cos(lxq(i))

m−1∑

j=0

(
γlj + γ−lj

)
+

bel
2i

cos(lxq(i))
m−1∑

j=0

(
γlj − γ−lj

)
. (4.49)
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By the same remarks following Eqn. (4.48), only the first term in Eqn. (4.49) con-
tributes to the flow, and only when l ∈ N (m). This yields the remainder of Eqn. (4.47).

Because the xq are arbitrary spacings between lB blocks, the family of fixed points
considered in the proof is at least lB− 1-dimensional. But the ‘initial’ φi in Fix[Σk,m]
may also take arbitrary values in Fix[Σk,m], so the entire set is a lB-torus.

For odd f , the fixed tori may also be found by showing that the potential (4.25) is
always constant under this same condition on the Fourier coefficients of f given in
Proposition 4.3.12.

If m = N and be,ol = 0 for all l = 0 (mod N), lB = 1 and Proposition 4.3.12
simply gives the circle of equilibria that is the T 1 group orbit of the ZN -symmetric
equilibrium of Proposition 4.3.5 (with k = 1). If m = 1 then Proposition 4.3.12 gives
no new information about fixed subspaces: be,ol = 0 for all l ∈M(m) implies that the
oscillators are uncoupled.

It is a general fact that if G1 ⊆ G2 for isotropy subgroups G1 and G2, then
Fix(G2) ⊆ Fix(G1). Therefore, since S1×S1× · · ·×S1 ⊆ Sk1 × · · ·×SklB , the lB-tori
of fixed points guaranteed by the theorem are actually contained in the (N/m)-torus
Fix[(S1 × S1 × · · · × S1)

m+̇Zm] = Fix[Zm].
The following examples illustrate implications of Proposition 4.3.12.

Example 1. Consider N = 4 and suppose be,ol = 0 for even l. For m = 4 the torus of
fixed points guaranteed by the proposition is just the one-torus Fix[Z4]. For m = 2,
we get the two-torus of fixed points Fix[Z2]. This describes the set of points for
which two oscillators are out of phase by π, and the other two are also out of phase
by π, corresponding to (φ1, φ2, φ3, φ4) = (ξ1, ξ2, ξ1 + π, ξ2 + π). Fix[Z2] contains both
Fix[Z4] = {(ξ, ξ + π/2, ξ + π, ξ + 3π/2)} and Fix[(S2)

2+̇Z2] = {(ξ, ξ, ξ + π, ξ + π)}.
Fix[Z2] also coincides with the (N − 2 = 2)-dimensional incoherent manifold

described in Section 4.3.6. Because Fix[Z2] is a fixed point subspace, the two-
dimensional incoherent manifold is dynamically invariant as found in [174]; Propo-
sition 4.3.12 gives conditions under which it is also dynamically fixed as well as the
expression for drift along this manifold. [174] also show that the (N − 2) dimensional
incoherent manifold is not dynamically invariant when N ≥ 5.

However, this manifold contains dynamically invariant (and perhaps dynamically
fixed) submanifolds: for φ in fixed point subspaces of isotropy subgroups which have
Zm as a subgroup (where m ≥ 2), the relevant centroid is zero. Thus, these fixed
point subspaces are contained in the incoherent manifold. Note that the invariant (or
fixed) tori have dimension lB ≤ N/m, which is less than N − 2 for N ≥ 5, m ≥ 2.

Example 2. Suppose N = 6 and f(·) = sin(·), and consider the ((S3)
2+̇Z2)-invariant

equilibria (e.g., (φ1, φ2, φ3, φ4, φ5, φ6) = (0, 0, 0, π, π, π) ≡ φ̄). From Proposition 4.3.5,
the eigenvalues for such equilibria are 0 with multiplicity five, and 6α with mul-
tiplicity one. The null eigenvectors may be taken to be e1 = (1, 1, 1, 1, 1, 1), e2 =
(2,−1,−1, 0, 0, 0), e3=(1, 1,−2, 0, 0, 0), e4 = (2,−1,−1, 2,−1,−1), e5 = (1, 1,−2, 1, 1,−2).
Figure 4.8 shows the potential V corresponding to perturbations to φ̄ in the directions
of these null eigenvectors. V is flat for perturbations in the e1, e4, and e5 directions
(each with a corresponding one-dimensional continuum of fixed points, overall giving
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Figure 4.8: Potential V for perturbations to φ̄ in the directions of the null eigenvectors,
as defined in the text.

a three-torus of equilibria), but not for perturbations in the e2 and e3 directions.
Proposition 4.3.12 guarantees the existence of the three-torus of equilibria Fix[Z2]
given by (φ1, φ2, φ3, φ4, φ5, φ6) = (ξ1, ξ2, ξ3, ξ1 + π, ξ2 + π, ξ3 + π); note that perturba-
tions to φ̄ in the e1, e4, and e5 directions keep the system in the Fix[Z2] subspace. The
e2 and e3 perturbations illustrate that every zero eigenvalue of Propositions 4.3.5 or
4.3.9 does not necessarily imply a corresponding one-dimensional continuum of fixed
points.

Example 3. Intersection of fixed tori. Suppose N = 6 and be,ol = 0 for even l and also
for l = 0 (mod 3) (for example, one could take f(·) = b1 sin(·)+ b5 sin(5·)+ b7 sin(7·)).
For m = 2, the proposition implies that there is a three-torus of fixed points Fix[Z2]
as given in Example 2. For m = 3, the proposition implies that there is a two-torus of
fixed points Fix[Z3] given by (φ1, φ2, φ3, φ4, φ5, φ6) = (ξ4, ξ5, ξ4 +2π/3, ξ5 +2π/3, ξ4 +
4π/3, ξ5 + 4π/3) and permutations. The intersection of Fix[Z2] and Fix[Z3] must at
least include Fix[Z6] since Z2 ⊂ Z6, Z3 ⊂ Z6 ⇒Fix[Z6] ⊆ Fix[Z2], Fix[Z6] ⊆ Fix[Z3].

4.4 Breaking the T 1 Symmetry: Product Coupling

Reintroducing the h and g terms and going back to θ coordinates, we return to the
SN -equivariant Eqn. (4.2), which we reproduce here for easy reference:

θ̇i = ω +
α

N

N∑

j=1

f (θj − θi) + h(θi)
β

N − 1

N∑

j 6=i
g(θj) . (4.50)

The results of this section are valid for arbitrary C1 2π-periodic functions g and h;
without loss of generality, we assume that g takes values in [0, 1]. Additional assump-

tions on the product function G(θ)
4
= h(θ)g(θ) simplify the discussion of bifurcations

in Section 4.4.1.
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4.4.1 Bifurcations of fixed points on the diagonal Fix[SN ]

This section concerns analysis local to the (perfectly synchronized) diagonal of TN ,

defined by D 4
= {θ|θi = θj ∀ i, j}, which is dynamically invariant (see Fig. 4.3).

Restricted to D and with θi ≡ θ, Eqn. (4.50) becomes

θ̇ = ω + αf(0) + βG(θ). (4.51)

This equation has fixed points given by θ̄ = G−1
(
−ω+αf(0)

β

)
. To simplify the analysis

in this section, we assume that G has a single minimum θmin with G′′(θmin) 6= 0, as
it does for the ‘neurobiological’ coupling functions to be considered in Section 4.5.

These conditions on G and ω > 0 imply that there are no, one, or two on-diagonal
fixed points, in the latter case denoted by θ̄1 < θ̄2. Linearized about these fixed points
(when they exist) θ̄k, Eqn. (4.50) is

ξ̇i = (N − 1)

[
− α
N
f ′(0) +

β

N − 1
g(θk)h

′(θk)

]
ξi +

[
α

N
f ′(0) +

β

N − 1
h(θk)g

′(θk)

]∑

j 6=i
ξj

4
= [Adξ]i , (4.52)

where

Ad =




ak ck ck · · · ck
ck ak ck · · · ck
· · ·
ck ck ck · · · ak


 , (4.53)

and

ak = (N − 1)

[
− α
N
f ′(0) +

β

N − 1
g(θk)h

′(θk)

]
, ck =

β

N − 1
h(θk)g

′(θk) +
α

N
f ′(0) .

(4.54)
Using the same argument as in the proof of Proposition 4.3.9, the eigenvalues of Ad

are

λk1 = −αf ′(0) + β
(
h′(θ̄k)g(θ̄k)− 1

N−1h(θ̄k)g
′(θ̄k)

)
,multiplicity N − 1, (4.55)

λk2 = βG′(θ̄k),multiplicity 1. (4.56)

Stability in the transverse directions (with respect to the diagonal) is determined
by λ1, and in the axial direction by λ2; note that our hypothesis on G implies that
λ2(θ̄1) < 0, and λ2(θ̄2) > 0. As β is decreased through β = (ω+αf(0))/|G(θmin)|, the
two fixed points coalesce and disappear in a saddle node bifurcation (the appearance
of these fixed points as β increases represents the phenomenon of oscillator death:
[53, 164]). For the remaining values of β, the orbit along D is the (SN symmetric)
periodic orbit θD(t). We will investigate the period and stability of this orbit in the
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following sections.

4.4.2 Frequency and stability of the in-phase periodic orbit

If β < (ω + αf(0))/|G(θmin)|, the period of the orbit on D is given by

τ =

∫ 2π

0

(
dθ

dt

)−1
dθ =

∫ 2π

0

dθ

ω + αf(0) + βh(θ)g(θ)
. (4.57)

Moreover, we have

Proposition 4.4.1. (Local stability of D.) The SN -symmetric periodic solution
θi(t) ≡ θD(t) along D is asymptotically stable if

α >
βN

(N − 1)τf ′(0)

∫ 2π

0

g(θ)h′(θ)

ω + αf(0) + βg(θ)h(θ)
dθ , (4.58)

where τ is the (generally α-dependent) period of θD(t) given in equation (4.57) and
we assume f ′(0) > 0.

Closely related results are found in [166, 75].

Proof. Linearized around θD(t), equation (4.50) becomes ξ̇i = [Ad(t)ξ]i. The proof
uses the fact that the (t-dependent) symmetric matrix Ad(t) has a particularly simple
structure, and that it can be diagonalized by a t-independent similarity transforma-
tion. Specifically, the eigenvalues of Ad(t), where t is viewed as a (fixed) parameter,
are:

λ1(t)=−αf ′(0) + β

(
g(t)h′(t)− 1

N − 1
h(t)g′(t)

)
, multiplicity N − 1 ,

λ2(t)= βG′(t), multiplicity 1,

where g(t) is written for g(θD(t)), etc. The orthogonal eigenvectors of λ1(t) (denoted
by χ1, . . . , χN−1) may be chosen constant and orthogonal to the eigenspace of λ2(t),
which is spanned by the eigenvector (1, . . . , 1)T. Thus, χ1, . . . , χN−1 span the space
normal to θD(t). In these eigencoordinates the linearized system decouples as

ξ̇i = λ1(t)ξi, i = 1, . . . , N − 1, ξ̇N = λ2(t)ξN .

Define the (N −1)-dimensional plane
∑

= {χ|χN = 0} and consider the Poincaré
map P : U → U for some neighborhood U ⊂ ∑ of 0. The orbit θD(t) intersects

∑

at 0, which is a fixed point for P . For i = 1, . . . , N − 1, P : ξi 7→ (exp
∫ τ
0
λ1(t)dt)ξi so

that 0 is a stable fixed point for P if
∫ τ
0
λ1(t)dt < 0. (Due to the periodicity of G(t),∫ τ

0
λ2(t)dt ≡ 0, as it must, being the Floquet exponent along the periodic orbit). We
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have
∫ τ

0

λ1(t)dt

=

∫ τ

0

(
−αf ′(0) + β

[
g(t)h′(t)− 1

N − 1
h(t)g′(t)

])
dt

= −αf ′(0)τ +
∫ 2π

0

β

(
− [h(θ)g′(θ) + h′(θ)g(θ)]

N − 1
+
Ng(θ)h′(θ)

N − 1

)
θ̇−1dθ

= −αf ′(0)τ − 1

N − 1
ln[ω + αf(0) + βh(θ)g(θ)]2π0

+

∫ 2π

0

βNg(θ)h′(θ)

(N − 1)(ω + αf(0) + βh(θ)g(θ))
dθ (4.59)

= −αf ′(0)τ +
∫ 2π

0

βNg(θ)h′(θ)

(N − 1)(ω + αf(0) + βh(θ)g(θ))
dθ , (4.60)

where the second term in equation (4.59) vanishes due to the 2π-periodicity of h and
g. Thus,

∫ τ
0
λ1(t)dt < 0 when the inequality of Proposition 4.4.1 is satisfied. Since

stability of the fixed point 0 under P implies stability of θD(t) for equation (4.8), the
Proposition is proven.

A simple calculation using integration by parts and the 2π-periodicity of g and
h shows that for α = 0 and asymptotically small β, the right-hand side of (4.60)
becomes βN

N−1f
′
s(0), which (cf. (4.30)) determines the stability of the in-phase solution

if synaptic coupling β
N−1h(θi)

∑
j 6=i g(θj) is taken to be weak and then averaged to

yield β
N−1

∑
j 6=i fs(θj−θi). This agreement between the averaged and original versions

of (4.50) for sufficiently small β is expected from the averaging theorem ([82]), and
reveals how (4.58) generalizes the stability result found in [171, 85] for N = 2 and
averaged synaptic coupling.

Equation (4.58) may be used to estimate a critical value αloc such that θD(t) is

asymptotically stable for α > αloc. Letting ĥ be a Lipschitz constant for h, we note
that

∫ 2π

0

g(θ)h′(θ)

ω + αf(0) + βh(θ)g(θ)
dθ ≤

∫ 2π

0

ĥ

ω + αf(0) + βh(θ)g(θ)
dθ = ĥτ, (4.61)

where the inequality follows from the bound on g and the definition of the Lipschitz

constant. Thus, from (4.58) we have stability if α > Nβĥ
(N−1)f ′(0)

4
= αloc. With f(0) = 0

(e.g. if f is odd), this estimate can be refined: the right-hand side of equation (4.58)
is independent of α, so that the (smallest) critical value α̃loc is

α̃loc =
βN

(N − 1)τf ′(0)

∫ 2π

0

g(θ)h′(θ)

ω + βg(θ)h(θ)
dθ. (4.62)

We now turn to the nonlinear stability properties of D.
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Estimate for the domain of attraction of D
Proposition 4.4.2. (Nonlinear stability of D.) For some s > 1, assume f ′(0) > 0
and let R > 0 be the smallest value for which either f ′(2R) = f ′(0)/s > 0 or

f ′(−2R) = f ′(0)/s > 0 (implying minθ∈[−2R,2R] f
′(θ) = f ′(0)/s). Let Ĝ be the Lips-

chitz constant for G(·) = g(·)h(·), and define ĥ1(θi) = maxθ{|h′(θi)g(θ)| : |θi − θ| <
2R} and ĥ1 = maxθi{ĥ1(θi)}. Then, for

α > αglob
4
=
sβ(Nĥ1 + Ĝ)

(N − 1)f ′(0)
, (4.63)

the domain of attraction for D includes CR 4
= {θ|d(θ, θd(ψ)) ≤ R for some ψ ∈ [0, 2π]}

(cf. Figure 4.3).

Proof. Fix an arbitrary ψ ∈ [0, 2π). Consider the (non-orthogonal) basis b ≡ {xi|i =
1, . . . , N − 1}, where xi ≡ θi − θi+1. We define Xψ, the N − 1 dimensional space
perpendicular to the axis of CR at θd(ψ), as the copy of span b containing θd(ψ). In
other words, Xψ is the normal space N (θd(ψ)).

Now, define the squared ‘radius’R =
∑N−1

i=0 x2i . We will show that Ṙ = 2
∑N−1

i=0 xiẋi ≤
0 for all x ∈ CR. The cylindrical surfaces {x|R(x) = c} will therefore be crossed ‘in-
ward’ toward the axis of CR.

Take an arbitrary θ ∈ CR ∩ Xψ. For such a θ, we also have θ ∈ BR(ψ) =
{θ|d(θ, θd(ψ)) < R}. Thus |θj − θi| < 2R ∀ i, j (and, in particular, |xi| < 2R ∀ i).
These inequalities allow us to find a bound on each ẋi:

ẋi = ˙θi − θi+1

=
α

N

N∑

j=1

f(θj − θi)−
α

N

N∑

j=1

f(θj − θi+1)

+
β

N − 1
h(θi)

N∑

j 6=i
g(θj)−

β

N − 1
h(θi+1)

N∑

j 6=i+1

g(θj)

=
α

N

N∑

j=1

[f(θj − θi)− f(θj − θi + xi)] +
β[h(θi)− h(θi+1)]

N − 1

N∑

j=1

g(θj)

+
β[h(θi+1)g(θi+1)− h(θi)g(θi)]

N − 1
. (4.64)

ẋi
< −α[f ′(0)/s]xi + β N

N−1 ĥ1xi +
β

N−1Ĝxi
4
= kxi if xi > 0

> −α[f ′(0)/s]xi + β N
N−1 ĥ1xi +

β
N−1Ĝxi

4
= kxi if xi < 0

}
. (4.65)

The inequalities (4.65) use the hypothesis on f ′, the bound g(θ) ≤ 1, and the defi-

nitions of ĥ and Ĝ. Thus, for k < 0 (i.e. α > αglob), Ṙ = 2
∑N−1

i=0 xiẋi < 0 unless
xi = 0, ∀i. This argument may be repeated for any ψ and therefore for any arbitrary
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θ ∈ CR, so the Proposition follows.

Since nonlinear stability implies local stability, it must follow from α > αglob that
inequality (4.58) is satisfied. This may be seen from the fact that α > αglob implies
α > αloc and comparing equation (4.63) with (4.61).

Finally, we note that Proposition 4.4.2 may be sharpened by refining the estimates
in (4.65) in any manner that also implies sign(ẋi) = −sign(xi). For example, a lower

value ĥ2 can replace ĥ1 above, where ĥ2 = maxθi ĥ2(θi) and ĥ2(θi) = maxθ{h′(θi)g(θ) :
|θi − θ| < 2R} (note that although we have dropped the absolute value in the maxθ,

ĥ2 ≥ 0 since h is periodic). The bound ĥ2 arises as follows. If the second term in
(4.64) is of opposite sign to xi, it favors the conclusion sign(ẋi) = −sign(xi) and
hence may be ignored for the purposes of bounding α such that k < 0. Thus the
natural question is: assuming that it is of the same sign as xi, can we find a smaller
upper bound than β N

N−1 ĥ1xi on the magnitude of this second term? The answer is
yes: since [h(θi)−h(θi+1)] = [h(xi+ θi+1)−h(θi+1)], this difference cannot exceed the

upper bound β N
N−1 ĥ2xi, as desired.

4.5 Application to the Hodgkin-Huxley equations

Here we apply the analysis above to study electrotonic and (neurotransmitter driven)
synaptic coupling between Hodgkin-Huxley neurons. Existence and stability of clus-
tered states for the Hodgkin-Huxley equations with synaptic coupling has been stud-
ied before ([103, 84]), but we contribute results for electrotonic coupling and the
strong attraction phase reduction method, as well as a discussion of the stability re-
sults in terms of spike time cross-correlograms. First, we introduce the corresponding
coupling functions f , g, and h.

4.5.1 Coupling functions

The functions f and g, h, corresponding to electrotonic and synaptic coupling, were
computed using both the strong attraction (SA) and phase response curve (PR)
methods discussed in Chapter 2. The Hodgkin-Huxley (HH) equations with input
current 10 µA/cm2 were used ([89]). In their original form these equations were de-
rived from the giant axon of a squid; reduction of mammalian neuron models which
include calcium-dependent potassium channels and whose action potential spikes oc-
cupy a much smaller fraction of the period than in the HH equations leads to coupling
functions somewhat different from those considered here and will be explored in the
following chapter.

The effect of electrotonic coupling on the time derivative V̇i of neuron i’s voltage
was taken to be α

N

∑N
j=1(Vj − Vi) (cf. [101]), and the inhibitory synaptic effect to

be (EK − Vi) β
N−1

∑
j 6=iA(Vj, t), where EK is the reversal potential for potassium and

A(Vj, t) is an ‘alpha function’ which takes values in [0, Ã], Ã < 1, and represents the
influence of neuron j on post-synaptic cells. Specifically, A(Vj, t) = ((t− tjs− td)/τA) ·
exp(−(t − tjs − td)/τA), where tjs is the time at which the voltage of neuron j spikes
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Figure 4.9: Coupling functions derived from the Hodgkin-Huxley equations. The sub-
script e (s) refers to electrotonic (synaptic) coupling, while the superscript PR (SA)
indicates that the function was derived using the phase reduction (strong attraction)
method. The h’s and g are calculated for the synaptic coupling described in the text:
fPRs is obtained by averaging the product of g and hPR, and fPRe is obtained by av-
eraging the electrotonic coupling using a phase response method (cf. [103]). f SAe and
fSAs are obtained by first assuming that the limit cycle is infinitely strongly attracting,
followed by averaging (cf. [53, 94]). The ‘spikes’ in hSA(θ) are associated with the
projection of coupling functions near turning points in the original phase variables;
the tips extend to approximately ±30 (there is also an O(1) spike near θ = 0, not
visible here).

(see below), td is the synaptic delay, and τA is the synaptic time constant (e.g. [103]).
We take Ib = 10 µA/cm2 in the HH equation so that their period is T = 2π

ω
is 14.64

msec, and take τA = 1.1 msec and td = 6.6 msec. These neuron and coupling models
and parameters lead to the reductions of the coupling functions to TN displayed in
Figure 4.9.

4.5.2 Phase-difference coupling

In this section we assume that synaptic coupling β
N−1h(θi)

∑
j 6=i g(θj) is sufficiently

weak that it can be averaged to yield β
N−1

∑
j 6=i fs(θj − θi), and we take β = κα,

so that (4.50) becomes θ̇i = ω + α
N

∑
j f(θji), where the phase difference function

f(·) = fe(·) + κfs(·). We use the methods of Section 4.3 to determine stability of
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PR PR PR PR SA
κ = 0 κ = 10 κ = 50 κ = 100 κ = 0

(Sk)m+̇Zm

S, m = 1,2,4 1,2,4 1,4 1 1,3,4

U, m = 3,6,8,12 3,6,8,12 2,3,6,8,12 2,3,4,6,8,12 2,6,8,12

SN−p × Sp

S, p = 11,12 12 1,2 1-4 1-6

U, p = 1-12 1-12 1-12 3-12 7-12

Table 4.1: The linear stability of various ‘clustered’ periodic orbits of diagonal flow
for different phase difference couplings fe(θji) + κfs(θji), computed using the PR or
SA methods. (Sk)

m+̇Zm stability is given for allowable m (N = 24), and SN−p × Sp
stability for N = 24 and p = 1, ..., 12; a value of p being listed twice indicates the
correspondence of multiple δ’s. S and U indicate asymptotic stability and instability,
respectively, for the m or p values given in the subsequent columns.

periodic orbits. The results are shown in Table 4.1 for various values of κ and coupling
functions derived with the PR and SA methods. The SA coupling functions give rise
to a larger set of distinct stable periodic orbits, the consequences of which will be
discussed below.

To check the validity of the SA and PR phase reductions, we compared a few cases
of our stability predictions with numerical simulations of the full HH equations (cf.
[103]); for κ = 0, stability was consistent with the full equations for the PR reductions
but not for SA. However, to illustrate properties of (4.8) we will continue to refer to
the SA functions when their general form gives additional (e.g. contrasting) results.

4.5.3 Phase-dependent coupling

We now return to consider equation (4.50) with unaveraged synaptic (product) cou-
pling. Since f(0) = 0 for electrotonic coupling, we may use equation (4.62) to explic-
itly calculate a lower bound on α for this orbit to be stable. The resulting α̃loc < 0
(Figure 4.11), so that the in-phase state is stable for synaptic coupling and any posi-
tive α (since f ′(0) > 0). In addition, the domain of attraction may be estimated: for

example, taking s = 2.14 in Proposition 4.4.2 gives R = 1/4 and ĥ2 = 0.64 for PR
coupling functions with κ = 0. Thus, the domain of attraction of the in-phase orbit
includes CR if α > αglob = 7.11β (equation (4.63) for N →∞). Figure 4.10(d) demon-
strates the collapse of the cross correlogram (b) upon addition of the synchronizing
(cf. Section 4.5.3) product coupling.

For the SA coupling functions, the following observation is useful: since the denom-
inator in the integrand of (4.58) is always positive, if h′(θ) < 0 for θ in the (essential)
support of the positive function g then the integrand itself will always be negative,
giving stability for any α > 0. The plots in Figure 4.9 show that for delays td (which
correspond to translations of g) taken in a wide range around 6.6 msec, stability
holds for arbitrary g of reasonably compact essential support and any α, β > 0 such
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that the in-phase periodic orbit exists. We note here that related stability conditions
are derived in [171, 50, 69], in which the time course of g is also important.

4.5.4 Cross correlograms

This section discusses the qualitatively distinct cross correlograms patterns that can
arise under different coupling functions. Cross correlograms are derived from solutions
of (4.50) as follows. A spike is deemed to occur when a rotator θi crosses through
a threshold value θs: the solution of {V (θs) = Vs, V

′(θs) > 0}, where Vs = −30mV
is a depolarized voltage characteristic of a neuron firing an action potential and the
function V (θ) is defined by V (t) = V (θ/ω) over the period of one neuron action
potential. The set of all pairwise differences between times at which distinct spike
events occur is computed according to this definition, and the cross correlogram is
the histogram of this set.

To produce illustrative correlograms, we consider equation (4.8) in the presence
of noise represented as additive Brownian forcing on the torus, so that:

dθi =

[
ω +

α

N

n∑

j 6=i
f (θj − θi)

]
dt+ σdW i

t . (4.66)

The inclusion of random noise represents additional input currents, a common stratagem
in accounting for the influence of neural subgroups neglected in the model. Stochastic
averaging leads to the approximation above, as discussed in Chapter 3, Section 3.5.
Simulations of equation (4.66) to be discussed below were performed using a second
order stochastic Runge-Kutta method ([90]).

For phase-difference coupling, the stability results of Table 4.1 will persist for α
sufficiently larger than σ, but solutions approach a constant-drift Brownian motion on
TN as the coupling-to-noise ratio α/σ decreases. Figure 4.10(a) shows a representative
flat cross-correlogram in this small coupling-to-noise regime: there is no preferred
firing time difference between neurons. However, for the PR coupling functions in
which there are relatively few stable periodic orbits significantly different from the
in-phase mode (in particular, δ < 1 for the stable Sp × SN−p modes for all κ values
in Table 4.1), as the coupling strength α is increased, a broad central peak (with
intermediate ‘shoulders’) emerges (Figure 4.10(b)).

If a variety of diagonal flow solutions are simultaneously stable (as for the SA
coupling functions) the following mechanism can produce broad ‘peak-shoulder’ cross
correlogram patterns for much lower values of noise. For every revolution (of diagonal
flow), (Sk1 × Sk2)m+̇Zm states with δ 6= 0, π produce cross correlograms with m(k21 +
k22 − k1 − k2) counts at t = 0, m(k21 + k22) counts at times proportional to ±2πj/m,
j = 1, ...,m − 1, and mk1k2 counts at times proportional to ± (2πj/m) ± δ, j =
0, ...,m− 1. If N ≥ 5, this leads to a dominant central peak in the cross correlogram
for (two-cluster) states with m = 1. Moreover, all peaks except for the central peak
at 0 will be differently spaced for each distinct (Sk1 × Sk2)m+̇Zm orbit. Thus, if the
individual cross correlograms from many of these states are combined (e.g. due to
stochastic switching due to random noise in (4.66)), the common central maxima can
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Figure 4.10: Cross correlograms for simulations of the phase-difference model (a-c).
To facilitate comparison, parameters ᾱPR and ᾱSA were first chosen so that both
ᾱPRmaxθ{|fPRe (θ)|} = 2.25 and ᾱSAmaxθ{|fSAe (θ)|} = 2.25. (a) PR functions with
low coupling-to-noise α = 1

5
ᾱPR, σ = 0.8, and κ = 0; (b) same except higher coupling-

to-noise via α = ᾱPR. (c) SA coupling functions with α = ᾱSA and the lower noise
value σ = 0.2 (again with κ = 0). (d) as in (b), but with the addition of phase-
dependent (synaptic) coupling of strength β = 0.23. The range of all histograms
is [−.7T, .7T ], where T = 14.64 msec is the period of the HH equations; all his-
tograms are averaged over five simulated recordings with uniformly distributed initial
conditions with N = 24.

conspire to produce a central peak in the cross correlogram while the combination
of many secondary maxima could give rise to the relatively flat shoulder. This is
demonstrated in Figure 4.10(c).

4.5.5 Frequency effects

In this section we study how the neural coupling functions affect frequency of the
in-phase state.

Phase-difference coupling

The period of the in-phase state of (4.66) with phase-difference coupling only is
2π

ω+αf(0)
, and Figure 4.9 shows that f(0) > 0 for any κ > 0, so that the period will

always decrease as α increases.

Phase-dependent coupling

For small β, where averaging is valid, the period of the SN symmetric orbit must
decrease with β. However, Figure 4.11 also shows that for β sufficiently large, the
period increases with β (the term G(θ) in (4.51) slows the flow). Since the SN
symmetric orbit is attracting, its increasing period indicates a mechanism for lower
firing rates with sufficiently increased coupling. This shows the importance in this
case of considering the explicit product coupling of (4.50) for the HH neuron; however,
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Figure 4.11: The β-dependence of (left) bounds for stability and (right) the period of
the SN symmetric orbit with PR coupling functions, from equations (4.62) and (4.57)
in the large-N limit.

for other parameter values and neuron models phase-difference coupling does correctly
capture trends in firing rates (cf. [24] and Chapter 5).
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Appendix: eigenvalue calculations

Eigenvalues for rotating block solutions

Lemma 4.5.1. Define the setM = {l|l = qm for some q ∈ Z} and let γ = exp(2πi/m).
Then for l̄ ∈ Z \M, ∑m−1

r=1 γ
l̄r = −1.

Proof. Let

A =
m−1∑

r=0

γ l̄r and B =
m−1∑

r=1

γ l̄r ,

then
B = A− 1 . (4.67)

Also, using γml̄ = 1, note that

γ l̄B = γ2l̄ + ...+ γml̄ = A− γ l̄ , (4.68)

Upon subtracting Eqns. (4.67) and (4.68), we have

B
(
1− γ l̄

)
= −1 + γ l̄ ⇒ B = −1 , (4.69)

provided γ l̄ 6= 1, which is guaranteed if l̄ 6∈ M.

Proof of Proposition 4.3.5. Linearized about φ̄, Eqns. (4.8) become

ξ̇i = −
α

N

N∑

j=1

f ′(φ̄ji)ξi +
α

N

N∑

j=1

f ′(φ̄ji)ξj
4
=
[
J(φ̄)ξ

]
i
. (4.70)

The Jacobian has m2 blocks of size (k × k) [6]; the 2π periodicity of f ′ ensures that
there are only m+ 1 distinct entries. The Jacobian takes the form

J(φ̄) =
α

N




D M1 · · · Mm−1
Mm−1 D · · · Mm−2
· · ·
M1 M2 · · · D


 , (4.71)

where

D
4
=




c−1 c0 · · · c0
c0 c−1 · · · c0
· · ·
c0 c0 · · · c−1


 , Mj

4
=




cj cj · · · cj
cj cj · · · cj
· · ·
cj cj · · · cj


 ,
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are (k × k) blocks, and

cj = f ′
(
2πj

m

)
, j = 0, · · · ,m− 1, (4.72)

c−1 = −
[
(k − 1)c0 + k

m−1∑

r=1

cr

]
. (4.73)

Rotation eigenvalues. The shifted row structure of J(φ̄) classifies it as a (block)
circulant or Toeplitz matrix. Such matrices have the eigenvectors (e.g. [6]):

vj = (γ0j, γ0j, ..., γ0j , ..., ..., γ(m−1)j , γ(m−1)j , ..., γ(m−1)j)T j = 0, ...,m− 1 , (4.74)

where γ = exp (2πi/m) and each element in vj is repeated k times. For the special
form of J(φ̄) in Eqn. (4.71), substitution of (4.74) into the eigenvalue problem gives
the eigenvalues corresponding to the (real or imaginary parts of the) vj:

λj
N

αk
=

m−1∑

r=1

cr(γ
jr − 1) . (4.75)

Clearly λ0 = 0 with v0 = (1, 1, . . . , 1), corresponding to the T 1 invariance. The
eigenvalues for j > 0 are the ‘rotation eigenvalues,’ and may be found in terms of the
series (4.9) using

cr =
∞∑

l=1

l

(
bol cos

(
2πrl

m

)
− bel sin

(
2πrl

m

))
, r = 1, . . . ,m− 1 . (4.76)

Eqns. (4.75), (4.76) then give

λj
N

αk
=

m−1∑

r=1

∞∑

l=1

l

(
bol cos

(
2πrl

m

)
− bel sin

(
2πrl

m

))(
γjr − 1

)
. (4.77)

Upon switching the order of the summation, the term corresponding to each l in the
sum of Eqn. (4.77) may be written as

l

2

m−1∑

r=1

(
bol
(
γrl + γ−rl

)
+ ibel

(
γrl − γ−rl

)) (
γjr − 1

)
=

bol l

2

(
m−1∑

r=1

(
γr(j+l) + γr(j−l)

)
−

m−1∑

r=1

(
γrl + γ−rl

)
)

+
ibel l

2

(
m−1∑

r=1

(
γr(j+l) − γr(j−l)

)
−

m−1∑

r=1

(
γrl − γ−rl

)
)
≡

bol l

2
(I − II) + ibel l

2
(III − IV ) . (4.78)
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We will consider separately the real and imaginary terms in Eqn. (4.78). By Lemma 4.5.1,
for l satisfying (i) l ∈ Z+ \M, II = −2. Similarly, for l meeting (ii) j + l ∈ Z \M
and (iii) j − l ∈ Z \M, I = −2. Thus, for values of l satisfying all three conditions
(i-iii), I − II = 0 and the corresponding term in the Fourier expansion for f makes
no contribution to the real part of λj.

Now we determine the values of l for which the conditions do not hold and hence
which terms contribute to the real part of the sum in Eqn. (4.77). Obviously, (i) does
not hold where l ∈M. Conditions (ii) and (iii) are violated for values of l such that,
resp.,

l = mh1 − j or l = mh2 + j for some h1, h2 ∈ Z . (4.79)

Recalling that l ∈ Z+ and j ∈ {1, ...,m − 1}, the conditions (ii) and (iii) are only
met when h1 ∈ {1, 2, ...} and h2 ∈ {0, 1, 2, ...}, resp. Thus, from the definition of
the sets Mj

1, Mj
2, and M, we may conclude that the only nonzero real terms in

the expression for λj come from values of l in these sets. Furthermore, the fact that
j ∈ {1, ...,m − 1} also implies the that (i) may not be violated simultaneously with
(ii) and/or (iii) (where simultaneously implies for a single pair (l, j)). In other words,{
Mj

1

⋃Mj
2

}⋂M = ∅.
The nonzero real terms may therefore be calculated as follows. For l ∈ M,

γrl = 1 so II = 2(m− 1). Since l ∈M implies l 6∈ Mj
1,2, in this case I = −2 so that

I − II = −2m. For l ∈ {Mj
1

⋃Mj
2} \ {Mj

1

⋂Mj
2}, by the lemma and disjointness

of M and Mk
1,2 we have II = −2, I = m − 2, so that I − II = m. Similarly,

l ∈ {Mj
1

⋂Mj
2} gives II = −2 and I = 2(m − 1), or I − II = 2m. Recalling

that N = mk, this proves the real part of Eqn. (4.28) and in particular indicates
that the conditions l ∈ {Mj

1

⋃Mj
2} \ {Mj

1

⋂Mj
2} and l ∈ {Mj

1

⋂Mj
2} need not be

distinguished in the sum.
For the imaginary terms, we first note that Lemma 4.5.1 implies IV = 0 for any

l. Similarly, when l /∈ {Mj
1

⋃Mj
2} \ {Mj

1

⋂Mj
2},

∑m−1
r=1 γ

r(j+l) =
∑m−1

r=1 γ
r(j−l) so

that III = 0. For l ∈ {Mj
2 \Mj

1},
∑m−1

r=1

(
γr(j+l) − γr(j−l)

)
= −1 − (m − 1) = −m,

and for l ∈ {Mj
1 \ Mj

2},
∑m−1

r=1

(
γr(j+l) − γr(j−l)

)
= (m − 1) + 1 = m. Again using

N = mk, this gives the imaginary term of Eqn. (4.28).

Permutation eigenvalues. Inserting λp = α(c−1 − c0) into the eigenvalue equation
(J(φ̄) − λI)v gives a linear system with m blocks of identical elements c0 on the
diagonal. Thus any vector of the form

(0, . . . , 0, a1, . . . , ak, 0, . . . , 0)
T,

where a1 is in the (nk + 1)st place, n ∈ Z and
∑k

p=1 ap = 0, is an eigenvector with
eigenvalue λp. The latter equation has k − 1 solutions for each of the m possible
positions of a1, so that λp has multiplicity m(k − 1). To compute λp in terms of the
Fourier coefficients of f , note that

λp
N

α
= c−1 − c0 = −k

m−1∑

r=0

cr . (4.80)
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Switching the order of the summation over Fourier modes and using Eqn. (4.76) we
find

λp
N

α
=

∞∑

l=1

(
−kbol l
2

m−1∑

r=0

(
γlr + γ−lr

)
− ikbel l

2

m−1∑

r=0

(
γlr − γ−lr

)
)
. (4.81)

Lemma 4.5.1, the fact that γ0 = 1, and the above remark that IV = 0 now imply the
proposition.

Eigenvalues for two-block solutions

Ordering the oscillators so that φji = 0 for the groups having {i, j} ∈ {1, ..., p} and
{i, j} ∈ {p+ 1, ..., N}, the linearization (4.70) becomes

ξ̇ = A2ξ , (4.82)

where for 1 ≤ p ≤ N − 1

A2 ≡
α

N




N1 a · · · a −b −b · · · −b
a N1 · · · a −b −b · · · −b

· · ·
a a · · · N1 −b −b · · · −b
−c −c · · · −c N2 a · · · a

· · ·
−c −c · · · −c a a · · · N2




. (4.83)

Here, N1 = (N − p)b− (p− 1)a, N2 = pc− (N − p− 1)a, and the diagonal subblocks
are of dimension p× p and (N − p)× (N − p).

Inserting λ1 =
α
N
(N1 − a) into the eigenvalue equation (A2 − λ1I)v = 0 gives

(A2 − λ1I)v =
α

N




a a · · · a −b −b · · · −b
a a · · · a −b −b · · · −b
· · ·
a a · · · a −b −b · · · −b
−c −c · · · −b d a · · · a
· · ·
−c −c · · · −b a a · · · d







v1
v2
...
vp
0
...
0




= 0 , (4.84)

where d = N2−N1+a. Eqn. (4.84) is solved by p−1 linearly independent eigenvectors
as shown and such that v1+v2+ ...+vp = 0. The proof of the λ2 results is similar, and
those for λ3 follow from the fact that each row of (4.84) sums to 0. Adding λ1 through
λ3 with multiplicities and comparing the result with Tr(A2) = α (pN1 + (N − p)N2)
yields the formula for λ4. The case p = 0 is treated similarly.
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Chapter 5

Firing rates and synchrony in the
locus coeruleus

5.1 Chapter outline

In this chapter we apply the results of Chapters 2-4 to spiking neurons in locus
coeruleus (LC), a brain nucleus involved in modulating cognitive performance, and
compare with recent experimental data. Extracellular recordings from LC of monkeys
performing target detection and selective attention tasks show varying responses de-
pendent on stimuli and performance accuracy. From membrane voltage and ion chan-
nel equations, we derive a phase oscillator model for LC neurons using the asymptotic
phase reduction method discussed in Chapter 2. Average spiking probabilities of a
pool of cells over many trials are then computed via a probability density formulation,
and applying the analysis of Chapter 3 then shows that: 1) Post-stimulus LC response
is elevated in populations with lower spike rates; 2) Responses decay exponentially
due to noise and variable pre-stimulus spike rates; and 3) Shorter stimuli preferen-
tially cause depressed post-activation spiking. We also derive coupling functions for
the (presumed weak) synaptic and electrotonic connections between LC neurons, and
use these with the methods of Chapter 4 to model and explain empirical findings on
synchrony in the LC. These results allow us to propose mechanisms for the different
LC responses observed across behavioral and task conditions, and to make explicit
the role of baseline firing rates and the duration of task-related inputs in determining
LC response. The paper [24] is an elaborated version of this Chapter.

5.2 Introduction and background

The locus coeruleus (LC) is a brainstem nucleus containing approximately 15,000
neurons in monkeys (35,000 in humans), each of which can make 100,000 or more
synapses with its widespread target regions, including the cerebral cortex [123, 62].
LC neurons release norepinephrine, which is known to modulate brain processes in-
cluding the sleep/wake cycle and arousal [62, 8]. Recent data indicate that the LC
regulates attention and behavioral flexibility [10, 167, 9]. Specifically, increased tran-
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sient LC activity may increase the responsivity of decision networks following salient
stimuli, hence improving accuracy and response time. (These effects are investigated
computationally in Part II of this dissertation.) Conversely, lower baseline LC activity
would reduce responsiveness to distractors [167, 154].

Neurons in the alert monkey LC exhibit two distinct modes: phasic and tonic [78,
10, 167]. In the latter, associated with labile behavior and poor performance on tasks
requiring focused attention, cells fire at relatively high rates with little synchrony;
in the former, associated with good performance, firing rates are lower but display
greater synchrony. The phasic mode also produces greater response to stimuli, as
detailed below. We emphasize that the phasic and tonic modes are defined based on
good vs. poor task performance alone, but that this performance correlates strongly
with baseline LC firing rates, as detailed below (also see Fig. 1A of [167]).

Two previous modeling studies have proposed mechanisms for the different firing
properties of the phasic and tonic modes. The computational model of [167] used a
pool of coupled integrate-and-fire neurons and found, via numerical simulation, that
increased electronic coupling promotes synchrony and enhanced responses to task
stimuli. More recently, experimental and computational studies of paired in vitro
LC cells have shown that decreased baseline activity can enhance the synchronizing
effects of fixed-strength electrotonic coupling [1], cf. [32]; however, the different pat-
terns of LC response to stimuli in the phasic vs. tonic modes were not addressed in
these studies. Here, we show how decreased baseline spiking can, via different mech-
anisms, cause not only the partial synchronization but also the amplified response to
exogenous inputs observed in the phasic mode. Hence we propose decreased base-
line spiking rates in the phasic mode, resulting from altered exogenous input to the
LC, as a new mechanism contributing to the phasic/tonic transition (as elaborated
in the Discussion, this does not exclude other effects such as coupling). We suggest
that these lower rates may result from decreased excitatory or enhanced inhibitory
input from brain areas afferent to the LC (including the anterior cingulate cortex
(ACC), a region previously implicated in cognitive control) or from neuromodulators
such as corticotropin releasing factor (CRF). Neural evidence for these possibilities is
elaborated upon in the Discussion.

Recent data indicates that LC responses differ not only between LC modes, as just
discussed, but also among different psychological tasks. In Section 5.3, we present
data demonstrating this difference for the target identification vs. Eriksen flanker
tasks. This data also indicates different LC responses in trials in which correct vs.
incorrect behavioral responses to task stimuli were obtained. In this chapter, we show
how differences in LC responses among task types and behavioral conditions can be
accounted for by assuming different time-courses of inputs to the LC in the two tasks,
as well as greater variation of input arrival times in incorrect vs. correct conditions,
in accord with behavioral data. Indeed, these different LC inputs are a prediction of
our model.

Below we develop a mathematical model for a pool of LC neurons, reduce it to
differential equations for individual neuron phases, thereby retaining spike timing in-
formation, and analyze spiking probabilities in response to stimuli. This elucidates
the dependence of spike histograms on model parameters and reveals how timescales
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in the neural substrate interact with those in the stimuli. Section 5.3 reviews relevant
experimental data and provides an overview of its relationship with the modelling
results that follow. We describe the neural model and probabilistic analysis in Sec-
tions 5.4 and 5.5, fit parameters and compare model results with data in Section 5.6,
and discuss the work in Section 5.7.

5.3 Experimental data and modelling overview

5.3.1 Experimental results and methods

This section summarizes experiments carried out in the laboratory of G. Aston-Jones
(Dept. of Psychiatry, Univ. of Pennsylvania), who kindly made his data available to
us.

Activities of individual neurons were obtained from behaving monkeys using ex-
tracellular recording techniques, as described previously [10]. Animals were trained
to continuously depress a pedal and visually fixate a centrally located spot on a video
monitor. In the target detection task, after successful fixation, target (20% of trials)
or non-target cues (80% of trials) were displayed singly in random order across trials,
with random inter-trial intervals (1.65 sec on average). Release of the pedal within
650 msec after target cue onset was rewarded by juice. Four response categories are
possible: correct detection (hit), correct rejection, incorrect detection (false alarm),
and incorrect omission (miss).

The second task, the Eriksen flanker paradigm [47], requires greater attentional
focus. The display comprises five icons, with two ‘flankers’ on each side of the central
cue, each selected at random with 50% probability from two possible cues (‘left’ or
‘right’) . The subject was trained to respond by releasing the left or right of two pedals
according only to the central icon. The distracting flankers were either all identical to
the central cue (congruent stimulus) or identical to the opposite, non-displayed cue
(incongruent stimulus).

Extracellular recordings from LC neurons were obtained from microwire electrodes
positioned within the brain via a stereotaxically implanted guide cannula. LC neu-
rons were identified during recording sessions by electrophysiological criteria, and
continuous monitoring of eye position and pupil diameter was performed, as previ-
ously described [10]. Baseline activity was calculated as an average spike rate dur-
ing 500 msec epochs immediately preceding stimuli. Peri-stimulus time histograms
(PSTHs) were produced and population PSTHs generated by aligning visual stimulus
onsets and averaging across multiple sessions, or selected portions thereof. Histograms
were smoothed via averages of spike counts in neighboring bins (using the program
SigmaPlot) to facilitate superposition of cumulative PSTHs in a single figure while
preserving response pattern and timing.

Fig. 5.1 shows examples of the resulting PSTH data. These histograms reveal
LC responses to stimuli for both tasks. As previously reported [167], in the target
detection task, response relative to baseline is greater during good (phasic LC mode)
compared to poor (tonic LC mode) performance, and a period of depressed spiking
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Figure 5.1: Peri-stimulus time histograms of LC activity for poor (left) and good
(right) performance periods during the target identification task (top) and for incor-
rect (left) and correct (right) responses in the Eriksen task (bottom). Former are
from single neurons, averaged over ∼ 100 trials; latter are cumulative PSTHs from
multiple neurons averaged over ∼ 600 and 6000 trials respectively. Histograms are
aligned at visual stimulus onset, marked by dashed line.

follows the response before activity returns to baseline in both cases. The phasic
mode also displays greater synchrony; cf. Fig. 5.8 below. Reduced spiking following
the LC response is not observed for the Eriksen task; instead, near-monotonic decay
occurs following phasic activation, and the magnitude is much reduced for incorrect
responses. Furthermore, in this latter task pre-stimulus spike rates are similar for both
correct and incorrect responses [33]; the animal seems not to undergo phasic/tonic
transitions, although baseline frequencies do show slow variations.

5.3.2 Assumptions and modelling overview

Fig. 5.1 shows three ways in which LC response differs among task and behavioral
conditions: between the phasic and tonic modes in the target detection task, between
the target detection and the Eriksen flanker tasks, and between correct and incorrect
trials in the Eriksen task. In this chapter we develop a model of LC response to
stimuli and use it to propose mechanisms for these differences. Our model is based
on the following assumptions: (A1) Different levels of baseline current input to LC
neurons determine the different distributions of baseline firing rates reported in [167]
(p. 550, col. 1) for the phasic (slower, more tightly distributed rates: 2 ± 1.1 Hz,
(mean ± st. dev.)) vs. tonic (faster, more broadly distributed: 3 ± 1.6 Hz) modes.
(Note that these values are reported in [167] as mean ± SEM.) (A2) In contrast to
[167] and to clearly separate the effects of baseline firing rate, coupling strengths are
chosen to be identical in the phasic vs. tonic modes. (A3) The strength and duration
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of stimulus-related input to the LC may differ between the target detection and
Eriksen tasks, as described in Section 5.4.3. (A4) Reflecting the greater variability in
reaction times on incorrect vs. correct trials, onsets of stimulus-evoked inputs to the
LC may also be more variable for incorrect trials. This latter assumption is justified
under the hypothesis that pulsed inputs to the LC are driven by the (stochastic)
decision process [167]; more-variable timing of responses (reaction times) then implies
increased variability of “triggering times” for LC inputs.

Analysis of our model yields three main mathematical results, presented in bold-
face in the text of Section 5.5. These are (1) Maximum LC response is elevated in
populations with slower baseline firing rates, (2) response decays exponentially or
faster with t due to noise and heterogeneous frequencies, and (3) in systems with
narrow frequency distributions, short inputs necessarily lead to intervals of depressed
firing following enhanced spiking and stimulus offset.

The first of these findings explains the influence of baseline spike rate on response
of LC neurons to exogenous stimuli, and suggests that any factor leading to decreased
baseline rate contributes to stronger responses in the phasic vs. tonic mode; see
Fig. 5.5 (top right panel vs. bottom left) and Fig. 5.9 (top). The second finding tells
us that, in order to produce the protracted LC responses seen in the Eriksen data,
Eriksen task stimuli must elicit protracted inputs to the LC (since the impact of brief
inputs decays quickly). The third finding implies that, in contrast to the Eriksen
task, inputs to the LC elicited by target detection task stimuli must be punctate,
because the interval of depressed firing observed in the data (Fig. 5.1, top) can occur
only following the offset of brief (pulsed) inputs to the LC. Therefore the second and
third findings address influence of stimulus duration on response of LC neurons. We
also show via additional simulations that varying onset times of stimulus-evoked LC
inputs in incorrect vs. correct Eriksen trials (in proportion to reaction time variability
under these conditions) reproduces the trend in Fig. 5.1 (bottom).

5.4 A mathematical model for LC neurons

5.4.1 A conductance-based model and phase reduction

LC neurons possess calcium- and voltage-dependent potassium currents (e.g., ‘A-
currents’), which are largely responsible for their slow (. 8 Hz) firing rate [179] and
their resulting classification as ‘Type I’ cells [50]. We base our model of individual LC
neurons on the original model by [41] (cf. [149]) for a multi-ion-channel ‘Type I’ neuron
including the A-current. This is a generic choice, intended to capture the essence but
not necessarily the biophysical detail of LC dynamics. For ease of computation, we
exploit a further simplification by Rose and Hindmarsh [146], who used differing
timescales and approximate relationships among state variables to reduce the Connor
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et al. system to two variables:

V̇i = [Ibi − gNam∞(Vi)
3(−3(qi −Bb∞(Vi)) + 0.85)(Vi − VNa) ,

−gKqi(Vi − VK)− gL(Vi − VL) + Iexti ]/C (5.1)

q̇i = (q∞(Vi)− qi)/τq(Vi) .

Rose and Hindmarsh show that this reduction compares favorably with the original
system. Here Vi is the voltage of neuron i (i = 1, . . . , N for an N -cell model), qi is
a collective gating variable, C is cell membrane conductance, gNa, gK , and gL are
maximum conductances for sodium, potassium, and leak currents, and I bi is the base-
line inward current, which effectively sets spike frequency. I exti denotes extracellular
currents described below, and the other terms are channel gating variables, m∞(V )
and b∞(V ) denoting equilibrium levels for fast sodium and potassium channels. Func-
tional forms and parameter values for this Rose-Hindmarsh model are given in the
appendix to Part I of this dissertation.

LC neurons are coupled by: 1) voltage differences between cells in electrical contact
at electrotonic or gap junctions; 2) neurotransmitter release across synaptic clefts
following presynaptic spikes. These effects, along with currents I(t) representing
inputs due to external stimuli, enter Iexti :

Iexti =
βe
N

N∑

j=1

(Vj − Vi) +
βs
N

N∑

j=1

∑

k

A(t− tjk)(VK − Vi) + I(t) + σηi(t) . (5.2)

Here uniform all-to-all coupling is assumed, βe and βs denote electrotonic and synaptic
coupling strengths, and the ‘alpha function’ describes the post-synaptic excitation at
neuron i after neuron j fires at time(s) tjk < t: A(t − tjk) = [(t − tjk − td)/τA] ·
exp(−(t− tjk− td)/τA), where τA = 30 msec is the synaptic time constant and td = 25
msec is an estimate of the alpha 2 NE receptor-mediated synaptic delay [180, Fig. 1].
The white noise term σηi(t) represents unmodeled ‘fast’ synaptic inputs.

Fig. 5.2 shows the orbit in (Vi, qi)-space of an isolated Rose-Hindmarsh neuron
with Ibi set to produce periodic spiking, and subject to a tonic stimulus I(t) of
greater strength than those employed below, superposed on the unperturbed tra-
jectory (Iexti ≡ 0). Like most conductance-based neural models in repetitive firing
modes, (5.1) possesses a strongly attracting, normally hyperbolic limit cycle [82],
implying that in the presence of moderate perturbations due to coupling and input
currents, solutions remain confined to a small neighborhood of the original orbit. This
permits reduction of (5.1) to phase variables, as in Chapter 2, by defining nonlinear
polar coordinates and projecting along isochrons [81, 183] onto the unperturbed limit
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Figure 5.2: (Left) Phase space structure for a repetitively spiking Rose-Hindmarsh
neuron (5.1), Ibi = 5µA/cm2. Attracting limit cycle for Iexti = 0 shown solid. Initial
conditions on a given isochron (shown dashed) asymptotically approach the same
point on the limit cycle as t → ∞; isochrons are equally spaced in phase by 2π/10,
with θ = 0 at action potential peak. The thick dashed and dash-dotted lines are
nullclines for V̇i = 0 and q̇i = 0, respectively, and squares show points on perturbed
limit cycle, equally spaced in time, under tonic stimulus of I exti = 1 µA/cm2. (Right)
Reproduced from Fig. 5.3. PRCs for the Rose-Hindmarsh model (5.1) at frequencies
ω/2π ≈ 5 Hz (dotted), ω/2π ≈ 3.2 Hz (dashed), ω/2π ≈ 1.6 Hz (dot-dashed).
PRCs plotted as ω × z(θ) vs. θ to illustrate that z(θ) = c

ω
[1 − cos θ] with c =

0.0036 (mV ·msec)−1 (solid) provides an acceptable fit, improving as ω decreases.

cycle (Fig. 5.2):

dθi =

[
ωi + z(θi)

(
I(t) +

βe
N

N∑

j=1

(V (θj)− V (θi))+

βs
N

N∑

j=1

∑

k

A(t− tjk) (VK − V (θi))

)
+
σ2

2
z(θi)z

′(θi)

]
dt+ σz(θi)dWi(t) .

(5.3)

Here the σWi(t) are independent Wiener processes with variance σ2t, and ωi is the
frequency of the ith LC neuron, which may vary slowly, e.g. via I bi , but is assumed
constant over each experimental trial (see below). The phase θ is defined to increase
at a constant rate ωi in the absence of coupling and external inputs, with voltage peak
(spike) at θ = 0. As in Chapter 2, the phase response curve (PRC) z(θi) [183, 163, 50],
encoding the phase shift due to instantaneous perturbations, multiplies the stimulus
and the external noise term; as in Section 3.5 the O(σ2) term is the ‘Ito correction’
resulting from changing variables from the stochastic differential equation (5.2) [65].
The functions V (θi) in (5.4) are computed from the unperturbed voltage profile as
V (θi) = V (ωit).

As Ibi increases, Type I neurons undergo a transition from excitability, with a
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stable hyperpolarised rest point, to repetitive spiking via a saddle-node bifurcation
on a limit cycle [82] (i.e., the SNIPER bifurcation of Chapter 2). Normal form theory
was used in Chapter 2 to derive the PRC approximation z(θ) = C(ω)[1 − cos(θ)]
near the bifurcation point [50, 23]. This approximation is reasonable in the frequency
range of interest (1-5 Hz); moreover, C(ω) = c/ω where c = 0.0036 (mV ·msec)−1:
see Fig. 5.2. (As described in Chapter 2, other neuron models yield different PRC
forms and ω-scaling, cf. [50].) In particular, the two-compartment LC neuron of [1]
yields PRCs similar to those of Fig. 5.2, although the lack of an explicit form for z(θ)
precludes analysis of the type done below.

5.4.2 Coupling effects and synchrony

We now ask how the baseline synchrony in LC neurons, as demonstrated in the exper-
imental data of Fig.5.8 (left), can arise from the synaptic and electrotonic coupling
terms in Eqns. (5.2) and (5.4). We use the results of Chapter 4 to determine the
firing patterns that the coupling terms will evoke; since we are addressing coherence
resulting from coupling (as opposed to phase resetting connected with stimulus on-
set), we consider (5.4) with I(t) ≡ 0. After and applying (stochastic) averaging as in
Chapter 3, (5.4) becomes

dθi =

[
ωi +

1

N

N∑

j=1

(αefe(θj − θi) + αsfs(θj − θi)) + z(θi)I(t)

]
dt+ σẑdWi(t) , (5.4)

where σẑω =
(

1
2π

∫ 2π

0
σ2z(θ)2dθ

)1/2
=
√

3
2
σc
ω

(recall Chapter 3, Section 3.5). Here fe

and fs are the averaged electrotonic and synaptic coupling terms, shown in Fig. 5.3
Note that both coupling functions fe(θ) ≈ sin(θ), and fs(θ) ≈ sin(θ) + ks, where

ks ≈ −0.2. When ωi ≡ ω, it follows from Proposition 4.3.5 that among all of the
rotating block and two-block solutions, only the in-phase (i.e., perfectly synchronized)
periodic orbit is asymptotically stable for any combination of (weak) electrotonic and
synaptic coupling and also that, if the coefficients of these terms are positive (as they
must be), that the in-phase state is globally attracting in the absence of noise.

The correlation data of [167, Fig. 4A] indicates only partial synchrony, even in
the phasic mode. We find below that (as for the HH equations, Fig. 4.10(b)) this can
be captured by coupling terms that are weak compared with the stimulus, frequency
heterogeneity, and noise: cf. Fig. 5.8. Neglecting such weak coupling, any given cell
is approximately governed by:

dθ =

[
ω + z(θ)I(t) +

σ2

2
z(θ)z′(θ)

]
dt+ σz(θ)dW (t)

4
= v(θ, t)dt+ σz(θ)dW (t) . (5.5)

Here and henceforth we drop the subscripts i and let θ and ω represent the phase and
frequency of a typical neuron. Via comparison with simulations of the fully coupled
biophysical model (5.1-5.2), we demonstrate below that this greatly reduced equation
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Figure 5.3: Coupling functions for RH neurons, computed for frequency ω/2π ≈ 3.5
Hz, synaptic delay td = 25 msec and time constant τA = 30 msec; fe varies little with
frequency, fs exhibits stronger dependence on ω due to time-dependence in synaptic
transmission.

provides an adequate model (cf. Fig. 5.9).

5.4.3 Modeling LC modes, frequency variability, and stimuli

To further develop our model, we review the data analysis leading to Fig. 5.1. Target
detection PSTHs were obtained by averaging single-cell recordings over one session
(≈ 100 trials), after separating epochs of good and poor behavioral performance
according to error rates. These epochs correspond to phasic vs. tonic LC modes, re-
spectively [167, Fig. 1A]. Eriksen PSTHs derive from single- or multi-unit recordings,
and multiple sessions. No clear tonic episodes were identified in the Eriksen data,
although significant frequency variations were seen in individual cells over time, and
among multiple cells at any given time; see Fig. 5.4. To reproduce the experimen-
tal data, frequencies ω will be drawn from appropriate narrow (for target detection)
and broad (for Eriksen) distributions, noise variances fitted to match interspike in-
terval distributions, and coupling strengths chosen to approximately reproduce cor-
relograms.

Since decisions take longer in more complex tasks, we assume that LC inputs due
to stimuli are briefer and more intense in target identification than in the Eriksen task.
We take a simple square wave input of intensity ĪTD, onset time t1, and offset time
t2 = t1+dTD (i.e., of duration dTD) in the former case, and in the latter, a function that
rises exponentially towards ĪE for a period dE and decays exponentially thereafter.
Moreover, the Eriksen data does not indicate performance-dependent variations in
baseline LC activity, and incorrect PSTHs keyed on response (rather than stimulus,
as in Fig. 5.1) have peak activities similar to corrects, but it does display significantly
broader reaction time distributions [33]. We therefore ascribe differences between
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Figure 5.4: Bars: Estimated distribution of LC spiking frequencies at a fixed time.
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), with φ = 1.2, β =

2.75 chosen to match mean and minimize least-squares difference within each quartile.

the correct and incorrect PSTHs of Fig. 5.1 to variable input latencies in this more
complex task. These and all other parameter choices are specified in Section 5.6.1,
below.

5.5 Probabilistic analysis

We now apply the results of Chapter 3 on response dynamics of neural oscillator
populations to characterize how LC firing patterns depend on both baseline rates and
on the duration of LC inputs associated with task stimuli.

As discussed above, to describe the LC we adopt the HR reduction of the classical
Connor model; hence, neglecting noise for now, the results of Chapter 3 for the
SNIPER bifurcation (for which the HR model is our archetype) are applicable to the
LC model. The right hand panels of Fig. 5.5 show FL(t) for two different inputs.
The short, strong (target detection) inputs yield post-peak intervals of depressed
firing and substantial ‘ringing,’ while the protracted input gives less ringing. We also
show histograms computed via direct numerical simulations of the Rose-Hindmarsh
Eqns. (5.1), indicating that (as in Chapter 3), apart from a slight time stretch due to
the PRC approximation, the reduction to a phase equation is remarkably accurate.
We now collect those results which will yield insights into these important aspects of
LC dynamics.

First, under the same assumption that PSTHs are averaged over uniform phase
probabilities for individual LC neurons, LC firing rates are described by

FL(t) = ωρ(0, t) =
ω

2π

[
ω + Ī

(
1− c

ω
cos(Θ0,t(t1))

)

ω + Ī
(
1− c

ω
cos(Θ0,t(t̃2))

)
]
. (5.6)

This follows from inserting the PRC for the SNIPER bifurcation z(θ) = c
ω
(1−cos(θ))

(Eqn. (2.36)) into Eqn. (3.8) and taking the limit ψ → θs in that equation (see
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Section 3.3.2). After performing an integral, we have the explicit formulas

Θθ,t(t̃2) = θ − ω(t− t̃2) , (5.7)

Θθ,t(t1) = 2arctan

{√
ω

b
tan

[
arctan

(√
b

ω
tan

[
Θθ,t(t̃2)

2

])
− 1

2
(t̃2 − t1)

√
ωb

]}
,

(5.8)
where b = ω + 2cĪ/ω. (Recall that the stimulus switches on at time t1 and off at t2;
for t < t1, we assume the uniform distribution ρ(0, t) ≡ 1/2π.) This expression shows
that the critical stimulus duration yielding no post-stimulus response is P = 2π√

2cĪ+ω2

for our model LC neurons; additionally equipped with (3.10) from Chapter 3, we
conclude that θmax = θmin = π and hence that the stimulus durations giving maximal
and minimal post-stimulus response are dmax = dmin = nP + P/2.

To compare responses for different values of ω, Ī and d, we define the peak and
refractory indices Rp(d) and Rr(d) (dependent on stimulus duration d = t2 − t1) as

Rp(d) =
FLmax(d)− FLbase

FLbase
; Rr(d) =

FLbase − FLmin(d)
FLbase

, (5.9)

where the baseline value is FLbase = ω/2π. Fig. 5.6 (right) illustrates the d-dependence
of Rp and Rr; in particular, from the calculations summarized in Tables 3.2 and 3.5
we have:

Rmax
p = Rp(nP + P/2) =

2cĪ

ω2
; Rmax

r = Rr(nP + P/2) =
2cĪ

2cĪ + ω2
, (5.10)

as shown in Fig. 5.6 (left and center). Note that Rmax
p is proportional to stimulus

strength over frequency squared, which quantifies our first main result: Maximum
LC response is elevated in populations with baseline slower firing rates.
This effect, which in our model primarily derives from the c/ω factor in the PRC,
is clear in the bottom left and top right panels of Fig. 5.5; note that (5.10) implies
FLmax − FLbase ∼ 1/ω.

As Fig. 5.6 (right) demonstrates, if inputs due to stimuli are sufficiently short
compared with the (ω-dependent) response period:

d < P (ω) =
2π√

2cĪ + ω2
, (5.11)

then ρ(θ, t2, ω) necessarily exhibits a peak and a trough, so that successive episodes
of enhanced and depressed spiking ensue following stimulus offset. Longer inputs
may or may not have this effect: they can end near ‘integer points’ d ≈ nP , leaving
ρ(θ, t2, ω) ≈ 1/2π, or at d ≈ nP + P/2, leaving stronger post-stimulus effects; cf.
Fig. 5.5. Furthermore, during the stimulus itself, firing rates do not dip below their
baseline, as per point (V) and Table 3.3 of Chapter 3 and as demonstrated in Fig. 5.5
(d).

Equation (3.45) of Section 3.5 expresses the fact that noise and frequency
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Figure 5.5: (Top and bottom left) Phase density ρ(θ, t) and flux FL(t) computed
from Eqns. (3.6) and (3.8) with ω/2π = 2 Hz, Ī = 0.1 µA/cm2, d = 100 msec. (Top
and bottom right) Fluxes FL(t) for ω/2π = 3 Hz, Ī = 0.1 µA/cm2, d = 100 msec
(top) and Ī = 0.0333 µA/cm2, d = 300 msec (bottom). Stimuli indicated by black
bars. The ‘charge’ Īd = 10 µA ·msec/cm2 in both cases. Gray bars show spike rates
computed directly from Rose-Hindmarsh Eqns. (5.1).

heterogeneity cause exponential or faster decay of firing rates to baseline
levels. For example, typical variations in P (ω) for the broad distribution of Fig. 5.4
range from 145 to 205 msec, leading to significantly differing ρ(θ, t2, ω)’s, and differing
propagation speeds. However, for tight distributions r(ω), P (ω) varies little and
ρ(θ, t2, ω) travel at approximately the same speed, so the leading peak and depression
can be expected to survive averaging over mild oscillator heterogeneity. This leads
to the finding: In systems with narrow frequency distributions, short inputs
necessarily lead to intervals of depressed firing following enhanced spiking
and stimulus offset.

This effect is further magnified if we normalise to maintain fixed ‘synaptic charge’
Īd = S. Now Ī ∝ 1/d and (5.10) (Fig. 5.6) shows that brief inputs are yet further
enhanced over longer, more diffuse ones. In this case, eliminating Ī from (5.11) yields
an explicit input duration for maximal effect:

d ≈ P

2
=

1

ω2

(√
c2S2 + π2ω2 − cS

)
. (5.12)

5.6 Comparison with experimental data

5.6.1 Parameter fitting

To compare model predictions with data, we first determine appropriate frequency
distributions r(ω) for single neurons recorded over long durations, characterized by
mean µω and variance γω, and r.m.s. noise strength σ, by seeking parameter values for
which model realizations match both an empirical interspike interval (ISI) histogram
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and correlations between neighboring ISIs:

r1
4
=

E {(yj −m)(yj+1 −m)}
E {(yj −m)2} . (5.13)

Here subsequent ISIs are labeled yj and E denotes expectation, m = E{yj}. The
process {yj} is assumed stationary so r1 and m are independent of j. Variability
is assumed due to: 1) slow drift in baseline frequency ω, and 2) rapid input current
fluctuations modeled through the σz(θ)dW (t) term in (5.4). Thus yj = yωj +ηj, where
yωj are the noise-free drift values, and ηj causes additional variance (γ

σ)2 due to rapid

noise. If the drift is sufficiently slow then E{(yj −m)(yj+1 −m)} ≈ E{(yωj −m)2} 4=
(γω)2, and (5.13) becomes

r1 ≈
(γω)2

(γσ)2 + (γω)2
= 0.1 , (5.14)

where we appeal to independence of the ηj and insert the numerical value derived
from the data of Fig. 5.7, recorded from a single LC neuron in an Eriksen session.

Eqn. (5.14) constrains the ratio of slow ((γω)2) to fast ((γσ)2) ISI variances, the
breadth of the ISI histogram constrains the magnitude of these variances, and the
mean frequency µω may be estimated directly from the ISI mean m. Guided by
this and by analytical expressions for, e.g., barrier hitting times relating σ and γσ,
Monte-Carlo simulations suggest a Gaussian distribution r(ω) with mean 1.69 Hz
and standard deviation 0.47 Hz, and r.m.s. noise strength σ = 0.45. This yields the
model ISI distribution of Fig. 5.7. To match the baseline data for the single neuron
PSTHs of the target detection task, we rescale the center frequencies to 2 and 3
Hz respectively for the phasic and tonic modes, while keeping the ratio of mean to
standard deviation constant. For the multi-neuron Eriksen data, we use the broader
Gamma distribution of Fig. 5.4. (Recall that these different frequency distributions

100



0 500 1000 1500 2000 2500 3000
0

0.5

1

1.5

2

2.5

x 10
−3

P(ISI)

ISI (ms)

Figure 5.7: Empirical (gray bars) and model (solid line) histograms of baseline ISIs
for a single neuron during the Eriksen task. For empirical data, windows of 1.5 sec.
following each stimulus are removed to isolate baseline frequencies. Histogram bins
are 10 ms wide.

are realized by different distributions of baseline currents I bi , see Section 5.7.) We
maintain σ = 0.45 throughout.

Synaptic and electrotonic coupling strengths were chosen to qualitatively capture
the experimental cross-correlograms for phasic and tonic episodes given in [167]; see
Fig. 5.8. As described in Section 5.3.2, [167] reports that baseline firing rates (among
the entire LC population) are not only slower than in the tonic mode but are also more
tightly distributed. Thus, in the phasic (tonic) mode, we draw spike frequencies from
a Gamma distribution with β = 3, φ = 0.667 (β = 3, φ = 1), giving mean 2 Hz (3 Hz)
and standard deviation 1.16 Hz (1.73 Hz); cf. Fig. 5.4. (However, as described in the
previous paragraph, only some of these frequencies contribute to the single-neuron
PSTHs of the target detection task.) We then require that a central subgroup of
oscillators are largely synchronous (asynchronous). This yields βs = 0.01, βe = 0.05.
Note that, unlike [167], we take the same coupling strengths for phasic and tonic
modes, showing that increased synchrony can result solely from a tighter distribution
of phasic frequencies.

Finally, we found via interactive simulations the following appropriate inputs I(t).
For the target detection task we found that a square wave of height Ī = 0.125 µA/cm2

and duration d = 110 msec was satisfactory. Since the Eriksen data is averaged over
all conditions (congruent and incongruent stimuli) and presumably involves more
complex cognitive processing, a more diffuse input is appropriate. We adopted an
exponentially rising and falling function, with rise duration d = 180 msec and rise
and fall time constants 75 and 90 msec respectively and maximum height Ī = 0.22
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Figure 5.8: Normalized cross correlograms for phasic LC mode (filled histogram) and
tonic mode (solid line). (Left) from [167, Fig. 4] for two simultaneously recorded
LC neurons. (Right) model results derived from mean ± 1 standard deviation of 100
oscillator population. In both cases, central peak indicates increased synchrony in
phasic mode.

µA/cm2. Moreover, reaction time (RT) distributions have significantly greater stan-
dard deviation than for target detection: 114 and 241 msec for correct and incorrect
respectively [33], compared to ≈ 34 and 53 msec for phasic and tonic modes respec-
tively [167]. We therefore averaged over Gaussian distributions of onset times with
standard deviations of 38 and 80 msec in the Eriksen task, assuming that variability in
input arrival times at LC contributes about one third of total RT variability. Because
our simulations indicate that the much smaller RT variability in the target detection
task produces only minor effects (see below), we used fixed latencies in modeling this
task. In all cases, since LC input lags visual stimulus, we include a time delay of 90
msec [10]. Thus, as noted in Section 5.3.2, the results of Section 5.5 predict that the
target detection and Eriksen inputs must differ qualitatively.

5.6.2 Comparison of model and empirical PSTH data

Fig. 5.9 shows model PSTH data for the target detection and Eriksen tasks, obtained
in three ways: 1) by numerical solution of (3.1) in the presence of noise (σ 6= 0),
followed by averaging over the frequency distributions derived above; 2) via direct
simulations of a set of N = 100 globally-coupled Rose-Hindmarsh equations (5.1)
representative of the same distributions, excited by independent Brownian noise cur-
rents of appropriate strength; and 3) directly from the noise-free expression (5.6)
averaged over the same frequency distributions. The probabilistic effects considered
above are clear: population averaging and noise combine to damp the periodic ringing
of the noise-free single-frequency data of Fig. 5.5 (cf. the decay rate bound (3.45)).

These results confirm that reduction to a single phase equation (5.5) and the
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Figure 5.9: Model PSTHs computed from solution of Eqn (3.1) (solid) and from
Eqn. (5.6) (dashed), averaged over neuron frequency distributions and with stimuli
(shown as filled black; arrows above stimuli for Eriksen task indicate variability in
stimulus onset) and all other parameters as described in text. Gray bars show re-
sults of simulating 100 Rose-Hindmarsh neurons for multiple trials. Decay bound
of (3.45) shown dotted. Top row: target detection task for poor performance/tonic
mode (left) and good performance/phasic mode (right); bottom row: Eriksen task for
incorrect (left) and correct (right) responses. Compare with the experimental PSTHs
of Figure 5.1 above.

probabilistic theory developed above provide good descriptions of the coupled Rose-
Hindmarsh system, and that the decay rate bounds of Section 3.5 are reasonable.
The noise-free limit (5.6) is a useful qualitative estimator of PSTHs, although target
detection phasic/tonic response ratios are significantly less than 9/4 predicted by
(5.10), due to the high noise level that selectively damps the sharply peaked phase
densities arising at low frequencies.

The model results of Fig. 5.9 qualitatively reproduce the PSTHs of Fig. 5.1, with
the major quantitative discrepancy that enhancement of response magnitude for pha-
sic relative to tonic states in target detection captures only a part of that reported
in [167]. In terms of the measure Rmag that characterizes enhanced spiking following
stimulus [10], our model predicts a ratio Rmag(phasic)/Rmag(tonic) ≈ 1.3, compared
to the value 3.4 of [167]. Hence, additional mechanisms, beyond the frequency effects
studied here, must be operative in the phasic/tonic transition. For example, noise
levels σ may be elevated in the tonic mode (in addition to mean current values Ib).
Our simulations (not reported here) confirm that this increases the relative magni-
tude of phasic mode responses, as predicted in [86]. Averaging over a slightly broader
distribution of input onsets in the tonic mode than in the phasic mode, as suggested
by reaction time distributions in the two tasks, further enhances phasic vs. tonic
responses, although the small RT variance shows that this is a minor effect in target
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detection. Electrotonic coupling changes may also play a role as in [167]. We note
that recent additional analyses of target detection data, in which recordings were
grouped by baseline rate without reference to tonic and phasic behavioral modes,
revealed small differences in Rmag similar to those reported here.

Our model reveals that the tonic/phasic frequency difference contributes to the
variation between PSTHs for poor and good target identification performance, while
in the Eriksen data, for which baseline frequencies are similar, PSTH differences
can be accounted for by variations in stimulus arrival times originating in earlier
processing. Moreover, diffuse stimuli in the latter case eliminate the depressed post-
activation spiking seen in target identification.

5.7 Discussion

We have shown that a biophysical model of coupled LC neurons can be reduced to a
stochastic differential equation for the phase of a given cell, and that a probabilistic
formulation and averaging over suitable frequency distributions allows one to model
and analyze peri-stimulus time histograms derived from single and multi-cell LC
recordings. Our model supplements that of [167], and our analysis reveals explicit
parameter dependencies, including the effects of stimuli appropriate to two different
cognitive tasks.

In [167], electrotonic coupling variations were proposed as the cause for transitions
between tonic and phasic LC modes, and hence for differences in PSTHs associated
with poor and good target detection performance. In the model presented here,
while coupling clearly affects synchrony, the key factor influencing PSTHs averaged
over many trials is the LC spike rate, governed by the baseline currents I bi . In any
case, our baseline rate explanation differs from the electrotonic coupling mechanism
of [167]; also, in that paper the I bi were set in the excitable range, so that noise and
other external inputs were necessary for spiking. From simulations of subthreshold
networks of coupled Rose-Hindmarsh neurons with noise-driven firing at 2 − 3 Hz.,
we found that reproducing post-stimulus periods of depressed activity requires strong
collateral coupling among LC neurons in both phasic and tonic LC modes. The same
conclusion held for solutions of the corresponding (coupled) phase density equations
derived from the full ‘theta model’ [50] (not reported here). In this high noise, high
coupling regime, different mechanisms for the phasic to tonic transition may dominate.

Since we assume here that frequencies are distributed more tightly in the slower
phasic mode, we obtain enhanced phasic mode synchrony without changing coupling
strength: Fig. 5.8; this differs from the subtler mechanism of [1]. In sum, we see
synchrony as a correlate of elevated LC response, rather than its primary cause.
For the LC in vivo, the synchronizing effects identified here and in [167, 1] may all
be relevant. Additional effects of stronger coupling terms, noise, and subthreshold
neurons may also be important and are under investigation.

Possible explanations for decreased Ibi include reduced inputs from other neurons
afferent to the LC. The anterior cingulate cortex (ACC), a prefrontal area involved
in cognitive control, has recently been shown to have excitatory (presumably gluta-
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matergic) projections to the LC [138, 99, 100]. Our findings suggest that the ACC
may send decreased excitation to the LC in the phasic vs. tonic mode. Intriguingly,
small inhibitory (GABA-ergic) neurons have been found among in a peri-LC region
and are known to project to LC neurons and dendrites [11]. Several areas, including
the prefrontal cortex, innervate this region, suggesting a pathway by which input
currents Ib, and hence baseline firing, may be regulated by increased inhibition in the
phasic mode.

Decreased firing rates in the phasic vs. tonic mode could also result from neu-
romodulators. For example, in some cases direct application of the neuropeptide
corticotropin releasing factor (CRF) increases LC baseline activity and simultane-
ously decreases responses to sensory stimuli [170]. It has also been found that that
the alpha2 adrenoceptor agonist clonidine (or ST-91) can decrease baseline activity
and increase response [7]; the neuromodulator corresponding to this drug is nore-
pinephrine, which presumably could be sent to the LC from other noradrenergic brain
areas. Many other examples of such ‘modulatory’ effects of neurotransmitters or ex-
ogenous inputs exist for neurons in other brain areas [8]. Finally, we note that since
synaptic coupling among LC neurons is inhibitory, it transiently reduces net input
currents, thus effectively decreasing I bi if LC neurons are sufficiently decorrelated.

The present analysis therefore provides a simple explanation for how mechanisms
which set baseline firing rate, such as background levels of exogenous input, neuro-
modulators, or pharmacological agents will influence the response of a neural pop-
ulation to pulsed stimuli (cf. [86, 60]): indeed, it shows that this dual effect on
baseline rates and evoked response is intrinsic to the dynamics of neural groups. The
LC phasic and tonic modes are an example, but the dual effect occurs in numerous
other brain areas and neurons [8]. This intrinsic baseline rate mechanism joins a
list of others: in addition to altered electrotonic coupling [167], other mechanisms
for simultaneous effects on baseline and stimulus-evoked firing have been proposed,
including simultaneous transmitter actions at multiple receptors [10], alterations in
specific second messenger pathways and ion conductances [123, 62].

In addition to the predictions regarding in vivo baseline LC inputs just described,
our analysis also provides a prediction about inputs evoked by task-related stimuli.
That is, neurons that project to the LC and evoke responses should remain active
longer following stimuli in complex tasks such as the Eriksen paradigm than in sim-
pler ones like target detection. This is consistent with the notion introduced above
(assumptions (A3) and (A4) of Sect. 5.3.2) that the LC is driven by accumulating ac-
tivity in decision areas, as this activity may be expected to accumulate more gradually
in complex decision tasks.

In recent related work [168, 70] abstracted models of LC population activity that
modify gains in connectionist networks have been shown to capture neuromodulatory
effects on cognitive performance. Before turning to investigate these gain effects in
detail in Part II of this dissertation, we remark that the present LC model, derived
from the neural substrate, offers simplification comparable to [168, 70] as well as
suggesting, in the coupled multi-unit phase model of Eqn. (5.4), a middle ground
between those abstractions and the full Rose-Hindmarsh system of (5.1-5.2).
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Appendix to Part I

Equations for the neural models

The Rose-Hindmarsh equations:

V̇ = [Ib − gNam∞(V )3(−3(q −Bb∞(V )) + 0.85)(V − VNa)
−gKq(V − VK)− gL(V − VL)]/C

q̇ = (q∞(V )− q)/τq(V )

q∞(V ) = n∞(V )4 +Bb∞(V ) , b∞(V ) = (1/(1 + exp(γb(V + 53.3))))4 ,

m∞(V ) = αm(V )/(αm(V ) + βm(V )) , n∞(V ) = αn(V )/(αn(V ) + βn(V )) ,

τq(V ) = (τb(V ) + τn(V ))/2 , τn(V ) = Tn/(αn(V ) + βn(V )) ,

τb(V ) = Tb(1.24 + 2.678/(1 + exp((V + 50)/16.027))) ,

αn(V ) = 0.01(V + 45.7)/(1− exp(−(V + 45.7)/10)) ,

αm(V ) = 0.1(V + 29.7)/(1− exp(−(V + 29.7)/10)) ,

βn(V ) = 0.125 exp(−(V + 55.7)/80) , βm(V ) = 4 exp(−(V + 54.7)/18) .

VNa = 55 mV , VK = −72 mV , VL = −17 mV , gNa = 120 mS/cm2 ,

gK = 20 mS/cm2 , gL = 0.3 mS/cm2 , gA = 47.7 mS/cm2 ,

C = 1 µF/cm2 , Ibi = 5 µA/cm2 , γb = 0.069 mV−1 ,

Tb = 1 msec , Tn = 0.52 msec , B = 0.21 gA/gK .

The Fitzhugh-Nagumo equations:

V̇ = [−w − V (V − 1)(V − a) + Ib]/C

ẇ = ε(V − gaw)

ga = 1 , ε = 0.05 , a = 0.1 mV , C = 1 µF/cm2.
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The Hodgkin-Huxley equations:

dV/dt = 1/C(I − gNah(V − VNa)m3 − gK(V − VK)n4 − gL(V − VL))
dm/dt = am(V )(1−m)− bm(V )m

dh/dt = ah(V )(1− h)− bh(V )h

dn/dt = an(V )(1− n)− bn(V )n

am(V ) = 0.1(V + 40)/(1− exp(−(V + 40)/10))

bm(V ) = 4 exp(−(V + 65)/18)

ah(V ) = 0.07 exp(−(V + 65)/20)

bh(V ) = 1/(1 + exp(−(V + 35)/10))

an(V ) = 0.01(V + 55)/(1− exp(−(V + 55)/10))

bn(V ) = 0.125 exp(−(V + 65)/80)

VNa = 50 mV , V k = −77 mV , VL = −54.4 mV , gNa = 120 mS/cm2

gK = 36 mS/cm2 , gL = .3 mS/cm2 , C = 1 µF/cm2

The Morris-Lecar equations:

V̇ = [gCam∞(V )(VCa − V ) + gKw(VK − V ) + gL(VL − V ) + Ib]/C

ẇ = φ(w∞(V )− w)/τw(V )

m∞(V ) = 0.5(1 + tanh((V − V1)/V2))
w∞(V ) = 0.5(1 + tanh((V − V3)/V4))
τw(V ) = 1/ cosh((V − V3)/(2V4))

φ = 0.23 , gL = 2 mS/cm2 , gCa = 4 mS/cm2 , gK = 8 mS/cm2 , C = 20 µF/cm2

VK = −84 mV , VL = −60 mV , VCa = 120 mV

V1 = −1.2 mV , V2 = 18 mV , V3 = 12 mV , V4 = 17.4 mV
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PART II: Neural Integrators
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Chapter 6

Optimal gain for simple decision
models with known input schedules

6.1 Chapter outline

We review simple connectionist and firing rate models for mutually inhibiting pools
of neurons that discriminate between pairs of stimuli. Both are two-dimensional
nonlinear stochastic ordinary differential equations, differing in how inputs and stimuli
enter. A key parameter is gain: the maximum slope of the sigmoidal activation
function. We develop piecewise-linear and purely linear models, and one-dimensional
reductions to Orstein-Uhlenbeck processes that can be viewed as linear filters. We
then pose and solve the optimal gain problem for the reduced models, finding explicit
gain schedules that minimize error rates for time-varying stimuli. We relate these
to time courses of norepinephrine release in cortical areas, and argue that transient
firing rate changes in the brainstem nucleus locus coeruleus may be responsible for
approximate gain optimization. The material of this chapter forms a part of [20].

6.2 Introduction

The psychological and neural bases of decision making are active areas of inquiry in
cognitive science [152, 73, 151, 72, 156, 122, 152, 161, 113, 139, 140, 169, 145, 184].
There is a wealth of data on simple decision tasks which require discrimination among
alternative stimuli as quickly and accurately as possible. Typically, this discrimina-
tory process has been modelled as a competition among different neural populations,
each representing alternate interpretations of the current stimulus [38, 169]. Recent
direct recordings in visual and motor areas of monkeys performing sensory discrimi-
nation tasks support this interpretation by revealing that, following training, certain
‘decision’ neurons become selective for different stimulus alternatives, and upon pre-
sentation of the relevant stimulus their firing rates gradually increase accordingly;
when these rates cross thresholds, the corresponding behavioral response is initiated
(e.g. [152, 73, 151, 145, 72]). This neural evidence adds to behavioral evidence
noted below, suggesting that decisions are made by comparing integrated ‘weights of
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evidence,’ encoded by the firing rates of neural groups. Here, we explore the compu-
tational mechanisms required to optimize such a process.

The stimuli relevant to making a decision are often not static: their saliences
may change over time. In the simplest case, a change occurs only at the moment
when the stimulus itself appears. This is typically modelled in simulations of de-
cision tasks (e.g., in [36, 21, 31], cf. [113]) by dividing the task into two distinct
periods: a preparatory period, in which no stimulus is present, and a trial period,
in which a stimulus of constant discriminability is presented. Alternatively, stimulus
discriminability may change in a stepwise manner or vary continuously during the
trial period.

The following specific example motivates our analysis of two specific cases in
Section 6.3.4. In the ‘moving dots’ paradigm of the two alternative forced choice
task [18, 156, 72] a display of moving dots is presented, and the subject must indicate
whether a majority of dots is moving to the right or the left. In the simplest case,
the subject focuses on a neutral fixation point during the preparatory period, after
which the dots appear, with a certain ‘coherent’ fraction moving either left or right,
and the rest moving randomly. A variant is obtained by showing a zero coherence
display of dots during the preparatory period, and suddenly increasing coherence to
a fixed value.

Even if external stimuli have constant strengths, their representations in neural
populations that decide between alternative hypotheses may gradually rise, due to ac-
cumulating activity in input layers, fluctuations in attention, or both [125, 39, 167, 70].
Another possible source of time varying salience is the increasing noise levels that may
accompany higher firing rates. A richer situation, in which the stimulus salience in-
creases and decreases over time, is explored in [95]. A focus of the present chapter
is how stimuli with time dependent salience can be optimally processed in simple
neurally-based models of decision networks. We study the reduction of such networks
to linearized, one-dimensional approximations (cf. [169, 21, 13]) for which optimal-
ity conditions can be fully characterized, and identify two distinct mechanisms, one
involving intrinsic properties of decision networks and the other involving external
modulation, that can implement optimal processing of time-varying stimuli.

Optimality principles have found wide application in psychology and neuroscience
(e.g. [12, 3, 56]). In particular, Stone applied the optimal Sequential Probability Ratio
Test (SPRT) to model behavioral data in a two-alternative forced choice task [161].
This was followed by the extensive work of Laming [113]. The SPRT computes time-
dependent likelihood ratios between the probabilities of two competing hypotheses,
a procedure equivalent to the signal processing strategy that maximizes signal-to-
noise ratio in the difference between two incoming stimuli. For stimuli with constant
signal-to-noise ratios, the SPRT is equivalent, in an appropriate continuum limit,
to the constant-drift diffusion model, which has been shown by Ratcliff and others
to fit a wide variety of behavioral data (see [139, 140] and references therein) and
also to describe the dynamics of neural firing rates in sensori-motor brain areas [151,
72], cf. [159]. Specifically, in [72], the notion of reward rate is introduced for the
constant-drift diffusion model, and [13] shows that higher performing subjects do
optimize this quantity in a specific behavioral task. However, although [113] does
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allow for accumulation of noise to have occurred before stimulus presentation (see
Laming’s appendix A7), in all these studies the decision process is modelled only
after presentation of a stimulus having constant signal-to-noise ratio; furthermore, the
parameters describing processing of incoming information are not explicitly allowed
to vary in time.

In this chapter we show how models of mutually inhibiting neural populations
can make nearly optimal decisions about the identity of time-varying stimuli. This
is accomplished via dynamical adjustments in an effective gain parameter for the
linearized population dynamics. The gain determines the sensitivity of (equilibrium)
population firing rates to changes in averaged input currents to the population, and
the word ‘effective’ is used here because these changes can result either from transient
variations in the gain parameter describing this sensitivity or directly from the nonlin-
earities of neural input-output functions. There is much current research into neural
mechanisms for the modulation of gain in neural populations, identifying such factors
as levels of norepinephrine [167] and the strength of fluctuations in individual neurons
comprising the population (e.g. [30, 2, 26]). In particular, [158] proposes a mecha-
nism in which frequency-current curves of individual neurons adapt to match oper-
ating ranges to neural inputs, via intracellular calcium signals. This may be viewed
as a biophysical implementation of the earlier ‘automatic gain control’ (see Eqn. (9)
of [80] and references therein), which is implemented via multiplicative ‘shunting’
terms in neural network models and also keeps neural units in the sensitive regimes
of their input-output functions. Gain plays a different role in the present chapter:
we identify, for three different models, the distinct time-dependent (effective) gain
schedules which implement optimal processing strategies for time-dependent signals.
These provide predictions for gain manipulations that diverse neural mechanisms may
implement to improve task performance.

The balance of the chapter proceeds as follows. In Section 6.3 we introduce the
forced and free response decision tasks, and three types of stochastic differential equa-
tion (SDE) models for these tasks. We discuss linearized and one-dimensional reduc-
tions of them in two rather general cases. In the following Section 6.4, we compute
time dependent values of gain that optimize signal processing in the one-dimensional
models. This involves calculating gain functions that enable them to implement the
classical signal processing notion of matched filters. Section 6.5 interprets these re-
sults in terms of cortical norepinephrine (NE) release mediated by the brainstem
nucleus locus coeruleus (LC), showing that LC and NE dynamics indeed appear to
approximate optimal time courses. Section 6.6 concludes with a brief discussion.

6.3 Models of decision tasks

6.3.1 Decision tasks: the forced and free response protocols

We consider two distinct tasks, both widely used in cognitive neuroscience, in each
of which a decision maker must discriminate between two alternatives, henceforth
denoted ‘1’ and ‘2’. The sensory information itself, as well as its neural representation,
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is assumed to be noisy, so that discrimination errors occur. The first task is the
forced-response paradigm, in which subjects must respond with their best estimate
of which alternative (1 or 2) was presented at a fixed time T following stimulus
onset. We will also refer to this as the ‘interrogation protocol.’ Performance on this
task is measured by the error rate, or one minus the fraction of correct responses.
We note that the interrogation protocol is distinct from the deadlining paradigm
(not considered further here), in which the subject is apprised in advance of a fixed,
maximal time before which all responses must be made.

In the second, free-response paradigm, decisions are not demanded at a preset
time, but are given when the subject feels that sufficient evidence in favor of one
alternative has accumulated. Since the sensory evidence is noisy, response times vary
from trial to trial and performance under the free-response condition is characterised
by both reaction times and error rates. Here, optimality requires an appropriate
balance of speed and accuracy [177, 72, 13].

Following [169] and others, we shall model both these tasks by a pair of competing
(mutually inhibitory) neural populations, each of which is selectively responsive to
sensory input corresponding to one of the two alternatives. In the forced-response
protocol, the neural population with the highest firing rate at time T determines the
decision. For free responses, the first of the two populations to cross a firing rate
threshold establishes the choice. We do not address the (interesting) question of how
thresholds are set or threshold crossings are detected.

6.3.2 Two dimensional nonlinear models and the neural gain
parameter

In this section we consider the dynamics of two mutually inhibiting neural popula-
tions, each of which receives noisy sensory input from components of the stimulus
representing one of the alternatives. We describe two models, both in wide use, for
such populations.

The first of these, the leaky integrator connectionist model [120, 169], is:

τc
dx1
dt

= −x1 − βfg(t)(x2) + a1(t) +
c(t)√
2
η1t , (6.1)

τc
dx2
dt

= −x2 − βfg(t)(x1) + a2(t) +
c(t)√
2
η2t , (6.2)

where the state variables xj(t) denote the mean input currents to cell bodies of the
jth neural population, the integration implicit in the differential equations modelling
temporal summation of dendritic synaptic inputs [80]. Additionally, the parameter
β sets the strength of mutual inhibition via population firing rates fg(t)(xj(t)), where
fg(t)(·) is the sigmoidal ‘activation’ (or ‘frequency-current’ or neural ‘input-output’)
function to be described shortly. The stimulus signal received by each population is
aj(t), and the noise terms polluting this signal are c(t)ηjt , where c(t) sets r.m.s. noise
strength and the ηjt are (independent) white noise processes with variance E(ηjt −
ηjt′)

2 = δ(t − t′). The time constant τc reflects the rate at which neural activities
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decay in the absence of inputs and respond to input changes. Under the free-response
paradigm a decision is made and the response initiated when the firing rate fg(t)(xj)
of either population first exceeds a preset threshold θj; it is normally assumed that
θ1 = θ2 = θ. For the interrogation protocol, the population with greatest activity (and
also firing rate) at time T determines the decision. We also assume that activities
decay to zero after response and prior to the next trial, so that the initial conditions
for (6.1-6.2) are xj(0) = 0.

The subscript in fg(t)(·) indicates dependence on the time-varying gain, or sensi-
tivity, g(t) of the neural populations: gain sets the slope of the activation function.
For example, the logistic function

fg(t)(x) =
1

1 + exp (−4g(t) (x− b)) =
1

2
[1 + tanh (2g(t)(x− b))] (6.3)

has maximal slope g(t) (see Fig. 6.1, left). While this specific form is not required for
the results derived below, we do assume that fg takes its time-dependent maximal
slope g(t) at some time-independent point, as for (6.3).

As already mentioned, the connectionist model describes the time evolution of
current inputs. We now introduce another model in which the firing rates of neural
populations are themselves integrated over time. First we give the linearized version
of this firing rate model:

τc
dy1
dt

= −y1 + f lg(t)

(
−βy2 + a1(t) +

c(t)√
2
η1t

)
, (6.4)

τc
dy2
dt

= −y2 + f lg(t)

(
−βy1 + a2(t) +

c(t)√
2
η2t

)
. (6.5)

Here, the yj are the firing rates of population j and other terms are as above. The
linear function

f lg(t)(x) =
1

2
+ g(t) (x− b) , (6.6)

derives from replacing the logistic (or any similar monotonic) function by the linear
approximation f lg(t)(·) around its point of maximal slope. Note that the firing rate
yj of the jth population approaches an equilibrium set by the input currents to
this population, passed through the (linearized) frequency-current function. This
model must be reformulated to allow for nonlinear functions fg(t), because white
noise does not make sense as an argument in such a function, cf. [65]. In particular,
we assume that, as in (6.4-6.5), the strength of firing rate fluctuations in response to
noise in inputs scales with g(t) (i.e., with the maximal sensitivity of firing rates to
the deterministic component of the input). This yields

τc
dy1
dt

= −y1 + fg(t) (−βy2 + a1(t)) + g(t)
c(t)√
2
η1t , (6.7)

τc
dy2
dt

= −y2 + fg(t) (−βy1 + a2(t)) + g(t)
c(t)√
2
η2t , (6.8)
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Figure 6.1: (left) Comparison of logistic and piecewise linear activation functions;
g = 1, b = 0.5. (right) Comparison of logistic and piecewise linear vectorfields
F (y1, y2) and F pw(y1, y2) for the piecewise-linear firing rate model (6.10-6.11): the
difference F (y1, y2) − Fpw(y1, y2) is plotted. Also shown for reference are the nine
phase space tiles described in Figure 6.2. Here additionally τc = 1, β = 1, a1 = 1.03,
a2 = 0.97.

which is valid for all f(·) and reduces to the form (6.4-6.5) for linear f(·). Note that
the firing rate model (6.7-6.8) is a standard two-unit recurrent neural network with
additive noise [87]. As above, we take initial conditions yj(0) = 0, and note that
threshold-crossing in the free-response case is detected directly via yj = θj.

For the questions of optimal stimulus processing addressed here, the most impor-
tant distinction between the connectionist (6.1-6.2) and firing rate (6.4-6.5)-(6.7-6.8)
models is whether the inputs aj(t) + c(t)/

√
2ηjt enter as separate additive terms, as

in the former, or as arguments to the activation function fg(t), as in the latter. As
explained at the end of Section 6.4, this determines whether changes in gain directly
adjust the sensitivity of neural units to all inputs or just to feedback from the compet-
ing unit, and it results in qualitatively different predictions for optimal gain schedules
in the two models. While we expect that future work on low-dimensional descriptions
of the population dynamics of spiking neurons (extending, e.g., [26, 184, 132, 157, 49]
to include neurotransmitter effects) will result in more refined models, here we study
the ‘simple’ connectionist and firing rate descriptions. Throughout, we use variables
xj in referring to the former and yj to the latter.
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6.3.3 Piecewise linear approximations

As in [169, 21], Eqn. (6.3) may approximated by a piecewise linear function:

fg(t)(ξ) ≈ f pwg(t)(ξ) =





0 for ξ ∈ (−∞, b− 1
2g
]

1
2
+ g(t)(ξ − b) for ξ ∈ [b− 1

2g
, b+ 1

2g
]

1 for ξ ∈ [b+ 1
2g
,∞)

, (6.9)

as illustrated in Fig. 6.1.
For ease of reference, we rewrite Eqns. (6.7-6.8) following piecewise linearization:

τc
dy1
dt

= −y1 + f pwg(t) (−βy2 + a1(t)) + g(t)
c(t)√
2
η1t , (6.10)

τc
dy2
dt

= −y2 + f pwg(t) (−βy1 + a2(t)) + g(t)
c(t)√
2
η2t . (6.11)

The difference between the vectorfield of the fully nonlinear model (6.7-6.8) and that
of (6.10-6.11) is illustrated in Fig. 6.1 (right) for a specific choice of parameters.

The (y1, y2) phase space of the piecewise linear firing rate model (and of the
analogous connectionist model) is tiled by nine regions divided by pairs of horizontal
and vertical lines at the break points of f pwg , each having a distinct linear vectorfield:
see Fig. 6.2. In the following section, we will describe two cases in which this tiled
structure can be used to reduce Eqns. (6.7-6.8) to a one-dimensional system.

6.3.4 Representing decision dynamics in one dimension

As discussed above and in [169], in the forced response protocol, the choice j = 1 or 2
is made according to which of the two neural populations has the greatest activity or
firing rate at interrogation time T . Therefore, knowledge of the difference

x(T )
4
= x1(T )− x2(T ) or y(T )

4
= y1(T )− y2(T ) (6.12)

determines the outcome and reduction of the original two-dimensional problem to a
single variable does not inherently imply any loss in accuracy. For example, if the
difference in firing rates is described by a time-dependent probability density p(y, t)
(whose distribution represents variability across behavioral trials), then the error rate
at interrogation time T is

ER =

∫ ∞

0

p(y, T )dy (6.13)

if alternative 2 was presented (that is, if a2 > a1 for t > ts), and

ER =

∫ 0

−∞
p(y, T )dy (6.14)

if alternative 1 was presented. Similar conclusions hold for the connectionist model.
For the free choice protocol the situation is more subtle. The single variable x or y
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y2

y1

τc dy1/dt = -y1 + g(t) [ - β y2 + a1(t)]
+ ½ - g(t) b

τc dy2/dt = -y2 + g(t) [ - β y2 + a2(t)]
+ ½ - g(t) b

τc dy1/dt = -y1
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+ ½ - g(t) b
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τc dy2/dt = -y2 + g(t) [ - β y2 + a2(t)]

+ ½ - g(t) b

τc dy1/dt = -y1 + 1
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+ ½ - g(t) b
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τc dy2/dt = -y2

τc dy1/dt = -y1 + g(t) [ - β y2 + a1(t)]
+ ½ - g(t) b

τc dy2/dt = -y2

τc dy1/dt = -y1 + 1
τc dy2/dt = -y2

β y2 = a1(t) - b + 1/[2g(t)]

β y2 = a1(t) - b - 1/[2g(t)]

β y1 = a2(t) - b - 1/[2g(t)] β y1 = a2(t) - b + 1/[2g(t)]

1 2 3

4 5 6

7 8 9

Figure 6.2: The piecewise linear vectorfield of the firing rate model (6.10-6.11). The
central tile is surrounded by a solid box.

is sufficient to characterize the decision only if the probability density of solutions to
(6.1-6.2) or (6.7-6.8) has approximately collapsed along a one-dimensional ‘decision
manifold’M by the time the threshold is crossed; see Fig. 6.3. In this sketch, the deci-
sion manifold, parameterized by y, is the unstable, center or weak stable manifold [82]
of the indicated fixed point. For collapse to M to occur, the eigenvalue character-
izing dynamics normal to the manifold must be sufficiently negative compared with
the other eigenvalue and noise strength c, so that the majority of sample paths cross
the thresholds xj = θ (or yj = θ) near their intersections withM [169, 21, 13]. These
requirements are met by two distinct parameter sets to be introduced below.

Dimension reduction and transient gain in two simple cases

In two cases, a simple equation for the evolution of x(t) or y(t) may be derived. These
cases are characterized by a dominant proportion of solutions to (6.10-6.11) (i.e., for
‘most’ realizations of the noise processes ηj(t)) (i) being confined to a single tile for
the duration of the decision process or (ii) ‘jumping’ together between tiles. The first
of these situations occurs for ‘case 1’ parameter sets, in which, for example, the onset
of salience (i.e., a1 6= a2) in input currents is accompanied by large transients in the
magnitude of these inputs. The second ‘case 2’ occurs for stimuli in which salience
appears without such transients in magnitude. We now consider these cases in detail
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Figure 6.3: Reduction to one dimension. The coordinate y (or x) of Eqn. (6.12)
parameterizes the decision manifoldM (see text): the invariant manifold containing
the fixed point indicated by the square. In the free response (but not the forced
response/interrogation) protocol, collapse of noisy solution trajectories along M is
required for accurate description in one dimension (cf. Figs. 6.4 and 6.5 (right))
so that trajectories (dotted line and point) cross thresholds arbitrarily close to the
intersections ofM with the thresholds yj = θ.

for the firing rate model.

Case 1: Trajectories confined to the central tile, gain parameter directly
modulated

The central tile of the firing rate phase plane, where both functions f pwg(t)(·) appearing
in Eqns. (6.10-6.11) are linearly increasing, is defined by

βy1 ∈
[
a2(t)− b− 1

2g(t)
, a2(t)− b+ 1

2g(t)

]
and βy2 ∈

[
a1(t)− b− 1

2g(t)
, a1(t)− b+ 1

2g(t)

]
.

If

b− 1

2g(t)
< a1(t), a2(t) < b+

1

2g(t)
, (6.15)

then the central tile always contains the origin and some part of the first quadrant
(note that this quadrant is invariant under the deterministic part of Eqns. (6.7-6.8) if
f is non-negative) so that decision dynamics starting at the origin may (for suitable
choices of other parameters) take place entirely within the central tile. For example,
if b = 0.5 and 0 < g(t) ≤ 1, then a1(t), a2(t) may take values between 0 and 1 while
still satisfying (6.15).

Fig. 6.4 shows a sample of solutions of the piecewise-linearized firing rate model
for the piecewise constant parameters g(t) = {0.3, t < ts; 1, t ≥ ts}, a1(t) = {1, t ≤
ts; 1.03, t > ts}, a2(t) = {1, t ≤ ts; 0.97, t > ts}, c(t) ≡ 0.09

√
2, b = 0.5, τc = 1,

θ = 0.725, ts = 10 and β = 1. Note that stimuli aj(t) 6= 0 are present throughout,
but that coherence (a1(t) 6= a2(t)) appears in the inputs aj only at t = ts, so that
times t < ts make up the preparatory phase mentioned in the introduction and the
situation corresponds to the introduction of coherence into an entirely random pat-
tern. Assuming that decision thresholds are set within the boundaries of the central
tile or that the interrogation time T is sufficiently small so that only a negligible pro-
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Figure 6.4: Case 1: Solutions confined to central tile. Scatter plot of trajectories both
at the end of the preparatory period and hence at the moment of stimulus onset ts
(left) and during the stimulus (t = ts+2, right). The tiling of the plane is shown with
dot-dashed lines; cf. Fig. 6.2; the central tile is outlined in solid and extends outside
the plotted domain in the left panel. Parameter values are given in text. Also shown
are nullclines for Eqns. (6.10-6.11) as thin solid lines. The lower panels show stimuli
aj(t) and gain g(t) as functions of time.

portion of solutions have left this tile, solutions are effectively confined to the central
tile for all times of interest. This behavior characterizes ‘case 1’ parameter sets, for
which subtraction of Eqns. (6.10-6.11) yields the one-dimensional SDE

τc
dy

dt
= −y + g(t) (βy + a(t)) + g(t)c(t)ηt (firing rate model) , (6.16)

where we define the net rate of incoming evidence as

a(t) = a1(t)− a2(t) . (6.17)

We note that transient gain values in this case result from modifications to the firing
rate function itself, as solutions explore only the central region of this function in
which it is practically linear. This is the ‘external’ mechanism of dynamic gain change
discussed in the Introduction.
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We also note that an analytical expression for the density of reaction times may
be derived if the parameters in (6.16) are constant (i.e., a(t) ≡ a, c(t) ≡ c) and
the gain ‘balances’ the decay: e.g., g(t) ≡ g = 1 in (6.16) (see, e.g., [140]). In this
case, (6.16) simplifies to a constant drift diffustion process and the probability that
a trajectory first escapes the interval [−θ̄, θ̄] at a time RT = inf{t : |y(t)| > θ̄} from
initial condition y(0) = 0 has density

p(RT ) =
πc2

θ̄2
e−

a2 RT
2c2

(
e−

θ̄a
c2 + e

θ̄a
c2

) ∞∑

k=1

k sin

(
kπ

2

)
exp

(−k2π2c2RT
8θ̄2

)
. (6.18)

Here ±θ̄ correspond to the intersections of the decision manifoldM with the thresh-
olds yj = θ of the two-dimensional process (Fig. 6.3). Eqn. (6.18) may be extended
to account for distributed initial conditions y(0) 6= 0 and other generalizations [140],
but we do not use such extensions here.

Similar considerations yield the reduction of the connectionist model restricted to
its respective central tile:

τc
dx

dt
= −x+ βg(t)x+ a(t) + c(t)ηt (connectionist model) . (6.19)

Note that gain multiplies the last three terms in (6.16), but only the second in (6.19).

Case 2: Trajectories switch tiles, changing effective gain

We now consider the case of stimuli aj(t) that ‘suddenly’ turn on from zero at time
ts while the gain parameter g(t) ≡ g remains constant, and show how stimulus onset
itself can give rise to a time-dependent one-dimensional reduction that resembles the
reduction to (6.16) obtained above. This corresponds to appearance of a partially
coherent stimulus replacing a fixation spot. Since a1(t) = a2(t) = 0 for t ≤ ts, in
this period there is a stable fixed point at (0, 0) if b ≥ 1

2g
. If b = 1

2g
, the situation

simplifies: while t ≤ ts, (0, 0) lies exactly at the corner of tile 9 (see Fig. 6.2), to which
tile solutions are confined (modulo noise effects). At stimulus onset ts, tile boundaries
shift, so that, for appropriate choices of a1(t), a2(t) >

1
2g(t)
− b for t > ts, the origin

and the cluster of solutions in its neighborhood at time t = t+s , suddenly finds itself
in the central tile 5. For concreteness, we fix parameters meeting the requirements
b = 1

2g
and a1(t) = a2(t) = 0 for t ≤ ts as follows: a1(t) = {0, t ≤ ts; 1.03, t > ts},

a2(t) = {0, t ≤ ts; 0.97, t > ts}, g = 1 and all other parameters as for the example in
case 1. See Fig. 6.5.

To determine the appropriate linear (two- and one-dimensional) reductions for
these parameters, we use Eqns. (6.10-6.11) restricted to tile 9 for the preparatory
phase t ≤ ts, and restricted to tile 5 for times t > ts during stimulus presentation (we
make the same assumptions about the interrogation time or thresholds as for case 1,
so that solutions remain in the central tile 5 for all times t > ts of relevance to the
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decision). This yields the one-dimensional equation

τc
dy

dt
= −y +

{
gc(t)ηt for t ≤ ts
g[βy + a(t)] + gc(t)ηt for t > ts

, (6.20)

(and an analogous reduction to a linear two-dimensional model).
Equation (6.20) is similar to the reduction (6.16), if the stimulus and gain functions

in the latter are piecewise constant, as for the example parameters of case 1. The
major difference is that the noise coefficient remains constant for (6.20). As we see
in the next section, the statistics produced by the one-dimensional models (6.16)
and (6.20) can nevertheless agree rather well. Thus, transient gain strategies to be
derived for the more general (6.16) in Section 6.4 can be approximately implemented
for stimuli undergoing large steps, with no changes in the gain of the activation
functions per se.

Similar considerations hold for ‘case 1’ and ‘case 2’ reductions of the connectionist
model, but we do not pursue this here.

Finally, we note that [20] contains an explicit comparison of error rates and reac-
tion times predicted by the two-dimensional firing rate model with logistic activation
functions fg(t), the two-dimensional model with piecewise-linear activation functions
f pwg(t) (6.10-6.11), and the one-dimensional reduction (6.16). This comparison verifies
the expected agreement between one- and two-dimensional models for the parameters
chosen in Case 1 and Case 2 above, adding to the evidence in [21, 169, 13] that one-
dimensional linearized models can capture the essential decision making dynamics for
a reasonably broad range of model parameters.

6.3.5 Drift-diffusion and the one dimensional models as lin-
ear filters

We introduce a third one-dimensional SDE, an extension of the drift-diffusion model
of [113, 139] in which both drift and diffusion terms are multiplied by a common gain
factor g(t):

τc
dz

dt
= g(t)[a(t) + c(t)ηt] ((pure) drift-diffusion model) . (6.21)

Eqn. (6.21) and the one-dimensional reductions of the firing rate and connectionist
equations (6.16) and (6.19) are Ornstein-Uhlenbeck processes, (affine-) linear in the
activities x, y, and z and in the input

I(t)︸︷︷︸
input

= a(t)︸︷︷︸
signal

+ c(t)ηt︸ ︷︷ ︸
noise

. (6.22)

120



stimuli

time  t
gain

time  t

t_s

t_s

1

1

-2 -1 0 1 2
-2

-1

0

1

2

t=t
s
; before stimulus

y
1

y
2

 -2  -1 0 1 2
 -2

 -1

0

1

2

t>t
s
; during stimulus

y
1

y
2

a1

a2

Figure 6.5: Case 2: Trajectories switch tiles. Scatter plot of trajectories both at the
end of the preparatory period and hence at the moment of stimulus onset ts (left)
and during the stimulus (t = ts + 2, right). The tiling of the plane is shown with
dot-dashed lines; cf. Fig. 6.2; the central tile is outlined in solid. Parameter values
are given in text. Also shown are nullclines for Eqns. (6.10-6.11) as thin solid lines.
The lower panels show stimuli aj(t) and gain g(t) as functions of time.

We may explicitly solve all these SDEs, for a given realization of the white noise
process ηs, s ∈ [0, t], to obtain respectively

z(t) =

∫ t

0

g(s)a(s)

τc
ds+

∫ t

0

g(s)c(s)

τc
dWs (6.23)

for the drift diffusion model,

x(t) =

∫ t

0

a(s)

τc
exp

(
1

τc

∫ t

s

[βg(s′)− 1] ds′
)
ds+

∫ t

0

c(s)

τc
exp

(
1

τc

∫ t

s

[βg(s′)− 1] ds′
)
dWs

(6.24)
for the connectionist model, and

y(t) =

∫ t

0

a(s)g(s)

τc
exp

(
1

τc

∫ t

s

[βg(s′)− 1] ds′
)
ds+

∫ t

0

c(s)g(s)

τc
exp

(
1

τc

∫ t

s

[βg(s′)− 1] ds′
)
dWs

(6.25)
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for the firing rate model. Here, dWs is an increment of a Wiener process, of which the
white noise process ηs is the formal time derivative, and we have assumed unbiased
initial data x(0) = y(0) = z(0) = 0. These expressions all take the form

w(t) =

∫ t

0

K(t, s)a(s)ds+

∫ t

0

K(t, s)c(s)dWs , (6.26)

and so we conclude that (6.23-6.25) all compute linear filters of their inputs.
At any fixed time t, w(t) is a gaussian-distributed random variable with mean∫ t

0
K(t, s)a(s) and variance

∫ t
0
K2(t, s)c2(s)ds. Using this fact, after a change of vari-

ables the error rate expression (6.14) becomes

ER =
1

2


1− erf




∣∣∣
∫ t
0
K(t, s)a(s)

∣∣∣
∫ t
0
K2(t, s)c2(s)ds




 . (6.27)

6.4 Optimal signal discrimination in the one- di-

mensional models

We now ask what functional form of g(t) optimizes performance for Eqns (6.23-
6.25), thereby computing optimal gain trajectories for the (reduced) drift-diffusion,
connectionist, and firing rate models.

6.4.1 Optimal statistical tests

Given only the noisy input function (6.22), consider the task of deciding whether I(t)
was generated by time-dependent signals a0(t) or a1(t): hypotheses 0 and 1, resp.
This can be accomplished in two distinct ways, mirroring the interrogation and free
response protocols of Section 6.3. In the first, the decision is made at a fixed time T ;
in the second, it is made when some preset level of confidence is reached. Optimal
performance in the first version of the task implies that as few errors as possible
are made; in the second it implies that the decision must be made as quickly as
possible for a fixed error tolerance, timed from stimulus onset at time t = 0. The best
strategy in the first version is the (continuum limit of the) Neyman-Pearson test; in
the second version it is the sequential probability ratio test (SPRT) [172, 114]. Both
tests compute an evolving estimate of the log likelihood ratio:

l(t) = log

[
p ({I(s)|a0(s), s ∈ [0, t]})
p ({I(s)|a1(s), s ∈ [0, t]})

]
4
= log

[
p0 ({I(s), s ∈ [0, t]})
p1 ({I(s), s ∈ [0, t]})

]
. (6.28)

(the base of the logarithm is arbitrary). In the Neyman-Pearson test, hypothesis 0
is chosen if l(T ) > 0 and hypothesis 1 if l(T ) < 0; in the SPRT, hypothesis 0 (resp.
1) is chosen when l(t) first crosses threshold θ (resp. −θ), θ being determined by the
error tolerance.
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Writing the input I(t) (6.22) as a sum of its increments for an appropriate dis-
cretization of time {tj}:

I(t) =
∑

j

dIj =
∑

j

a(tj)dt+ c(tj)dW j
t , (6.29)

we obtain

l(t) =
∑

j

log

[
p0 (dI

j)

p1 (dIj)

]
. (6.30)

Now restrict to the special case in which a0(t) = −a1(t) = a(t) and consider the
likelihood distributions (now themselves time-dependent) that correspond to an in-
crement dI(t) = a(t)dt+ c(t)dWt. Since the dWt are normally distributed with mean
0, variance dt, we have

p0(t)(dI(t)) =
1√

2πc2(t)dt
e−(dI(t)+a(t)dt))

2/(2c2(t)dt) , (6.31)

p1(t)(dI(t)) =
1√

2πc2(t)dt
e−(dI(t)−a(t)dt))

2/(2c2(t)dt) . (6.32)

The corresponding increment of likelihood evidence to (6.28) is

dlt = log

(
p1(dIt)

p0(dIt)

)
= k

a(t)

c2(t)
dIt , (6.33)

where k = 2 log(e) depends on the base of the logarithm. Substituting for dIt, we
obtain a differential equation for the total evidence lt accumulated at time t,

dlt = k

[
a2(t)

c2(t)
dt+

a(t)

c(t)
dWt

]
, (6.34)

which may be integrated to yield:

l(t) =

∫ t

0

k
a2(s)

c2(s)
ds+

∫ t

0

k
a(s)

c(s)
dWs . (6.35)

Comparing with Eqn. (6.26) shows that the optimal filter is

K(t, s) = k
a(s)

c2(s)
: (6.36)

this is the matched filter for white noise which is fundamental in signal process-
ing [136]. Note that, in (6.34-6.35) only the signal-to-noise ratio (a/c) appears.
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6.4.2 A direct proof that the kernel K(t, s) = k a(s)
c2(s) is optimal

in the interrogation paradigm

As follows from its matched filter property, the linear filter K(t, s) = k a(s)
c2(s)

which

computes log likelihood l(t) for inputs with white noise also produces, for all times
t, a filtered (and gaussian) version w(t) of the input (Eqn. (6.26)) with a maximal
integrated signal-to-noise ratio

F [K; a, c](t) =

∣∣∣
∫ t
0
K(t, s)a(s)ds

∣∣∣
√

E
(∫ t

0
K(t, s)c(s)dWs

)2 =

∣∣∣
∫ t
0
K(t, s)a(s)ds

∣∣∣
√∫ t

0
K2(t, s)c2(s)ds

. (6.37)

For completeness, we now demonstrate this directly.
Minimization of the error rate (6.13) or (6.14) for (fixed) interrogation at time

t = T is achieved by maximizing F over all possible kernels K(s). This problem in
the calculus of variations is solved by computing the first and second variations, with
respect to K, of the functional F , setting the first to zero to determine a candidate
K̄ for the optimal K, and evaluating the second at K̄ to check that D2

KF is nega-
tive (semi-) definite. Henceforth we drop explicit reference to the (fixed, arbitrary)
interrogation time t = T in the function K and write K(T, s) = K(s). We compute:

δF

δK
= lim

ε→0

d

dε
F [K + εγ; a, c](T )

= lim
ε→0

d

dε





∫ T
0
a(s)[K(s) + εγ(s)] ds

[
2
∫ T
0
c2(s)[K2(s) + 2εg(s)γ(s) + ε2γ2(s)] ds

] 1
2





= lim
ε→0

1√
2

{∫ T
0
a(s)γ(s) ds

[H(T, ε)]
1
2

−
∫ T
0
a(s)[K(s) + εγ(s)] ds

∫ T
0
c2(s)[K(s)γ(s) + εγ2(s)] ds

[H(T, ε)]
3
2

}

=

∫ T
0
a(s)γ(s) ds

∫ T
0
c2(s)K2(s) ds−

∫ T
0
a(s)K(s) ds

∫ T
0
c2(s)K(s)γ(s) ds

√
2
[∫ T

0
c2(s)K2(s) ds

] 3
2

, (6.38)

where H(T, ε) =
∫ T
0
c2(s)[K2(s) + 2εK(s)γ(s) + ε2γ2(s)] ds. Setting (6.38) equal to

zero and using the fact that the variation γ(s) is arbitrary, we conclude that the

critical point indeed occurs at K̄(s) = k a(s)
c2(s)

, as given by (6.36).
To compute the second derivative we differentiate the expression within braces in

the penultimate step of (6.38) with respect to ε once more, set ε = 0, and evaluate
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the resulting expression at the critical point (6.36), obtaining:

δ2F

δK2

∣∣∣∣
K=K̄

= −
∫ T
0
c2(s)K̄2(s) ds

∫ T
0
c2(s)γ2(s) ds−

(∫ T
0
c2(s)K̄(s)γ(s) ds

)2

√
2
[∫ T

0
c2(s)K̄2(s) ds

] 3
2

≤ 0 .

(6.39)
In the last step we appeal to Schwarz’s inequality. This proves that the second
variation is negative semidefinite, and vanishes identically only for variations γ(s) =
κK̄(s) in the direction of K̄ (as expected from (6.36), which contains the arbitrary
‘scaling’ parameter k).

Substituting (6.36) into (6.37) we obtain

F [ḡ; a, c](T ) =

√
1

2

∫ T

0

a2(s)

c2(s)
ds , (6.40)

and using (6.27), we obtain the minimum possible error rate for interrogation at time
t:

ER =
1

2


1− erf



√

1

2

∫ T

0

a2(s)

c2(s)
ds




 . (6.41)

Since the integrand (a/c)2 is non-negative, the error rate continues to decrease or at
worst remains constant as T increases.

6.4.3 Optimal gains for the three models

We may now extract explicit expressions for optimal gains by setting K(s) = K̄(s)
in (6.26) and comparing the resulting integrands with those in the SDE solutions
(6.23-6.25).

Pure drift-diffusion model

Comparing (6.26) with (6.23), we see that the optimal gain is simply K̄:

ḡdd(s) = τcK̄(s) = τck
a(s)

c2(s)
; (6.42)

thus, there is a continuum of optimal schedules differing only by a multiplicative scale
factor.

Connectionist model

Equations (6.26) and (6.24) give

τcK̄(s) = τck
a(s)

c2(s)
= exp

(
1

τc

∫ T

s

[βḡc(s
′)− 1] ds′

)
, (6.43)
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where ḡc is the optimal gain for the connectionist model. Taking the log of this
expression, differentiating with respect to s, and solving for ḡc(s), we obtain:

ḡc(s) =
1

β

[
1− τc

d

ds
log

(
a(s)

c2(s)

)]
. (6.44)

Note that ḡc is unique and in particular, independent of k and of the interrogation
time T . However, ḡc is not required to be positive, so may not always be physically

admissable. The form of ḡc may be interpreted as follows. When
(
a(s)
c2(s)

)
is decreasing,

ḡc(s) > 1/β and the O-U process (6.19) is unstable; hence solutions ‘run away,’ in the
direction x(s), emphasizing higher-fidelity information that was previously collected.

When
(
a(s)
c2(s)

)
is increasing, ḡc(s) < 1/β, the O-U process is stable, and the linear

term in (6.19) is attractive, thereby discounting previously integrated information in
favor of the higher-fidelity input currently arriving.

We note that, because the ‘output’ neural activity is determined by a gain-
dependent function of the dynamical variable x in the connectionist model (see text
following Eqns. (6.1-6.2)), transient gain schedules also adjust the position of free-
response thresholds with respect to x. We leave an exploration of this effect, which
does not enter the interrogation protocol or affect the firing rate model, for future
studies.

Firing rate model

Equations (6.26) and (6.25) give

τcK̄(s) = τck
a(s)

c2(s)
= ḡf (s) exp

(
1

τc

∫ T

s

[βḡf (s
′)− 1] ds′

)
. (6.45)

Defining f(s) = τck
a(s)
c2(s)

e
1
τc

(T−s), differentiating with respect to s, and restricting to

positive functions ḡf , a and c2 (which we justify below), (6.45) yields

f ′(s) =
d

ds

[
ḡf (s) exp

(
1

τc

∫ T

s

βḡf (s
′)ds′

)]

= ḡ′f (s) exp

(
1

τc

∫ T

s

βḡf (s
′)ds′

)
− β

τc
ḡ2f (s) exp

(
1

τc

∫ T

s

βḡf (s
′)ds′

)

= ḡ′f (s)
f(s)

ḡf (s)
− β

τc
ḡf (s)f(s) . (6.46)

Rewriting (6.46), we obtain

dḡf (s)

ds
=

β

τc
ḡ2f (s) + ḡf (s)

f ′(s)

f(s)
=
β

τc
ḡ2f (s) + ḡf (s)

d

ds
log (f(s))

=
β

τc
ḡ2f (s) + ḡf (s)

[
d

ds
log

(
a(s)

c2(s)

)
− 1

τc

]
. (6.47)
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Thus, the condition for optimal gain in the linearized firing rate model is a dif-
ferential equation, unlike the algebraic relationships for the drift-diffusion and con-
nectionist cases. Note that solutions to (6.47) initialized at positive values remain
positive for all time, since the equation has an equilibrium at ḡf = 0, preventing pas-
sage through this point. This justifies our assumption of positive ḡf above and ensures
that the optimum gain is ‘physical’ this sense. In fact, (6.47) may be solved explicitly

using the integrating factor I(s) = exp
(∫ s

0
l(s′)ds′

)
, where l(s′)

4
= d

ds′
log
(
a(s′)
c2(s′)

)
− 1

τc
,

yielding

ḡf (s) =
exp

(∫ s
0
l(s′)ds′

)

β
τc

∫ s
0

[
exp

(∫ s′
0
l(s′′)ds′′

)]
ds′ + 1

g(0)

. (6.48)

The integral equation (6.45) specifies only an arbitrary, positive final condition

ḡf (T ) = k a(T )
c2(T )

for (6.47), since k is itself arbitrary. Any solution of (6.47) with

positive initial condition (as long as it is defined) therefore delivers a member of the
continuum of optimal gain functions for the linearized firing rate model. This is in
striking contrast to the unique optimal gain (6.44) in the connectionist model, and,
since the different ḡf generally have different forms (see below), it also contrasts with
the multiplicity of ‘scaled’ optimal drift-diffusion gain functions (6.42).

Numerical examples

Example 1: We first take constant signal a(s) ≡ a = 0.06 and constant noise
strength c(s) ≡ 0.09 with τc = β = 1. Then, Eqn. (6.42) gives the family of optimal
constant gain functions for the pure drift-diffusion model,

ḡdd(s) ≡ τcka , (6.49)

and Eqn. (6.44) gives the unique optimal gain for the connectionist model, again a
constant:

ḡc(s) ≡
1

β
. (6.50)

For the same parameter values, the firing rate model gain ODE (6.47) becomes

d

ds
ḡf (s) =

β

τc
ḡ2f (s)−

1

τc
ḡf (s) . (6.51)

Initial conditions ḡf (0) ∈ [0, 1/β] decay to the fixed point at ḡf = 0, while for ḡf (0) >
1/β, gain functions increase to ∞ in finite time. The initial condition ḡf (0) = 1/β
yields the constant gain function ḡf (s) ≡ 1/β, for which the linearized firing rate
model again becomes constant drift Brownian motion: see Fig. 6.6. As expected, all
gain profiles produced optimal performance (with 82.7% correct responses returned
at interrogation time T = 2).

Example 2: We now assume that signal amplitude is zero up to stimulus presentation
at time ts and rises exponentially toward ā thereafter: a(s) = ā[1−e−r(s−ts)] for s > ts.
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Figure 6.6: Optimal gains for constant signal strength a(s) ≡ 0.09 (solid line in
bottom panel) and constant noise amplitude c(s) ≡ 0.09 (dotted line). Top panel:
three optimal gain schedules ḡf solving (6.47); note that these include, but are not
limited to, ḡf (s) ≡ 1/β (here β = 1). Central panel: the unique optimal gain function
ḡc(s) ≡ 1/β for the connectionist model, given by Eqn. (6.44).

This form is motivated by the saturating dynamics of input layers which feed forward
to decision units in simple connectionist models. We set ā = 0.06, r = 10, ts = 1
and take constant noise strength c(s) ≡ 0.09 and τc = β = 1 as previously: see
Fig. 6.7 (bottom). As r → ∞, a(s) approaches the piecewise constant functions of
Section 6.3.4, for which the one-dimensional reduction is shown to be an adequate
model in [20].

For the pure drift-diffusion model, Eqn. (6.42) gives

ḡdd(s) = τcka(s) , (6.52)

so that, as above, optimal gain trajectories are scaled versions of the signal strength
and, in particular, ḡ(s) = 0 for s ≤ ts. For the connectionist and firing rate models,
however, the formulae (6.44) and (6.47) are valid only while a(s) > 0, and additional
reasoning is needed to determine optimal gain values in the pre-stimulus period s <
ts. For the connectionist model, the integral equation (6.43) is clearly satisfied for
a(s) = 0 if gc(s) = −∞, so we set ḡc(s) = −∞, s ≤ ts. Since for a ‘physical’ neural
network, activation functions fg(t)(·) are nondecreasing, such negative gain values are
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Figure 6.7: Optimal gains for exponentially asymptoting signal strength a(s) (solid
line in bottom panel) and constant noise amplitude c(s) ≡ 0.09 (dotted line). Top
panel: three optimal gain schedules ḡf for the firing rate model solving (6.47) (solid
curves); the non-optimal constant gain g ≡ 1/β is shown as dot-dashed for reference.
The lowest of the solid ḡf ’s displays the rise-decay form discussed in the text. Cen-
tral panel: the unique optimal gain function for the connectionist model, given by
Eqn. (6.44); ḡc(s) = −∞ for s ≤ ts.

not directly relevant to biological applications, but illustrate the demand that relative
activation x be clamped at zero before the stimulus arrives. As before, we define ḡc(s)
via (6.44) for s > ts. That is, for t > ts,

ḡc(s) =
1

β
[1− τcl(s)] , (6.53)

where l(s) = d
ds
log
(
a(s)
c2(s)

)
= r

er(s−ts)−1 decays from ∞ to 0 as time s increases.

For the firing rate model, we also appeal directly to the integral equation (6.45)
to define gf (s) when a(s) = 0. Since (6.45) is satisfied by ḡf (s) = 0, we assume this
for s ≤ ts. We then determine ḡf (s) for s > ts from (6.47), allowing a discontinuity at
ts and taking arbitrary ‘initial’ conditions ḡf (ts). Fig. 6.7 illustrates several optimal
functions arising from different choices of ḡf (ts). The following fact is helpful in
understanding positive solutions of (6.47): orbits lying below 1

β
[1 − τc l(s)] at any
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Figure 6.8: Optimal gains for pulsed signal strength a(s) (solid line in bottom panel)
and constant noise amplitude c(s) ≡ 0.06 (dotted line). Top panel: three optimal gain
schedules ḡf for the firing rate model solving (6.47) (solid curves); the non-optimal
constant gain function g ≡ 1/β is shown dot-dashed for reference. Central panel: the
unique optimal gain function for the connectionist model, given by Eqn. (6.44).

time s decrease toward 0; those above this value increase. Since 1
β
[1− τc l(s)]→ 1

β
as

s → ∞, 1
β
asymptotically forms a separatrix between optimal gain trajectories that

decay and those that diverge to ∞. Also, note that the Case 2 parameters for the
two-dimensional firing rate model of Section 6.3.4 implement a step in effective gain
values up to 1/β = 1, so that in this case nearly optimal signal processing occurs
with no explicit adjustment of the gain parameter. The performance resulting from
optimal gain trajectories in all models is 73.1% correct responses at interrogation at
time T = 2; for comparison, the (non-optimal) constant gain ḡf (s) ≡ 1/β produces
only 66.4% correct.

Gains must remain bounded for all time to be of practical interest. A family of
optimal gain schedules of this form, determined by their (sufficiently small) initial
conditions, will always exist for monotonically rising and bounded stimuli a(s) such
as that chosen here. As we elaborate in Section 6.5, their ‘rise-decay’ pattern resem-
bles the gain produced by dissipating pulses of the neuromodulator norepinephrine
delivered to cortical decision areas via the locus coeruleus, hence providing a clue
that this brainstem organ may be assisting near-optimal decision making.
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Example 3: We finally assume that a(s) smoothly increases from a low to a higher
level and then returns to its original level, corresponding to a transient increase
in stimulus salience. We model this as a difference of two sigmoids: a(s) = a0 +

ā
1+exp(−4r(ts,1−s)) −

ā
1+exp(4r(ts,2−s)) , with parameters a0 = −.04, ā = .045, ts,1 = 0.75,

ts,2 = 1.25, and r = 20: see Figure 6.8. Additionally, we take constant noise strength
c(s) ≡ 0.06 and τc = β = 1.

For the pure drift-diffusion model, Eqn. (6.42) again gives ḡdd(s) = τcka(s), and
for the connectionist and firing rate models, we may use (6.44) and (6.47) for the
entire time interval of interest since a(s) is strictly positive. The resulting optimal
gain trajectories, shown in Fig. 6.8, yield 70.8% correct responses at interrogation
time T = 2, compared with 64.9% correct obtained for constant gain gf (s) ≡ 1/β in
the firing rate model. Note that the form of the optimal ḡc(s) illustrates the intuitive
explanation given in Section 6.4.3: when the signal-to-noise ratio increases, ḡc(s)
decreases, suppressing previously integrated information, and vice-versa.

In summary, we have shown in this section that the gain schedules yielding optimal
performance in (reduced) neural models of decision tasks depend strongly on the time
course of task stimuli as well as the structure (i.e., firing rate vs. connectionist) of the
underlying model. These optimal gain schedules implement matched filters, maximiz-
ing the signal-to-noise ratio in the difference between activities of neural populations
representing competing task alternatives. For systems well described by the connec-
tionist model, neural mechanisms may be expected to depress the gain (i.e., strength
of inhibitory feedback) below the ‘balanced’ level of 1/β when stimulus salience is
increasing and enhance gain above this level when salience is decreasing. However,
for the firing rate model an optimal decision network may ‘choose’ among a variety
of gain schedules of qualitatively different forms. One neurobiological implication of
this flexibility is explored in the following section.

6.5 The locus coeruleus brainstem area and opti-

mal gain trajectories

Neurons comprising the brainstem nucleus locus coeruleus (LC) emit the neurotrans-
mitter norepinephrine (NE) to targets widely distributed throughout the brain, in-
cluding cortical areas involved in decision tasks. While NE has disparate and complex
effects on different brain regions, a dominant cortical role is believed to be modulation
of neuronal gain at both the single cell and population levels [167, 154]. Recordings
of cortical neuron responses to stereotyped inputs at various latencies following acti-
vation of LC reveal these gain effects: responses to a fixed input are larger (in certain
experimental ranges) following LC activation than in control recordings without LC,
and this elevated sensitivity decays with a time constant τNE ≈ 0.2 sec [175].

Since the firing rate of LC neurons governs NE release rate, we propose the fol-
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Figure 6.9: Comparison of optimal gain theory with empirical data for two psycho-
logical tasks. (a) Optimal gain schedules for the firing rate model, for rapid (left)
and gradual (right) onset of stimulus a(t) to neural units (with a processing time lag
of 0.1 sec following sensory cue), as shown in (b). (c) The corresponding optimal
time courses of LC firing rate. (d) Histograms of LC firing rates recorded in the two
tasks: (left), the target detection task [167] and (right), the Eriksen flanker task, with
data kindly provided by the authors of [34]. Vertical dashed lines indicate onset of
sensory stimuli, and vertical grey (solid) lines indicate mean behavioral reaction time
(standard deviations are ≈ 34 and 114 msec. for the target detection and Eriksen
tasks, respectively).

lowing simple model for cortical gain g(t):

τNE ġ(t) = kLC LC(t)− g(t) . (6.54)

Here, LC(t) denotes the time-dependent rate of LC firing and kLC is a constant
relating this rate to equilibrium values of cortical gain. This model’s limitations in
describing the underlying biology include the fact that g(t) decays to zero in the
absence of LC firing (this could be rectified by adding a constant ‘gain floor’ gbase).
Nevertheless, it allows us to make an interesting qualitative point in relating recent
data on LC firing rates to optimal strategies for the processing of noisy sensory stimuli.
Inverting (6.54) and inserting an optimal gain trajectory yields a prediction for the
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optimal time course of LC activity:

LC(t) =
1

kLC
(τNE ˙̄g(t) + ḡ(t)) . (6.55)

Fig. 6.9(d) shows histograms of LC firing rates recorded from monkeys performing
two different psychological tasks: target identification, in which a horizontal or verti-
cal bar must be detected, and the Eriksen flanker task, in which a central cue must
be identified while an array of distractors is ignored. Since the second task involves
more complex stimulus processing, we assume as in [24] that the onset of stimulus
representation in cortical decision areas is more gradual in this than in the target
identification task. Specifically, for t greater than the time ts of stimulus arrival we
take a(t) = ā(1− e−r(t−ts)) with r = 50 (time constant 0.02 sec) for target identifica-
tion and r = 10 (time constant 0.1 sec) for the Eriksen task; also, we set ā = 0.06; and
τc = 0.5 sec: see Fig. 6.9(b). Additionally, we assume that ts follows presentation of
sensory cue by a processing time lag of 0.1 sec (cf. [10]). Optimal gain schedules ḡf (t)
for the firing rate model with these stimuli, computed as in the preceding section, are
shown in Fig. 6.9(a). To produce panel (c), these gain functions were inserted into
Eqn. (6.55) to yield corresponding optimal LC firing rates, the discontinuity in ḡf (t)
at stimulus onset having negligible effect. (Also note that assuming a smoother pro-
file for a(t) would eliminate the jump in LC(t).) The similarity between overall form
and decay rates of optimal gain functions LC(t) and the empirical data of Fig. 6.9(d)
supports the hypothesis that the LC may affect near-optimal processing of sensory
stimuli. This is true even though LC firing rates are not sustained at the initial high
values that follow stimulus onset; in fact, both LC firing rate relaxation and NE time
constants are compatible with optimal gain schedules.

We note that the optimal gains, and hence LC(t) time courses, are computed

assuming prior knowledge of the stimulus a(t) and signal to noise ratio a(t)
c(t)

. If this were
the case, LC firing patterns should be well-correlated with stimulus onset. However,
experimental data of [34], which involved variable stimulus onset times, indicates
tighter correlations with behavioral responses. Here, the function a(t) is perhaps
better interpreted as input to motor neurons, the onsets of sensory stimuli having
been detected earlier in decision layers. Thus, the most appropriate LC data for use
in Fig. 6.9 would be aligned with transients in firing rates in intermediate processing
layers; here we provide data aligned with sensory stimuli as the closest available
surrogate. Explicit models of two-layer decision/response dynamics with variable
gain are studied in the following chapter.

6.6 Discussion and conclusions

In this chapter we explicitly compute optimal gain trajectories for one-dimensional,
linearized reductions of simplified models for competing neural groups involved in
decisions between two alternatives. We first develop a piecewise linear approxima-
tion to the canonical sigmoidal activation or firing rate function. The resulting two-
dimensional piecewise linear SDEs (6.10-6.11) introduced in Section 6.3.3 form a
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midpoint in our simplification process. This system can be easily solved on each of
nine ‘tiles’ forming its phase plane, but solutions must be assembled by matching
constants of integration. To illustrate this, we focus on two specific cases in Sec-
tion 6.3.4, motivated by the moving dots’ paradigm [18, 156, 72], that correspond to
distinct stimulus presentation conditions and rely on different neural mechanisms to
implement transient effective gain values.

In case 1, the development of salience (i.e., a1 6= a2), in sensory stimuli at time ts
is not accompanied by large changes in the stimulus magnitudes; in fact the summed
magnitude is unchanged. This mild stimulus onset is insufficient to move solutions
between tiles, so variations in gain must result from modulation of the neural activa-
tion function itself, presumably via influence of other brain areas. However, in case
2, the appearance of salience is accompanied by large changes in stimulus magnitude,
either due to properties of the stimulus itself or due to additive biases that shift the
activation function to the left, as has been proposed by connectionist models that
address the effects of attention [125, 39]. In this case, no external modulation is
required, since the decision dynamics themselves move the system between regions
of the activation function where desired sensitivities (and hence gains) are achieved.
The possibility that neural systems are tuned so that the presence of target stimuli
causes solutions to move into sensitive regions of their activation functions has been
previously suggested in behavioral neuroscience [154]; here we reformulate this idea
in terms of optimal signal processing.

We end by showing that the (non-unique) optimal gain schedules for the firing
rate model include time courses that are consistent with release of norepinephrine
due to transient increases in the activity of neurons in locus coeruleus.

The external modification of gain considered in case 1 assumes prior knowledge
of the time course of the absolute values of sensory inputs aj(t), the task of the
decision maker being merely to identify their signs. In the following chapter the more
general case is treated in which this information is not available, and strategies must
additionally include a mechanism for detecting increases in the signal to noise ratio
of sensory inputs.
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Chapter 7

Adaptive optimization of decision
tasks via the locus coeruleus

7.1 Chapter outline

In this chapter, we assess the extent to which simplified time-dependent gain sched-
ules, subject to the constraints that are likely to affect the locus-coeruleus in certain
decision tasks, can optimize performance. In particular, we abandon the assumption
of the previous chapter that the gain regulation system has knowledge of the onset
times of sensory stimuli. Rather, we assume, as in [167, 70], that accumulation of
firing rates in decision units drives the LC. In this sense, the gain schedules considered
here are adaptive and vary from trial to trial.

First, we review work on modeling decision tasks with LC-mediated adaptive gain
and state the unresolved questions that are the focus of the present chapter. Then,
Section 7.3.1 defines the linearized decision model used here, which is an extension of
the ‘case 1’ firing rate model of Chapter 6. Section 7.3.2 then introduces reward rate,
the figure of merit for the different decision models we study, and discusses the effect
of ‘premature’ responses on this quantity. Thus equipped, in Section 7.3.3 we describe
the method, central to the present analysis, of comparing optimal task performance
of a model with LC-mediated adaptive gain against optimal task performance of
a model restricted to have constant gain. Next, in Section 7.3.4, we simplify the
model by eliminating redundant parameters. Having thus refined our problem, in the
following Section 7.4 we present the results of numerical reward rate optimization.
Next, Section 7.5 considers two modifications to the model defined in Section 7.3.1
which are motivated by the underlying neurobiology, and Section 7.6 investigates
how the number of layers in a decision model affects the performance that it can
achieve when optimized. We discuss the results in Section 7.7. This chapter forms
the theoretical basis of a paper in progress [25].
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7.2 Introduction and background

The previous chapter showed that, given knowledge of the time course of signal to
noise ratios of stimuli and assuming that firing rates of competing neural pools are
confined to the maximally sloped region of their activation functions (about which
they may be linearized, i.e., ‘Case 1’ of Chapter 6), LC-mediated gain signals can
optimize decision tasks. However, if such a strategy were being implemented, one
would expect the time course of LC responses to be perfectly correlated with stimulus
onsets from trial to trial. Figure 7.1 indicates that this is not necessarily the case:
transients in LC firing rate for the two-alternative choice task data presented there
are more tightly correlated with behavioral responses than stimulus presentations.

In this chapter we assess the extent to which the LC can optimize decision tasks in
the absence of explicit knowledge about stimulus schedules. That is, we require that
all LC-mediated gain transients are adaptively determined by the incoming signal
on a trial-to-trial basis. The most general solution to this problem would involve
richer signal processing strategies than are possible with the simple neural integrator
models we consider; however, as detailed below, we assume a more limited capacity
for adaptive gain scheduling that is based on the detection of salient sensory events.
we also relate the results of this adaptive optimization study to the response-locked
data of Figure 7.1.

Two previous modelling studies have addressed the effects of adaptive LC-mediated
dynamic gain on decision tasks, offering intriguing results and suggesting several im-
portant questions [167, 70]. Foremost among these is the question of optimality. The
work of [167, 70] showed that, by allowing greater transients in gain schedules, error
rates in a simulated target detection task could be reduced while reaction times held
relatively constant or also decreased. This characterizes improved cognitive perfor-
mance and bypasses the classical speed accuracy tradeoff. However, to conclude that
this improved performance stems from the flexibility afforded by dynamic vs. constant
gain schedules, rather than being a confound of specific values of decision thresholds
(held fixed as gain schedules varied in [167, 70]) or the specific gain schedules chosen
for comparison, it is necessary to compare the best-possible levels of performance
across the whole class of dynamic vs. constant gain schedules and over the whole
range of free parameters. This approach is taken below.

Although an optimized decision model equipped with LC-mediated dynamic gain
trajectories clearly will perform no worse than an equivalent optimized model for
which gain values are restricted to be constant, it is not obvious that it will perform
significantly better. One reason for this is that realistic gain schedules implemented
in this adaptive fashion are subject to latencies: experiments by Waterhouse and
collaborators have shown that increases in the sensitivity of cortical neurons to sensory
inputs follow LC activation by more than 100 ms and reach a plateau at maximum
effect 200-300 ms following this activation [175]. Here we model this via a delay
of ≈150 ms; see below for details. Coupled with the latency from stimulus onset
to triggering of the LC, gain changes therefore take effect significantly after stimuli
are presented, which may minimize the benefits of these changes. Additionally, we
consider only piecewise-constant gain trajectories here, which require only relatively
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simple threshold-based mechanisms to implement. Further, as with any adaptive gain
scheduler but with particular relevance to the class of ‘jumped’ gain and stimulus
trajectories considered here, gain transients triggered at the wrong moments can lead
to erroneous responses, possibly obviating benefits derived on correct trials. This
points to an overarching ‘circularity’ problem that is revisited in the Discussion of
Section 7.7: due to the undesirable effects of prematurely changing gain, will so much
information about stimulus presence be needed in order to beneficially increase gain
that the stimulus could be reliably identified (as alternative 1 or alternative 2) before
gain changes typically take effect?

Another unresolved question surrounding transient gain schedules and simple cog-
nitive tasks surrounds the design of these tasks. In [167, 70], a target detection task
was studied, in which only one of two possible stimuli (the target) demands a be-
havioral response. For models in which transient gain changes are driven by partial
evidence of the behaviorally relevant cues, this target detection task (compared with
the two-alternative choice task studied here, in which both stimuli require responses)
requires fewer thresholds for the triggering of gain transients and hence presents fewer
opportunities for system gain to be turned up too early and evoke an erroneous re-
sponse. The results below address whether performance benefits are still seen in
two-alternative choice tasks.

Additionally, the role of the neural architecture with which decision tasks are
solved remains to be investigated. Schall ([150] and references therein), and Reddi
[141] have presented neural evidence that at least two stages of neural processing
contribute significantly to variability in behavioral response times. Motivated by
these studies, by the structure of the decision models of [167, 70], and by the intuitive
conclusion that a flexible system mapping sensory inputs to varied motor responses
(cf. [150]) must involve separate centers of sensory integration and motor processing,
the present chapter extends the previous to consider two-layered decision networks.
However, we also consider the effects of adaptive gain schedules on a one layer system
for comparison. We also study the effects of assuming that a certain fixed level of
firing in the second (‘motor’) layer must be achieved in order to evoke behavioral
responses.

A final open question has already been introduced via Figure 7.1: at optimal
performance, will transients in gain trajectories (and hence transients in LC firing
rates) be more tightly locked to stimulus presentations or (simulated) behavioral
responses? To the extent to which the models capture the dynamics of neural decision
processes, an answer in favor of locking to responses would support the hypothesis
that the LC serves to optimize decision tasks.

7.3 The RR optimization problem

7.3.1 The two layer model

Our decision model, as shown in Figure 7.2, consists of two layers, each containing two
mutually inhibitory neural subpopulations whose spike rates evolve under the ‘firing
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Figure 7.1: Transients in LC firing rates, here shown as peri-event time histograms
(PETHs) compiled across many experimental trials of the Eriksen flanker sensory
discrimination task, are more tightly correlated with behavioral responses (b) than
stimulus presentations (a). Data kindly provided by the authors of [33].

rate model’ of Eqns. (6.7)-(6.8). The first ‘decision’ layer receives sensory inputs and
noise exactly as in Chapter 6:

τdy1 =
[
−y1 + fg̃y(t) (−βy2 + ka1(t))

]
dt+ g̃y(t)

kc
√
τ√
2
dW 1′

t , (7.1)

τdy2 =
[
−y2 + fg̃y(t) (−βy1 + ka2(t))

]
dt+ g̃y(t)

kc
√
τ√
2
dW 2′

t . (7.2)

The second ‘response’ layer receives inputs from the first (weighted by w) as well as
independent noisy inputs (presumably from afferents not related to the decision task
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Figure 7.2: The architecture of the decision model, which consists of two layers of
mutually inhibitory neural populations. The schematic to the right indicates the flow
of stimulus information through the network, and the fact that, as in Chapter 6, we
collapse each layer to a single variable (y or z) characterizing the difference between
firing rates in the layer. When the difference |y| exceeds threshold value hg, gain
levels are adjusted (following the delay τNE); when |z| exceeds h, task responses are
made.

being modeled):

τdz1 =
[
−z1 + fg̃y(t) (−βz2 + wy1(t))

]
dt+ g̃z(t)

kc
√
τ√
2
dW 1′′

t , (7.3)

τdz2 =
[
−z2 + fg̃y(t) (−βz1 + wy2(t))

]
dt+ g̃z(t)

kc
√
τ√
2
dW 2′′

t (7.4)

(the final terms in (7.1)-(7.4) are independent Wiener increments, and likewise below).
As in Section 6.3.4 (see text there for details), we define the firing rate differences

z̃ = z1− z2, ỹ = y1− y2 as well as a = a1− a2 and study the (approximate) linearized
model involving only their differences:

τdz̃ =
[
−z̃ + g̃zβ̃z̃ + w̃g̃zỹ

]
dt+ g̃zkc

√
τdW 1

t (7.5)

τdỹ =
[
−ỹ + g̃yβ̃ỹ + g̃yka

]
dt+ g̃ykc

√
τdW 2

t . (7.6)

As already mentioned, the validity of this reduction depends on the firing rates of
all populations staying in the linear regime of their activation functions; we assume
that this holds throughout this Chapter, as for the ‘Case 1’ dynamics of Chapter 6
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Figure 7.3: The type of stimuli considered here. Salience (i.e., the difference between
strengths of inputs favoring one of the two alternatives) develops at a randomly
distributed time td. The task of the decision maker is to determine which of the two
alternative stimuli has occurred, balancing speed vs. accuracy in this discrimination
in order to maximize reward rate (see text).

([20] checks the validity explicitly). Here, g̃z and g̃y, respectively, are the gains of
neural groups in these layers. We consider time-dependent stimuli a(t) of the type
illustrated in Figure 7.3: a(t) = 0, t < td and a(t) = ±ā, t ≥ td, where td is the
randomly distributed time of stimulus onset (see below).

Furthermore, we take initial conditions y(0) = z(0) = 0 at the beginning of the
preparatory phase, at which time we assume firing rates are reset (e.g. by inhibitory
afferents originating in the prefrontal cortex). Additionally, w̃ is the weight associated
with inputs to the response layer from the decision layer. k a is the rate of incoming
currents associated with sensory ‘evidence’ of task stimuli, and k c sets the strength
of noise in afferent currents to the two populations; k > 0 is an arbitrary scale factor
setting the magnitude of inputs to the neural populations. τ sets the timescale of
neural integration, and β sets the strength of inhibition between the pair of competing
neural subpopulations at each layer. The reason for the tilde notation will become
clear below.

We assume that the gain values g̃z, g̃y undergo transient changes in both layers
at a (physiologically determined) delay tNE following the first passage time Ty =
inf{t : |y(t)| > h̃g} of ỹ from the interval [−h̃g, h̃g]. Specifically, we assume that
the gain values jump from values g̃prez , g̃prey to g̃postz , g̃posty at this time, and we refer

to h̃g as the ‘gain threshold.’ This mechanism for adjusting gain generalizes the
approach of [167, 70] from the target identification task (in which gain transients
are driven only by firing rates in the population responsive to target stimuli) to the
two-alternative forced choice task (in which gain transients may be driven by the
population responsive to either of the two possible task stimuli). We assume that NE
levels have decayed to their baseline levels g̃prez , g̃prey by the time each subsequent trial
begins.

A response corresponding to alternative 2 (i.e., that “a < 0”) is made at the
passage time Tz = inf{t : |z̃(t)| > h̃} if z̃ first exits the interval [−h̃, h̃] by crossing
the barrier −h̃ (i.e., z̃(Tz) = −h̃), and vice-versa for alternative 1 (a > 0) and the
barrier at h̃; we call h̃ the response threshold. To determine optimal performance of
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Figure 7.4: Schematic of the timing of the model decision task. Following a behavioral
response on the ‘previous’ trial, model time t is reset to t = 0, initial conditions
y1(0) = y2(0) = 0 applied, and firing rates begin evolving under Eqns. (7.5)-(7.6).
The sensory stimulus is presented following a (randomly distributed) delay td. At
a delay tNE following the first passage time Ty of the firing rate difference y across
thresholds ±hg, model gains undergo a step change. Finally, the behavioral response
on the ‘current’ trial is made at time Tz. Although the ordering of td, Ty, and Tz
displayed here is typical, it is not enforced: for example, on some trials gain threshold
crossings at Ty could occur before stimulus presentations at td.

the models under different architectures and assumptions about the time dependence
of gain, we shall allow gains g̃y and g̃z and thresholds h̃ and h̃g to vary freely, as
specified in greater detail below.

7.3.2 Task setup and reward rate

We model a task in which the objective is to correctly identify which of two alterna-
tive stimuli have been presented on each trial so as to maximize the reward rate (RR)
[72], or the rate at which correct responses are made. Trials occur in a long sequence,
with randomized delays between each behavioral response and the presentation of the
subsequent stimulus. We assume that these stimulus presentations are accompanied
by a step in signal coherence a entering the first layer, as in Section 6.3.4 (cf. Fig-
ure 7.3) but with variable onset times td. We assume that no other changes in signal
coherence a occur. To make contact with typical behavioral experiments, we take td
to be uniformly distributed between 1 and 3 seconds for all of the results reported
below.

In defining RR, we must specify how ‘premature’ responses made in the period
[0, td] (that is, between the previous response and the presentation of the current
sensory cue) are scored as correct vs. incorrect. Furthermore, we must determine
what effect, if any, these responses will have on the delay before presentation of the
next sensory cue. We adopt the following protocol, based on task designs in common
use (including in [33]): all premature responses are counted as errors, and the next
trials are started immediately. In this case, we relate the reward rate RR to random
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variables characterizing the decision process as follows:

RR =
EC(z̃(Tz))

E(Tz)
, (7.7)

where the function C(z̃(Tz)) measures the correctness of the firing rate difference z̃(Tz)
at the response time Tz by taking value 1 (resp. 0) if, on a trial, a > 0, z̃(Tz) = h̃, and
Tz ≥ td (resp. a < 0, z̃(Tz) = −h̃, and Tz ≥ td). See 7.4 for a schematic of the various
times and delays that contribute to the RR. Thus defined, RR is the expected fraction
of correct responses divided by the expected time elapsed for each response. RR is
therefore the rate at which correct responses are made and has the units 1/time. We
note that RR cannot be written as an expectation of a single function of firing rates
at the hitting time Tz (unlike other objective functions typically used in sequential
analysis, such as Bayes risk [114]), but rather takes quotient form. The RR measure
adopted here is, however, directly related to the cognitive tasks we consider, in which
participants are typically instructed to make as many correct responses as possible in
a fixed interval.

Finally, we note that simulations were also performed with ranges of td other than
uniform distribution from 1 to 3 seconds described above (including fixing td to take
only a single value, nonetheless assumed unknown to the decision maker) and other
protocols for treating premature responses (such as simply ignoring any threshold
crossing prior to stimulus presentation time td at which responses are immediately
recorded if the firing rate difference |z| remains above threshold). In these cases, the
qualitative relationship between optimal performance of the constant vs. adaptive
gain models that we next describe is preserved.

7.3.3 Optimizing decision models under adaptive vs. con-
stant gain schedules

We now state the optimization problem of tuning model parameters to achieve max-
imal reward rate using LC-mediated adaptive gain:

RRd = max RR(g̃prey , g̃prez , g̃posty , g̃postz , h̃, h̃g) under Eqns. (7.5)-(7.6) . (7.8)

The subscript d indicates that gain is ‘dynamic:’ allowed to adaptively change as
described above.

Next, we determine the extent to which LC-mediated adaptive gain contributes to
reward rates found by solving (7.8). As mentioned in the Introduction, we accomplish
this by simply asking what the best performance would be in the absence of such an
adaptive gain mechanism (but allowing freedom in choosing all other parameters).
That is, we determine the optimal reward rate RRc for constant gain schedules by
restricting ∆g = 0:

RRc = max RR(gprey , gprez , h, hg) under Eqns. (7.5)-(7.6) with ∆g = 0 . (7.9)

In Sections 7.4-7.6 below, we directly compare (refined versions of) RRd and RRc
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under various assumptions on task protocols and model architecture.

7.3.4 Eliminating redundant parameters

We now eliminate redundant parameters in the model to clarify the assumptions im-
plicit in the model and hence the generality of the results that derive from optimizing
it. First we show that the scale factor k (which sets the absolute magnitude of stim-
ulus and noise inputs but not their ratio) may be eliminated by rescaling thresholds
h̃ and h̃g. Dividing (7.5)-(7.6) through by k and redefining ˜̃z = z̃/k and ˜̃y = ỹ/k we
obtain

τd˜̃z =
[
−˜̃z + g̃zβ̃ ˜̃z + w̃g̃z ˜̃y

]
dt+ g̃zc

√
τdW 1

t (7.10)

τd˜̃y =
[
−˜̃y + g̃yβ̃ ˜̃y + g̃ya

]
dt+ g̃yc

√
τdW 2

t . (7.11)

After scaling thresholds h̃ and h̃g by the (positive) factor 1/k (matching the scaling
of variables z̃, ỹ), we obtain exactly the same statistics for (7.10)-(7.11) as for the
original system (7.5)-(7.6); furthermore, since thresholds are free parameters in the
optimization problem (7.8), we have lost no generality in eliminating the parameter
k, and see that only the signal to noise ratio a/c affects optimal reward rates.

The rate a has units of 1/t, and c has units of 1/
√
t. We choose units of time to be

seconds, and fix the ratio (ā/c)2 = 8 sec.−1, a value derived from maximum likelihood
fits of reaction time distributions from two-alternative choice task experiments in [13].
Furthermore, we fix τ = 1, noting that the results we derive from the model with
τ = 1 correspond to results from τ 6= 1 and a suitably rescaled signal to noise
ratio (following division of (7.10)-(7.11) by τ and another rescaling of the firing rate
variables).

Additionally making the definitions gy = β̃g̃y, gz = β̃g̃z, y = β̃ ˜̃y, z = β̃ ˜̃z/w, and
w = w̃/β̃, (7.10)-(7.11) become

dz = [−z + gzz + gzy] dt+ gz
c

w
dW 1

t (7.12)

dy = [−y + gyy + gya] dt+ gycdW
2
t . (7.13)

Recall that the variables g̃y and g̃z can take arbitrary (positive) values in the opti-
mization scheme, so that rescaling them by the constant β̃ to form gz, gy has no effect
on the optimization problem. Furthermore, since the thresholds h̃, h̃g are also free
variables, the rescaling of variables y, z is again without consequence for the opti-
mization problem: the rescaled system (7.12)-(7.13) with free parameters gz, gy as
well as thresholds hg and h produces the same optimal error rates and reaction times
(and hence reward rates) as the original system (7.5)-(7.6) with free parameters g̃z,
g̃y, h̃g and h̃.

The only parameter in (7.12)-(7.13) that remains to be defined is the weight
w, which we set as follows. Recall that the variable z represents firing rates in the
‘response’ cortical populations which drive the motor neurons enacting task decisions.
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In any flexible neural architecture these cortical populations receive inputs not only
from the decision layer populations responsive in the specific two-alternative task
modelled here, but also from a diverse set of other neurons and brain areas. It
is fluctuations in these inputs that are modelled by the input noise c

w
dW 1

t . The
magnitude of (mean values of) y, which is the ‘signal’ component of the input to the
response layer, are determined by a: thus, the signal to noise ratio for this layer is
≈ aw/c. For simplicity, we set w = 1 so that signal to noise ratios in both layers are
the same. Therefore, the final system of equations is

dz = [−z + gzz + gzy] dt+ gzcdW
1
t (7.14)

dy = [−y + gyy + gya] dt+ gycdW
2
t , (7.15)

and we study the optimization problems equivalent to (7.8), (7.9):

RRd = max RR(gprey , gprez , gposty , gpostz , h, hg) under Eqns. (7.14)-(7.15) , (7.16)

RRc = max RR(gprey , gprez , h, hg) under Eqns. (7.14)-(7.15) with ∆g = 0 . (7.17)

The extent to which norepinephrine adjusts the gain of a particular cortical popu-
lation depends on the density and type of norepinephrine receptors in that population
(as well as, e.g., connectivity within and afferent inputs to that population) [175].
However, for simplicity we assume here and below that the phasic LC impulse results
in gain changes of the same magnitude in both the first and second layers. That is,
a delay tNE following the time Ty at which thresholds are crossed in the first layer,
gprey → gprey + ∆g and gprez → gprez + ∆g. This reduces by one the number of free
parameters in the optimization problem (but does not otherwise affect the generality
of the results with regard to redundant parameters), giving the modified dynamic
gain optimization problem:

RRd = max RR(gprey , gprez ,∆g, h, hg) under Eqns. (7.14)-(7.15) . (7.18)

Here, RRd denotes the best possible reward rate that can be achieved with this
adaptive gain scheme. Simulations indicate that the problems (7.18) and the slightly
more general (7.16) give the same optimal RR’s within ∼ 2%.

7.4 Numerical optimization

7.4.1 Algorithm

We use the SUBPLEX optimization algorithm [147], a generalization of the Nelder-
Mead Simplex method well suited for noisy objective functions, to solve the problem
of optimizing RR under various conditions. The evaluation of RR (7.7) for at each
set of parameters sampled by the algorithm is done by Monte-Carlo simulation of
200,000 ‘trials’ of the SDEs (7.14)-(7.15), each with simulated inter-trial interval td
(i.e. ‘prepcycle’ duration) drawn from a uniform distribution between 1 and 3 seconds.
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Figure 7.5: Typical convergence of the SUBPLEX algorithm on parameters yielding
an (approximately) optimal RR.

The standard deviation in RR for a typical evaluation (at fixed parameter values)
with this number of trials is 0.0003 sec−1. Convergence of the SUBPLEX algorithm
for a randomly chosen set of initial conditions is shown in Figure 7.5.

7.4.2 The standard parameter set

We now collect the values of model parameters that we hold fixed in the evaluation of
RR via (7.14)-(7.15). These values, motivated in the text above, are: ā = 2 sec−1, c =
1/
√
2 sec−1/2, and delays td between behavioral responses and presentation of the next

sensory cues are uniformly distributed between 1 and 3 sec. All of these quantities
may be derived from task design and behavioral data under certain assumptions (see
above).

7.4.3 Range of reward rate values

It will be instructive to study how the reward rates achieved by the (linearized) two-
layer model (7.14)-(7.15), with or without dynamic gain, compare with the reward
rate achievable by an optimal decision maker. As discussed in Section 6.4.1, this
optimal decision maker performs the sequential probability ratio test, which assumes
knowledge of the time course of signal-to-noise ratios. From the results in Chapter 6,
a one-layer linearized network can perform the SPRT if it is provided with perfect
apriori knowledge of stimulus onset times and the capacity to instantaneously adjust
gain to exploit this knowledge. Again drawing on Chapter 6, the optimal gain for
the firing rate model of (6.16) for the piecewise-constant stimuli considered here is:
g(t) = 0, t < td, g(t) = 1, t ≥ td. In this case error rate and reaction time depend on
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the model parameters as follows ([58, 13]):

ER =
1

1 + exp(2hā/c2)
(7.19)

RT =
h

ā
tanh

(
hā

c2

)
. (7.20)

As shown in [13], the unique optimal value of h optimizing

RR =
1− ER

RT + E(td)
(7.21)

is given by the solution to

exp(2hā/c2)− 1 = 2β(E(td)− h/ā) . (7.22)

Solving (7.22) using Newton’s method (for the standard parameter set, that is, for
E(td) = 2, ā = 2, c = 1/

√
2), we obtain h = 0.212. Using this to find ER and RT and

then inserting these into (7.21) gives the ‘ceiling’ value RRceil = 0.440 sec−1 achieved
by the SPRT with optimal thresholds.

We next compute a complementary floor value for RR so that we can define a
suitable ‘range’ of RR as [RRfloor, RRceil]. We let the floor value be achieved by
chance guessing, assuming that a decision maker employing this strategy chooses
hypothesis 0 or 1 without paying any attention to task stimuli, at times separated
from the previous response by a uniform distribution between 0 and 3 seconds (i.e.,
up to the maximum possible value of td. Since td > 1 sec., a third of these responses
will occur before the stimulus has been presented, and hence are guaranteed to result
in errors. The rest of the responses will be correct 50% of the time. Thus, 1−ER =
1
3
∗ 0 + 2

3
∗ 1

2
= 1

3
. The mean elapsed time between responses using this strategy is 3

2

sec. Thus the floor value produced is RRfloor =
1
3
∗ 2

3
≈ 0.222 sec−1. In conclusion,

the range of RR is [RRfloor, RRceil] = [.222, .440] for the standard parameter set.

7.4.4 Optimal reward rates for the ‘standard’ parameter set

The results of the optimization problems (7.18)- (7.9) for the standard parameter set
are shown in Figure 7.6. The best reward for the dynamic gain problem (7.18) is
RRd=0.299 sec.−1 while RRc=0.267 sec.−1 is achieved for the constant gain version
(7.9). Thus, transient modulation of the decision process enabled by the LC allows
the decision maker to enhance rewards by 12 percent (on average) during the interval
over which the task is performed.

We now view these results in terms of the range of RR values derived above in
Section 7.4.3. Letting RR = RRfloor be 0% through the range and RR = RRceil

be 100% through the range, the optimized two-layer constant gain model achieves a
RR 20.6% of the way through the range; this improves to 35.3% with the addition of
dynamic gain.

As Figure 7.6 indicates, the SUBPLEX algorithm converged to slightly different
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Figure 7.6: Filled bars–histogram of reward rates found using the SUBPLEX opti-
mization algorithm; the vertical axis measures the number of runs of the SUBPLEX
algorithm (each with a different, randomly chosen set of initial parameter values) that
converged to particular RR values. (top) for the dynamic, adaptive gain optimization
problem (7.16); (bottom) for the constant gain optimization problem (7.17). Insets
give zoomed view with smaller histogram bin size. As reported in Section 7.4.4, the
maximal reward rate obtained via SUBPLEX optimization for the adaptive gain case
was RRd=0.299 sec.−1 (rightmost filled bar, top insert) and the maximal reward rate
for the constant gain case was RRc=0.267 sec.−1 (rightmost filled bar, bottom in-
sert). Outlined bars–for comparison, histogram of reward rates for randomly chosen,
non-optimized parameter values. As expected, reward rates are much lower for these
parameters.

RR values each time it was run (with randomly sampled initial values for all free
parameters). Figure 7.7 shows the values of two of the free parameters following
optimization for the dynamic gain optimization problem (7.18). There is a family
of different gprey and hg pairs (for example) that give similar RR values (the RR’s
reported in this paper are the highest produced by any parameter values belonging to
this family). Values of hg depend monotonically on gprey in this ‘nearly optimal’ regime,
preserving the extent of evidence in favor of one or the other hypothesis necessary
to trigger an increase in gain. Figure 7.8 demonstrates the analogous relationship
between hg and gprez for the constant gain problem (7.9).
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Figure 7.7: Values of two of the parameters to which the optimization algorithm
converges when solving the dynamic gain optimization problem (7.18). Initial values
of the parameters for each randomly initialized run of the algorithm lie at one end of
the dotted lines, with final values indicated by the dots at the other end. The black
square indicates the parameter values for the best-obtained RR.

7.4.5 Predicted behavioral data for the standard parameter
set

We now describe the behavioral statistics that characterize optimized performance
for two layer models with dynamic gain. These statistics were produced for the
parameter set giving the best RR among all parameter sets to which the SUBPLEX
algorithm converged (corresponding to the black square in Figure 7.7): gprey = 0.873,
gprez = 0.474, ∆g = 3.33, hg = 1.43, and h = 1.86.

Typical trajectories for the firing rate equations (7.14) -(7.15) with these optimal
parameters are shown in Fig. 7.9. Note that, due to the relatively large value of ∆g,
(7.14)-(7.15) become strongly unstable Ornstein-Uhlenbeck processes following the
jump in gain (i.e., a delay tNE after the thresholds ±hg are crossed). Figure 7.10
displays the reaction time distribution (stimulus-locked times Tz − td) resulting from
an ensemble of such trials, 16.8% of which resulted in premature responses and 2.0%
of which were errors made following stimulus presentation. Recall that the decision
model assumes no explicit or implicit cue indicating stimulus onset, leading to the
high level of premature responses at optimal performance.

Finally, Figure 7.11 demonstrates that the times Ty at which the thresholds ±hg
were crossed are more tightly correlated with behavioral response than with stimulus
onset times. According to the model of LC-mediated adaptive gain adopted here, the
LC commences a period of increased firing at these threshold crossing times (which
are followed tNE later by the gain increase ∆g). Thus, the results of Figure 7.11 may
be interpreted as histograms of predicted onset times for bursts of LC activity. These
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Figure 7.8: Values of two of the parameters to which the optimization algorithm
converges when solving the constant gain optimization problem (7.9). Initial values
of the parameters for each randomly initialized run of the algorithm lie at one end of
the dotted lines, with final values indicated by the dots at the other end. The black
square indicates the parameter values for the best-obtained RR.

histograms, when locked to simulated behavioral response times Tz vs. stimulus onset
times td, display the same qualitative narrow vs. broad trend as the experimental
histograms of trial-averaged LC firing rates displayed in Fig. 7.1.

7.5 Two biologically motivated constraints to the

standard parameter set

7.5.1 Fixed motor thresholds

Next we define a related optimization problem motivated by a plausible neurobiologi-
cal constraint and suggested by Josh Gold (University of Pennsylvania [74]). We take
a more conservative view of optimization in neural decision networks by assuming
that the motor threshold h is not available for adjustment from task-to-task, but is
rather fixed at some sufficiently high value so as to avoid being prematurely crossed
in any of a variety of different tasks with a varying signal-to-noise ratios and stimulus
magnitudes. Here, we fix h = 5, roughly 2-3 times typical gain values for nearly-
optimized solutions for the problem (7.18) in which h was allowed to vary freely.
That is, we numerically solve the constrained optimization problem

RRd = max RR(gprey , gprez ,∆g, hg) under Eqns. (7.14)-(7.15) with h = 5 . (7.23)
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Figure 7.9: Typical trajectories for the optimized two-layer decision model (7.14)-
(7.15) with dynamic gain.

for dynamic gain and

RRc = max RR(gprey , gprez , hg) under Eqns. (7.14)-(7.15) with ∆g = 0 and h = 5 .
(7.24)

for the constant gain case.
The results of the optimization problems (7.23)-(7.24) in this case are as fol-

lows: the best RR for the dynamic gain problem (7.23) is RRd=0.299 sec.−1 while
RRc=0.247 sec.−1 is achieved for the constant gain version (7.24). Thus, transient
modulation of the decision process enabled by the LC allows the decision maker to
enhance expected rewards by 21 percent over any fixed task interval. Furthermore,
note that the RR value 0.299 sec.−1 obtained for (7.23) matches that obtained for the
problem (7.18), which allowed h to vary freely. The conclusion is that fixed motor
thresholds have an insignificant effect on the reward rate that a system with dynamic
gain can achieve, but are detrimental when gain is constant.

In terms of their position in the dynamic range [RRfloor, RRceil], the optimized
two-layer constant gain model achieves a RR level 11.3% of the way through the
range; this improves to 35.3% with the addition of dynamic gain.

7.5.2 Stimulus-dependent noise

Next we allow for depressed noise in inputs to the first layer before the stimulus
coherence emerges at time td, presuming that additional fluctuations in afferent inputs
accompany the appearance of this coherence. Specifically, we set c = 1

4
∗ 1√

2
for t < td

and c = 1√
2
for t ≥ td. The 1

4
is an arbitrary value chosen to illustrate the present

situation.
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Figure 7.10: Distribution of reaction times for the optimized two-layer decision model
with dynamic gain, relative to stimulus presentation; negative values correspond to
premature responses.

The optimal reward for the dynamic gain problem (7.18) in this case is RRd=0.361
sec.−1. For comparison, RRc=0.311 sec.−1 was obtained achieved for the constant
gain problem (7.9). Here, then, the LC enables reward rate improvements of 16
percent over any fixed task interval. Measured relative to the dynamic range, the
optimized two-layer constant gain model achieves a RR level 40.1%, improving to
63.7% under dynamic gain.

7.6 One layer decision models

In this section we investigate the role that the two-layer architecture of the model
has in determining the processing benefits of LC-mediated transient gain over the
‘control’ hypothesis of constant gain. We collapse the two-layer model of Fig. 7.2
to an effectively single-layer decision model by assuming that both gain effects and
behavioral responses are driven by threshold crossing in the first layer. In other words,
gain changes continue to be triggered exactly as above, but responses are made at
the passage time T = inf{t : |ỹ(t)| > h̃}. See Fig. 7.12.

The optimization problem for the one layer model is

RRd = max RR(gprey ,∆g, hg, h) under Eqn. (7.15) . (7.25)

for dynamic gain and

RRc = max RR(gprey , h) under Eqn. (7.15) . (7.26)

for the constant gain case. Solving (7.25)-(7.26) via numerical optimization, we find
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Figure 7.11: Histograms of latencies between first passage times Ty –times at which
the LC fires its phasic burst in the model– and (top) stimulus onset times td vs. (bot-
tom) response times Tz, all for the optimized two-layer decision model with dynamic
gain.

that the best reward for the dynamic gain version (7.25) is RRd=0.339 sec.−1 while
RRc=0.337 sec.−1 is achieved for the constant gain version (7.9): a negligible differ-
ence. Therefore the model of LC-mediated adaptive gain has no effect on performance
for a one-layer decision maker. The reward values thus obtained by the one-layer
model are approximately 53% of the way through the RR range, a significant im-
provement over all two-layer models. We will revisit this fact in the Discussion of
Section 7.7.

We also studied versions of (7.25)-(7.26) with fixed motor threshold h = 5 (as in
Section 7.5.1 above), with the same threshold crossing effects as in Fig. 7.12. In this
case the optimal performance for the adaptive-gain model is RRd=0.306 sec.−1, while
RRc=0.281 sec.−1 for constant gain. Thus, when motor thresholds are fixed, adaptive
gain scheduling yields advantage for the one-layer model. Furthermore, unlike for the
two-layer model, optimal RR values are reduced by fixing the motor threshold.

7.7 Discussion

This chapter shows that adaptive gain changes, potentially mediated by the locus
coeruleus (LC), can help optimize performance on simulated sensory discrimination
tasks, even when no knowledge of stimulus timing is assumed. This type of task is
complementary to that studied in Chapter 6, where the time course of stimuli was
either assumed to be known explicitly (‘case 1’ of Section 6.3.4) or to be expressed im-
plicitly via strong onset effects, which evoke stimulus-locked changes in the processing
of inputs (‘case 2’ of Section 6.3.4).

The primary model considered in this Chapter has two layers: the first integrates
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Figure 7.12: The architecture of the one-layer decision model. Thresholds for both
gain adjustments and behavioral responses are collapsed to a single layer. The ques-
tion mark indicates that the gain thresholds hg are not apriori restricted to lie within
the response thresholds h, and may take values outside these thresholds (hence en-
suring that gain will be constant) for optimal performance.

sensory input directly and the second accumulates this filtered input (as well as noise
from other brain areas) and translates it into motor responses via threshold crossing
events. Gain transients occur after a physiologically motivated delay tNE following
threshold crossings in the first layer − in this sense, gain schedules adapt ‘online’ ac-
cording to accumulated sensory information. The linearization that we adopt allows a
clear understanding of parameter effects, which we use to obtain a simpler set of opti-
mization problems without sacrificing the generality of their solutions. By comparing
optimal model reward rates in the presence of simulated LC mediated gain changes
with the (separately) optimized reward rates in the absence of such gain changes,
we determine the extent to which these gain changes contribute to enhanced task
performance, all for a ‘standard parameter set’ derived from fits to experiments. The
results, summarized in the bottom rows of Figures 7.13-7.14, indicate that a modest
but significant improvement in reward is attributable to the LC mediated gain mech-
anism. Additionally, the statistical variations in the optimal model gain transients
from trial-to-trial agree with trends reported in recent experimental studies involving
direct recordings from the LC [33] (see Figure 7.1). This provides converging evidence
for the hypothesis of [167] that the LC plays a part in optimizing the dynamics of
simple decision tasks.

The improvement in reward rate that LC-mediated gain transients lend to two-
layer models does not carry over to one-layer models (Figure 7.12), for which the
adaptive gain transients considered here do not always yield reward rates higher than
those attainable with constant values of gain (top row of Figure 7.13). Intuitively,
this is because the first layer directly integrates incoming sensory inputs, and once
sufficient evidence has accumulated in it to determine the presence of a stimulus and
hence the advantage of a concurrent increase in gain, there is also sufficient evidence
to identify which of the two possible stimuli was actually presented. Thus, optimal
strategies directly produce a behavioral response at this point, instead of relying on
a gain transient.
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Figure 7.13: Summary of results for the reward rate (RR) optimization problems with
motor threshold h allowed to vary freely. For the two-layer models, the optimization
problem with adaptive, dynamic gain (7.16) gives higher reward rate (bottom right)
than its constant gain counterpart (7.17) (bottom left). However, the optimization
problems for the one-layer model yield similar reward rates for both the constant
gain ((7.26), top left) and variable gain ((7.25), top right) versions. Reward rates are
presented as percentages within theRR ‘dynamic range’ [RRfloor, RRceil] (Sect. 7.4.3).
All results are for the standard parameter set of Sect. 7.4.2.

This strategy of allowing integrated sensory inputs to trigger responses directly is
not available for two-layer decision models, in which a second level of (noisy) integra-
tion to threshold precedes responses. In this two-layer case, the firing rate trajectories
of Figure 7.9 illustrate how transients in gain can streamline the transmission of sen-
sory evidence through the network. The mechanism exploited here is to increase gain
in the second layer to a sufficiently high level so as to cause, via positive ‘unsta-
ble’ feedback, a rapid readout of the evidence that has accumulated in the second
layer. This gain increase occurs at a delay tNE following crossing of optimally tuned
thresholds ±hg in the first layer (note that evidence, typically in favor of the ‘correct’
alternative, continues to accumulate in both layers during this delay period).

Despite their optimal use of transient gain schedules, reward rates for two-layer
models can still be significantly worse than those achievable by one-layer models
(righthand column of Figure 7.13), which achieve an effective ‘short-circuit’ from
sensory input to response. However, this is only the case if motor thresholds are
allowed to vary freely. The righthand column of Figure 7.14 illustrates that, when
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Figure 7.14: As for Figure 7.13, but with fixed motor threshold h = 5. In this case,
dynamic, adaptive gain provides a significant increase in optimal RR for both one-
and two-layer models. Further, the difference in RR for one- and two- layer models
with dynamic gain is slight. RR reported as percentages within [RRfloor, RRceil], as
in Figure 7.13.

thresholds±h for evoking motor responses are fixed, a two-layer model can accomplish
a reward rate comparable to that of its one- layer counterpart. In other words, for
models with fixed response thresholds, most of the performance apparently lost by
adopting a (noisy) two- vs. one- layer architecture can be recovered via LC mediated
adaptive gain schedules.
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Chapter 8

Conclusion

8.1 Summary of dissertation

This dissertation studies mathematical models for cognitive control, or the neural
mechanisms by which processing of sensory information is optimized to meet the
needs of changing cognitive tasks. The goal is to understand the dynamics of the
underlying networks of neurons and the means by which these networks can reproduce
and predict features measured in brain recordings and simple behavioral tasks.

First, general results on the individual and population dynamics of neural oscilla-
tors are developed. These are applied in later sections, but should be useful in other
contexts. In Chapter 2, phase reductions are derived for neural ODEs which show
how the four codimension-one bifurcations to periodic firing in single oscillators af-
fect sensitivity to inputs as a function of bifurcation parameters. In Chapter 3, these
single-neuron results are extended to study the response of oscillator populations to
external stimuli. New results here include general scaling relationships between base-
line and stimulated population-averaged frequencies, and the counterintuitive result
that certain oscillator populations near bifurcations respond to stimulus offset with
greater increases in firing rates than they respond to onset and during stimulus.

In Chapter 4, the dynamics of a finite set of identically (mean field) coupled oscil-
lators are analyzed in general cases of phase-difference coupling and in specific cases
of combined phase-difference and phase-dependent ‘product’ coupling. This chapter
adds to existing results based on equivariant dynamics which describe how coupling
functions determine the existence and stability of phase-locked states in which sub-
groups of oscillators are synchronized. New results include domains of attraction for
the synchronized solution and new states for systems with a reflection symmetry.
Emphasis is placed on the dependence of the stability and degeneracy of phase locked
states on the Fourier content of the coupling functions. In particular, while single
harmonic sine and cosine functions are degenerate in that they give rise to steady
states with multiple zero eigenvalues, the inclusion of higher harmonics generically
produces structurally stable equilibria (modulo an overall symmetry) with only a sin-
gle zero eigenvalue in the relative phase direction. Illustrative examples of coupling
functions are derived from Hodgkin-Huxley equations for a single compartment neu-
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ron, and their implications for the cross-correlograms often used to assess synchrony
in experimental contexts are discussed.

The general results of Chapters 2-4 are applied in Chapter 5, in which a bio-
physical model for LC neurons is developed and used to explore the role of baseline
frequency and stimulus duration on the firing of LC neurons, and hence on neuro-
modulator release rates. Performing a phase reduction based on the normal form for
an individual LC neuron and then taking the continuum (infinite population) limit
reveals how timescales inherent to the LC interact with those in the stimuli associ-
ated with behavioral tasks. By demonstrating how levels of LC firing in response to
stimuli of fixed strength are elevated when the LC has a lower pre-stimulus “baseline”
spike rate, these results suggest a new mechanism, supported by recent anatomical
discoveries, via which the LC may switch between firing patterns associated with
different levels of cognitive performance. The analysis also shows how to “invert”
the time course of observed LC firing rates to predict the duration of neural currents
representing sensory stimuli in different cognitive tasks. The models of Chapter 5 are
compared in detail with the motivating neurophysiological data.

Chapters 6 and 7 move to a more abstracted form of modeling involving neural
integrators, in which each variable represents the average activity or firing rate of a
pool of neurons selective for a particular stimulus or motor action. I determine how
transient parameter adjustments can optimize decision tasks for speed and accuracy
in the presence of noise. Chapter 6 shows how either explicit apriori knowledge of
the time-course of sensory inputs or information implicit in salient stimulus onset
events may be exploited to optimally vary the effective gain on neural units, possi-
bly via transient release of norepinephrine from the LC. In Chapter 7, I investigate
how LC mediated gain changes can improve task performance when, by contrast,
no knowledge of stimulus timing is available. This requires an adaptive mechanism
for driving gain transients based on trial-to-trial information about variable sensory
stimuli; this is implemented by increasing gain after a physiologically-imposed delay
that follows accumulation of sufficient information to indicate the presence of a stim-
ulus. The results show that, for simple neural integrator networks with two layers
representing accumulation of sensory inputs and production of motor responses, LC-
mediated adaptive gain changes can significantly improve reward rates achieved in
model decision tasks.

8.2 Future directions

This dissertation takes the view that a firing rate description of the averaged ‘effec-
tive’ dynamics of neural subpopulations is sufficient to describe decisions (expressed
via motor responses) in certain sensory discrimination tasks (see the Introduction for
a summary of some of the relevant experimental data). As also mentioned in the
Introduction, interesting questions surround the issue of when additional levels of de-
scription are required to capture decision dynamics, and ongoing research (e.g. [135])
here will suggest improvements to decision models for various tasks.

Nevertheless, to the extent that networks whose firing rates integrate sensory evi-
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dence over time form adequate building blocks for decision models, we still need a bet-
ter understanding of how these dynamics emerge from models comprised of large, but
finite, numbers of interacting neurons described by sets of nonlinear Hodgkin-Huxley
type ODEs having both excitable and oscillatory behavior. The approach required
to make this link will significantly extend the probabilistic models of Chapters 3-5,
which focussed on the response of uncoupled and weakly coupled neural oscillators to
pulsatile inputs. In order to compare the likelihood of alternative hypotheses about
sensory inputs, strong inhibitory coupling among subpopulations is required, as for
the formal neural integrator models of Chapters 6-7 (cf. [169]). Furthermore, as in
the spiking neuron model of [184], a high density of slow excitatory (NMDA) synapses
may be required in order for neural populations to integrate noisy inputs over the
hundreds-of-millisecond timescales important in sensory discrimination tasks. Ana-
lyzing such coupling effects will require extending studies of the existence and stability
of partially synchronized firing patterns of Chapter 4 in several ways. The analysis
there computed Floquet multipliers characterizing the deterministic multistability of
various partially synchronized states. A stochastic stability analysis, performed for
Poisson-like fluctuations characteristic of synaptic transmission, would give refined
estimates of which among multiple equilibria typically occur in general globally cou-
pled oscillator systems. Moreover, richer coupling architectures and heterogeneous
neural populations must also be considered (cf. [63]).

Following these advances, which will lead to population models derived from
single-neuron normal forms valid in both excitable and oscillatory regimes (cf. [94])
and containing the synaptic coupling terms necessary to accurately model cortical
decision dynamics, there is another, more fundamental, development that will be
required in order to bridge between single-neuron and averaged models of simple de-
cisions. This is to develop tractable low dimensional descriptions of the dynamics of
coupled normal form populations. A hypothesis which emerges from Chapter 6 and
[21, 169, 20] is that the dominant temporal dynamics of neural network equations
can be represented as drift-diffusion processes crossing firing rate thresholds on lower
dimensional attracting surfaces (slow manifolds). Identifying the corresponding low
dimensional, stochastic descriptions of the density equations described above will be
a greater challenge. For weakly interacting populations – and hence weakly nonlinear
density equations – eigenfunction methods will help to identify a family (likely to be
small [165, 104]) of slowly evolving modes that alone determine, to high accuracy,
the evolution of the entire population (transients in the other modes decay rapidly).
For fully nonlinear and nonequilibrium systems, one could determine the effective
dynamics numerically via multiscale “coarse computation” techniques [66], in which
the dynamics of the full system are regularly sampled and projected onto a proposed
set of slow modes. The result will be a reduction of the population equations to a
finite set of stochastic ODEs or maps with numerically defined coefficients. These
could in turn be used to study the dynamics of decision tasks.

Once low dimensional decision models more closely connected to the underly-
ing neurobiology have been established, the questions about optimality addressed in
Chapters 6-7 can be addressed in greater detail. Two issues are of primary impor-
tance here. The first is the robustness of optimal decision strategies to imprecise
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tuning of parameters. The importance of robustness has long been recognized in the
closely related context of neural integrators in motor control (see [155] and references
therein), and work in progress by Carlos Brody [19] extends the mechanism of [109] to
robustly produce ‘line attractors’ (of the type required for the optimal decision pro-
cessing strategies of Chapter 6) in single populations to pairs of mutually inhibitory
populations. A logical next step is assessing the extent to which suitable modifications
of the networks of [109, 19] can produce robust threshold crossing behavior in timed
decision tasks. The second issue directly relevant to this dissertation is that of refin-
ing the population level description of norepinephrine (NE) effects. In Chapters 6-7,
LC-mediated NE was modelled as causing a simple enhancement of gain in neural
populations. While this interpretation is consistent with physiological data, it is not
uniquely so. What is required to form an improved model of NE effects on decisions
are experiments involving simultaneous recordings from LC and sensorimotor areas
(i.e., LIP and superior colliculus), as well as modelling efforts involving populations
of spiking cortical neurons equipped with different densities of NE receptors (perhaps
following [124]).

Studies of NE and other neuromodulator effects on neural dynamics at this level
of detail will also allow an assessment of how neuromodulators influence transmission
of information coded via spike times instead of via population or time-averaged firing
rates. I conclude this dissertation by noting that, due to the widespread projection
of LC neurons to most other brain areas, this fascinating question is almost sure to
be relevant to neural computation, and may play a role in unravelling the role of
neuromodulator deficits in psychiatric disease.
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