PHILOSOPHICAL

TRANSACTION

705 CTIONS Phil. Trans. R. Soc. A (2006) 364, 3301-3318
THE ROYAA d0i:10.1098 /rsta.2006.1903
SOCIETY Published online 20 October 2006

Towards blueprints for network architecture,
biophysical dynamics and signal transduction

By StEPHEN CoomBES™ ™, BRENT DoiroN?, KRESIMIR JosIi¢?
AND ERric SHEA-BrROWN?

1School of Mathematical Sciences, University of Nottingham,
Nottingham NG7 2RD, UK
>Center for Neural Science and Courant Institute of Mathematical Sciences,
New York University, New York, NY 10012, USA
3Department of Mathematics, University of Houston, Houston,
TX 77204-3008, USA

We review mathematical aspects of biophysical dynamics, signal transduction and network
architecture that have been used to uncover functionally significant relations between the
dynamics of single neurons and the networks they compose. We focus on examples that
combine insights from these three areas to expand our understanding of systems
neuroscience. These range from single neuron coding to models of decision making and
electrosensory discrimination by networks and populations and also coincidence detection
in pairs of dendrites and dynamics of large networks of excitable dendritic spines. We
conclude by describing some of the challenges that lie ahead as the applied mathematics
community seeks to provide the tools which will ultimately underpin systems neuroscience.
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1. Introduction

McCullough & Pitts (1943) demonstrated the computational power that emerges
from highly simplified interacting binary neuron-like units, foreshadowing an
explosion of research into information processing by such ‘artificial’ neural
networks. In this framework, the strength of interactions fully determines how
incoming signals are processed, as the spiking dynamics of individual neurons are
not modelled. Meanwhile, complex biophysical models based on Hodgkin &
Huxley’s (1952) formalism have revealed how single isolated neurons exploit a
wide array of dynamical mechanisms to produce diverse temporal patterns of
voltage spikes. Surprisingly, these research frameworks have remained largely
distinct. This motivates the main question we address: how do critical features of
the nonlinear spiking dynamics of single neurons combine with network
architecture to determine a mechanistic ‘blueprint’ for the principles of signal
processing in the nervous system?
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(a) biophysical mechanisms (b) signal transduction

(c¢) network architecture

Figure 1. The mathematical neuroscience community has achieved substantial success in the
analysis of single-cell biophysical mechanisms (here represented by the reduction of
Hodgkin—Huxley type models to phase variables), neural signal transduction (e.g. the
reconstruction of incoming signals from spike trains) and the general theory of networks of
coupled dynamical systems (e.g. rings of cells as shown here). We focus on the overlap of these
traditionally rather separate paths of research.

2. Three fundamental areas of mathematical neuroscience

(a) Area 1: single cell mechanisms

The area of single cell dynamics is arguably the best developed area of
mathematical neuroscience. Many of the models presently in use can be viewed
as refinements or reductions of Hodgkin—Huxley type nonlinear ODE models
(Hodgkin & Huxley 1952), which represent the neuron as a nonlinear circuit
producing temporal spikes (action potentials) in transmembrane voltage V(1)
(see figure 1a). Indeed, the parameter values and the formulae that describe the
dynamics of membrane conductances have been successfully fit to experimental
data for a stunning variety of cell types. The resulting differential equations are
typically far too complex to be studied analytically, but techniques including
time-scale separation and averaging yield more tractable models. A typical
example is that of Pinsky & Rinzel (1994), who reduce the biophysically detailed
multicompartment model of a hippocampal neuron by Traub et al. (1991) to a
system containing just two compartments and a minimal set of currents. Phase
(Kopell & Ermentrout 1984; Brown et al. 2004) or integrate-and-fire reductions
go further by describing neurons in terms of single variables, with consequences
that we will revisit in §3a.

Reduced models illuminate the fundamental mechanisms underlying the
dynamics of spiking cells. Furthermore, reduced versions of a range of
Hodgkin—-Huxley type models often share the same characteristics and can be
categorized as dynamically equivalent. Each such category is typified by a
reduced ‘canonical model” exhibiting the dynamical features typical of the entire
cell class (Izhikevich 2000). Similarly, the mathematical mechanisms that
underlie rhythmic behaviour, such as tonic spiking and bursting can be
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categorized using normal forms that describe typical transitions (bifurcations)
between quiescent and oscillatory dynamics (Rinzel 1987; Izhikevich 2000;
Golubitsky et al. 2001). A complementary approach, perhaps most relevant for
the present article, is to categorize neural models based on their response to
external inputs, for instance, by defining phase-response curves determining
spike timing or firing rate versus input current (f-I) functions determining spike
frequency (Rinzel & Ermentrout 1998).

(b) Area 2: signal transduction

Neural circuitry, from single synapses to large-scale networks, encodes and
transmits incoming signals. We express this operation as y= K(z), where z
represents the incoming signal; K(-) represents a (possibly nonlinear) transfer
function; and y represents the system output. The definition of the latter depends
on the system at hand; often it takes the form of a temporal sequence of action
potentials (a spike train) or a firing rate. Spike trains are typically stochastic, yet
correlated with the input x to a cell. Perkel & Bullock (1968) began a program
that sought the neural code, which would relate a specific spike train pattern to a
given input, with the neural dynamics viewed as a ‘black box’ filter K. In this
approach to systems neuroscience, information theory and pattern classification
methods are used to formalize the correlations between the spike times of sensory
neurons and stimuli (Rieke et al. 1997; Borst & Theunissen 1999; Dayan &
Abbott 2001). Significant progress has been made in fly vision, where the analysis
of spike-triggered stimulus ensembles reveals strong correlations between spike
patterns and low-dimensional projections from a high-dimensional stimulus space
(Rieke et al. 1997; Brenner et al. 2000). The relationship between natural scene
statistics and optimal stimulus encoding (Barlow 1961) remains an active area of
investigation. A popular approach is to derive models of neural processing (the
transfer functions K) by requiring that they optimally encode those stimuli with
spatio-temporal statistics which match those of naturally occurring sensory
inputs (reviewed in Simoncelli & Olshausen 2001).

Another present research area is temporal decision making, involving neural
integration of information over hundreds of milliseconds to seconds followed by
an explicit behavioural choice (Wong & Wang 2006). Here, K characterizes the
computations that transform competing sensory evidence for several possible
alternatives into the behavioural output corresponding to the most likely
alternative. Empirical studies are probing the extent to which the brain
implements the algorithm of Wald’s sequential probability ratio test (SPRT),
which enables decisions with the optimal combination of speed and accuracy
(reviewed in Gold & Shadlen 2002).

(¢) Area 3: network architecture

The statistical analysis of connectivity patterns in complex networks is a
blossoming field (Albert & Barabasi 2002). However, the question of how these
connectivity patterns impact network dynamics is not well explored. Coupled cell
theory (Stewart et al. 2003) provides a start. While it applies directly to systems of
Hodgkin—Huxley type, it does not address the quantitative behaviour of individual
cells covered in §2a, but rather focuses on general patterns in the network dynamics.
A coupled cell system can be described by a graph that identifies which cells are
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coupled to which, and which cells and couplings are of equal type. The evolution of
such a network is described by a system of ODEs. Identical ‘node’ symbols for
individual cells imply identical internal dynamics and identical arrow types imply
identical coupling. Based on architecture alone, we can identify: (i) invariant
‘synchronized’ subspaces on which the coordinates of certain cells are equal, (ii)
non-generic bifurcations, and (iii) ‘spatio-temporally symmetric’ periodic solutions
with well-defined frequency and phase relations between cells. Some consequences
of (i) and (iii) will be explored in §3a and we refer the reader to the references for the
fascinating consequences of (ii).

3. Links between the fundamental areas

(a) Combining areas 1 and 3: single-cell dynamics and network architecture

In this section, we describe results about biological network dynamics that follow
from additional assumptions on the dynamics of individual cells and their
interactions. We first assume that each cell possesses a strongly attracting limit
cycle and can be described by a single phase variable 0j681. In this case,
the invariant ‘synchronized’ subspaces that arise from network architecture
imply strong restrictions on the dynamics of coupled cell systems (Golubitsky
et al. 2005, 2006). Similar conclusions hold for integrate and fire neurons with
excitatory or gap junction coupling. As an example, consider the network of two
identical, identically coupled phase oscillators with 6] = f(6,, 6,) and similarly for
the evolution of #, under the replacement 1«>2. (In a neural context, the
interaction function foften has the form R(6,)1(6;,t), where R characterizes the
phase sensitivity of a neuron and I characterizes a synaptic input that depends
explicitly on the presynaptic firing phase.) The structure of this oscillator
network immediately implies that the diagonal 4, ,={6;=0,} is flow invariant
(i.e. if 0,(')=0,(t') for a specific time #', then it must be that 6, (t)=60,(t) for all
time t). As a consequence, if one thinks of the two-phase oscillators as moving
beads on a hoop, then the beads cannot pass one another. This simple
observation has important consequences: (i) the frequencies of the two cells in
this network must be equal and (ii) the two cells modelled by the oscillators are
either perfectly synchronous or spike in alternation (crossing a distinguished
phase value 6, € S' is interpreted as a spike). Furthermore, the relations (i) and
(ii) hold for any pair of coevolving cells (Golubitsky et al. 2005, 2006). In a
network of more than two cells, coupled cell theory implies that a pair of cells, 4
and j, coevolves if and only if every other cell in the network connects to both
cells, 7 and j, with the same number (which may be zero) of arrows of each type,
and the arrows from 7 to j are the same in number and type as those from j to i.
Therefore, in the network (c¢) of figure 2 only the pair (1, 2) coevolves, while in
networks (a) and (b) all pairs of cells coevolve.

Coevolution of more than two cells allows one to group cells into ordered
collections, within which frequencies are identical, the ordering of phases is
dynamically invariant and the sequence of spikes is fixed. This restricts the type
of solutions that a phase-reduced network can support. The networks in
figure 2a,b are symmetric under interchange of cells 1 and 2. Moreover, all the
three cells coevolve and hence no solutions in which cells fire at different
frequencies are possible. On the other hand, the three-cell network in figure 2¢
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Figure 2. (a,b) Examples of three-cell networks in which all cells coevolve: assuming one-dimensional
cell dynamics, they cannot support multifrequency oscillations. (¢) A network in which cell 3 can
robustly oscillate at twice the frequency of cells 1 and 2, as only cells 1 and 2 coevolve.

has the same symmetry, but cell 3 does not coevolve with cells 1 and 2, and there
are no restrictions on its frequency. Using group theoretical methods, one can see
that the symmetry of this network implies that the solutions in which cells 1 and
2 are one-half period out of phase and cell 3 oscillates at twice their frequency can
be supported, in fact by open sets of ODEs with this architecture. This type of
network was analysed by Pervouchine et al. (2005) in the context of theta
rhythms in the hippocampus and entorhinal cortex, and similar multifrequency
solutions were central in explaining the behaviour observed in experiments.

(b) Combining areas 2 and 3: signal transduction and network architecture

In this section, we discuss an example of how neural signal transduction has
been studied in structured networks without incorporating the underlying single-
cell dynamics. Rather, simple first-order kinetics are assumed to govern a
network of neural ensembles, each of which is characterized by a firing rate
versus input or ‘f=I’ function. Such networks have classically been used to model
pattern identification and classification (reviewed in Cowan 2004), and more
recently, the temporal dynamics of decision making (Usher & McClelland 2001),
which we now discuss. The underlying models take the form of simplified,
stochastic Wilson-Cowan equations (Wilson & Cowan 1973)

Yp =~y +f<z Ky + wj) +¢, (3.1)

where fis the ‘f-I" function; y; is the firing rate of ensemble j; the z; are ‘input’ rates
representing evidence for the various alternatives; and the ﬁnal noise term ¢&;
represents internal and incoming fluctuations. The Welghts K;; determine network
architecture and interactions. If fis piecewise linear, then the K;; may be chosen so
that noisy incoming signals are processed via the optimal SPRT (discussed in §2b),
illustrating the interplay between neural architecture and processing of noisy signals
in the discrimination between two alternatives (Brown et al. 2005; Bogacz et al.
in press). The requisite conditions on the Kj; are precisely those found by Seung
(1996) to give a line attractor: a neutral direction in which the system’s intrinsic
dynamics vanish, allowing direct integration of inputs z; over time (see figure 3).

(¢) Combining areas 1 and 2: signal transduction and single-cell mechanisms

In temporal neural codes, the precise timing of action potentials reflects
specific features of a dynamic stimulus; but how does single-cell dynamics,
characterized by diverse and nonlinear membrane conductances and the spatial
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Figure 3. Under certain conditions, the network (a) implements the SPRT algorithm. This requires
a line attractor for the firing rates y; (bold line in (b)) for the ‘intrinsic’ dynamics (i.e. absent inputs ;).
Following arrival of inputs, a decision corresponding to input j is made when firing rate y; crosses
its threshold (dotted lines). (¢) The spiking neuron model presented in Wong & Wang (2006;
from which figure is adapted) implements similar dynamics, but with certain deviations from
‘pure’ line attractor dynamics (and hence the SPRT) consistent with features of empirical data
(see references therein).
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Figure 4. (a) Average stimulus preceding an isolated spike (black) and a burst (grey) in a thalamic
relay cell in the LGN of the cat visual system. The stimulus was a clip from the movie ‘Raiders of
the lost ark’. (b) Typical voltage response of an IF and an IFB model neuron (top) and comparison
of spike times over multiple trials with both models to actual data (raster plots, bottom). Figure
adapted from Lesica & Stanley (2004).

extent of dendrites, determine such a code? Formalizing how distinct temporal
coding schemes arise from these conductances is an emerging field of
mathematical neuroscience.

(d) Burst coding

A typical patterning of action potentials is a rapid burst of sequential spikes
(e.g. second trace in figure 4b; see also Coombes & Bressloff 2005), raising the
question what stimulus features such bursts represent. Physiological and
modelling studies of pyramidal neurons in the lateral geniculate nucleus (LGN)
area, which processes visual inputs, offer a clue: in these cells, the termination of
an extended negative current input generates a burst. A recent study has shown
that certain temporally rich stimuli, such as natural scenes, contain periods of
prolonged hyperpolarization that reliably elicit burst responses (Lesica & Stanley
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Figure 5. (a) A caricature of a bipolar cell with a central cell body and two dendritic branches.
(b) A plot of the function AV?;D/ Vin with D=7=4=1, showing that the largest variation in
somatic response (for inputs on either side of the soma) occurs at a non-zero value of z at roughly
1.41. The inset shows the corresponding plot of the function F, which is a simple measure of the
large time voltage response at the soma. This would cause a corresponding periodic variation in the
cell firing rate as a function of ¢.

2004). This is observed by computing the average stimulus that elicits a burst of
spikes and comparing it to the average stimulus that elicits an isolated spike
(figure 4a). Furthermore, this selectivity for stimulus features can be captured by
an integrate-and-fire-and-burst (IFB) model neuron (Smith et al. 2000), but not a
standard integrate-and-fire (IF) model (figure 4b). These studies are an elegant
example of how single-cell biophysical dynamics (in this case, a slow T-type
calcium current which generates bursts) can shape the temporal code.

(e) Coincidence detection in dendrites

Both mammals and birds use ‘coincidence-detector’ neurons in the auditory
brainstem, which have bipolar dendrites (see figure 5), to detect temporal
differences in sound arrival times between ears (the interaural time difference) to
an astounding accuracy of 10-100 us; this enables localization of a sound source.
Agmon-Snir et al. (1998) show that the bipolar cell structure, combined with the
spatial segregation of inputs, enhances their performance at this task in
comparison with ‘point neurons’ (lacking dendrites). Here, we revisit their
work, showing how the interacting bipolar components (viewed as a small
cellular network) interact with membrane dynamics to enable transduction of
input signals (interaural time differences) into neural outputs (here, voltage at
the cell body).

Consider an (infinite) neural cable with membrane potential V(z, ¢) at position
z €R and time ¢t €R", and synaptic inputs at positions z; and z, governed by

14
V= - + DV, + Ly, (3.2)

where the Synaptic iHPUt Isyn = Isyn(xa t) = EZn:1,26($ - In)g(xm t)( Vsyn - V(Ia t))a
with ¢(z,,t)=>",,ez+0(t—(m+ ¢,)4). This represents a postsynaptic current
induced by the arrival of a train of incoming spikes, arriving periodically with a
frequency 1/4 and of strength ¢ > 0. The term ( Vi, — V(z, t)) is an excitatory ‘shunt’
that pushes the membrane potential towards the reversal potential for the synapse,
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Vi >0, and underlies the nonlinearity of synaptic processing. Here, we take the
phases ¢; and ¢, to be 0 and ¢, respectively, such that ¢ €[0,1) is a measure of the
phase difference between the two incoming signals. The firing rate is observed to be
maximal at ¢ =0 and varies periodically with ¢, with a minimum at ¢=1/2, so that
any mechanism that enhances the difference between the maximum and the
minimum firing rates improves sound localization. The formal solution to equation
(3.2) is

t Y]
V(xv t) = J dSJ dyG(x_ Y, t— S)Isyn(:% 5)7 (33)
0 —o0
where we have assumed V(z,0)=0 and G(z,t)=e" T /(D) /VA4rDt is the
Green’s function for the cable equation. Note that equation (3.3) only gives Vin an
implicit form, since L, also depends directly on V. However, repeated substitution of
equation (3.3) into itself generates a (Neumann) series expansion that we may
truncate (for sufficiently small ¢) to obtain an approximate expression for Vin closed
form. Writing this expansion in the form V=e¢V{;+ & Vigy+ -+ we find
Viy (@, 1) = Vignd nH(z— 2, t—,4), with H(z,t)=3_,G(x,t—md). At next

order we have

V(2)($’ t) = _Vsyn Z H(ZIZ — T t—(ﬁnA)H(.'IZ" — Ty, (¢n —¢p)A), (34)
n,p

where the sums are over spine indices. At this level, we clearly see the effects that the
shunting currents can have, as they lead to a nonlinear mixing of the inputs. Consider
the cell body to be at =0, so that the cell is partitioned into two dendritic branches
with inputs at equal distances, 1y, from the cell body. We distinguish the two
important cases: (i) where both inputs are on the same side of the soma (same branch)
and (ii) where they are on the opposites sides of the soma (different branches).
Denoting the response of the cell body V(0, ¢) by V¥™¢(¢) and V"P(¢) in the two
cases, one may check that V**"(¢) is always less than V°PP(¢). Hence, to maximize
response at the cell body for any ¢, it is desirable to place inputs on different branches,
as it is the case biologically. Assuming that the cell firing rate, f, is a monotonically
increasing function of the average somatic voltage, we may answer a related
question—how these inputs should be located to maximize the variation of fwith ¢.

After taking the long time average (denoted by angle brackets), we find
(V?g)p )« F(zy, 4, ¢)—a given periodic function of ¢. Hence, the firing rate, f, will
be similarly periodic and will vary most strongly when =z, is chosen so
that AV = (V)|y=1/2—(V)|g=0 is maximal. Importantly, for AV"" there is
an optimal choice of z, that can enhance the variation of f over a cycle for a
given 4 (figure 5).

4. Combining all three areas

There are many fields of computational neuroscience where elements of signal
transduction, single cell dynamics and network architecture have been studied in
combination. In this section, we review three examples: long time-scale integration
in spiking networks, dynamics of nonlinear dendritic spine networks and models of
electrosensory networks. In the first of these, we will see how the biophysical details
of single cell dynamics may be encapsulated by a firing rate description similar to
equation (3.1); in the latter two, the details of spike timing must be retained.
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Figure 6. (a) A spine studded dendrite (photo from Medical College of Georgia, http://synapses.
mcg.edu). (b) Schematic of the SDS network, the spine clusters are represented by the black circles
and the ‘effective’ coupling between spines are the links. (¢) Patterns of activity for weak (o=
0.055) and strong (¢=0.2) input intensities. The spine distribution is regular with 30 spines
distributed over the cable, and a rectangular action potential shape with no6=7,=1. Prepared
with the help of Yulia Timofeeva.

(a) Temporal integration in spiking networks

It is a prominent challenge to understand the neurobiological implementation
of long time-scale dynamics, such as that required for optimal or temporally
extended decision processing (see §3b) or for the maintenance of accumulated
information over time (Seung 1996; Seung et al. 2000), in networks of
biophysically based cells. Here, the relevant question is how slow manifolds
emerge along which incoming information can be gradually integrated. Seung
et al. (2000) created a spiking neuron model with this property, exploiting the
method of averaging over slow network (synaptic) time-scales to derive a model
of the form (3.1), which was used to identify critical parameters. Wong & Wang
(2006) applied similar techniques, computing how integration time-scales in
a decision task depended on network and single-cell properties. Here, the
network of spiking cells is divided into two subpopulations (analogues of y; and
Yo in equation (3.1)) representing accumulated inputs (analogues of z;, )
corresponding to the two alternatives. Following averaging, single-cell dynamics
are summarized by population input—output relationships (cf. f-I functions; §3b),
and network architecture allows for both sustained activity and competition
between alternatives. The nullclines for the resulting reduced system (of the form
(3.1)), with trajectories of the spiking system, are shown in figure 3c. We note
that the robustness of integration time-scales to the precise setting of network or
cellular parameters is another active area of research: Koulakov et al. (2002)
show how bistability at the cellular level imparts such robustness to the
population, again highlighting the interplay between single-cell and network
dynamics and the neural information processing that they can support.

(b) Nonlinear spines and noise-induced wave propagation in dendrites

More than 100 years ago, Cajal (1998; recent translation) observed small
appendages along dendritic shafts which he labelled spines (figure 6a). Spines serve
as junction points between presynaptic axons and postsynaptic dendrites and hence
mediate interactions between neurons. Subsequent experiments suggested that
signal processing could occur in the spines, the dendrites or in their interaction
(London & Hausser 2005). In this section, we consider a mathematical model of a
network of interacting nonlinear spines. Despite the fact that these dynamics occur
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within a single biological cell, we mathematically treat the spine network similar to
a network of interacting neurons. We review how it processes signals that are
encoded in the intensity of the stochastic spatially extended dendritic input by
organizing the pattern of activation across the spine network.

Building on Baer & Rinzel (1991), Coombes & Bressloff (2003) introduce and
analyse a tractable ‘spike-diffuse-spike’ (SDS) model of a dendrite bearing
excitable spines. The dynamics of each spine is modelled with a reduced ‘leaky
integrate-and-fire’ (LIF) process. Spine-spine coupling is mediated by an
otherwise passive section of dendrite separating adjacent spine clusters. The
cable potential is again modelled by equation (3.2) with the synaptic current
replaced by a spine-stem current of the form Dr,p(z)(V — V)/r, where ris the
spine-stem resistance and r, is the axial resistance per unit length of cable. Since
in real neurons, spines are attached at discrete points along a dendritic branch,
the spine density function p(z) is taken as p(z)=n)_,,6(x—=,) with x,, the
position of the mth spine cluster, and 7 spines per cluster. The jth time that a
spike is generated in the mth spine is denoted t;,, and is determmed according to
an LIF process for the spine potential U, such that U,,(t ) 0 whenever
Um( ) Uthu with

Cyai - Un + V(mnn t) — Uy
at s
where C and # are the spine head capacitance and resistance; inputs d§,, are
defined below. After a spike, the spine head potential is in a refractory state for a
time-period 7. Since the dynamics of V(z,t) between two adjacent spines is given
by a linear cable equation, when nDr,/r << 1, V(x, t) is well approximated by

_ nbr, J ZG z—zp, t—8) V(xy, 5) ds, (4.2)

+ ad&,,(1), (4.1)

V(x, t)

where G is Green’s function of the cable. Here, V(z,,, t) = > m(t—t;,) represents
the effective output of the spines (n(¢) is the shape of an action potential, here
simplified as 70O (1)@ (ts—1)). In total, we have a network of excitable spines where
the ‘effective’ voltage coupling between spines is determined self-consistently via
the LIF mechanism (4.1) and equation (4.2). Figure 6b shows a schematic of the
SDS model.

The temporal forcing of spine m, &,,(t), is zero mean Gaussian white noise of
intensity o, which is uncorrelated across the spines network. This models an
asynchronous presynaptic pool of neurons driving the spine ensemble. In
response to weak stochastic forcing, the SDS model shows sporadic waves of
activity separated by periods of quiescent dendritic activity (figure 6¢). When
the intensity of the fluctuations is increased, the noise-induced waves are
coherent in time and the periods of activity are spaced at roughly the refractory
time, 7R, of the excitable spines. These noise-dependent dynamics are
prototypical of a wide field of study in noise-induced transitions in nonlinear
systems (see Garcia & Sancho 1999). The noise-induced regularity of the
dendritic spine network shown above could serve as a direct code for the
intensity of dendritic forcing. Alternatively, as neurons typically have many
dendritic branches, the activity in the single branch modelled above could
modulate, or perhaps even gate, the neuron’s response signals received in other
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Figure 7. (a) An electric fish experiences global electrosensory inputs from a communicating fish
(upper left) and local inputs from swarm of prey Daphnia (bottom right). The filled circle on the
body is the approximate size of the receptive field of an ELL pyramidal neuron. (b) Schematic of
the ELL pyramidal cell population and global inhibitory feedback from populations of bipolar cells
in the NP nucleus. (¢) The spike train power spectrum, S, of a representative neuron in the network
when 0g=0 and o1, =0.565 or when g5 =0.4 and g, =0.4. Simulations of the LIF system are circles
and solid lines are from a linear response calculation.

branches (see Jarsky et al. (2005) for an example in CA1 hippocampal neurons).
In either case, the distinct wave dynamics and subsequent stimulus transfer arise
from a network of nonlinear spines, where the effective ‘network’ architecture is
determined self-consistently with the dynamics that it supports.

(¢) Stimulus discrimination in the electrosensory system

The neural correlates of sensory perception are being explored by experimen-
talists and theorists alike. A feed-forward analysis of sensory systems considers the
direct path from afferents (such as photoreceptors) proceeding into the thalamus
and terminating in the cortex. A puzzling observation from sensory anatomy is
that a majority of the synaptic input to thalamic cells does not originate in lower
centres, but rather feeds back from the cortex (Allito & Usrey 2003).

The electrosensory system of weakly electric fish is an example where feedback
projections are well mapped and whose effects have been analysed mathemat-
ically (Turner et al. 1999; Doiron et al. 2003, 2004). Electrosensory images to a
patch of skin are coded by electroreceptors which in turn project to a population
of pyramidal neurons in the electrosensory lateral line lobe (ELL) brain area. In
this section, we consider the oscillatory dynamics of the ELL pyramidal cell
network in response to signals distinguished by the extent of spatial correlation
among inputs to distinct pyramidal cells.

We idealize the stimuli driving the receptive field of the mth pyramidal neuron
as I,,(t)=o1£,,(t) + ogéq(t). I,(t) is separated into two distinct processes: &,,(t)
is a local stochastic forcing exclusive to neuron m, modelling a prey input or an
uncorrelated background scene. In contrast, £g(f) is a global stochastic input
common across all receptive fields, representative of a communication call that
drives a large portion of the skin. For simplicity, &,,(¢) and £g(¢) are zero mean
Gaussian white noise processes. These two distinct stimuli classes, which the fish
must routinely distinguish, are schematically illustrated in figure 7a. In vivo spike
trains from ELL pyramidal cells exhibit an oscillatory response when ag>0, but
not when og=0, showing distinct responses to these two categories of stimuli
(Doiron et al. 2003).
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ELL pyramidal neurons do not locally project to one another within the ELL,
but they do project to higher brain centres which feedback extensively to the
ELL. One centre of interest is a population of bipolar neurons in the nucleus
praeminentialis (NP) that project inhibitory inputs to the ELL. To explore the
mechanism behind the observed oscillatory spike response to correlated, but not
uncorrelated, stochastic forcing, Doiron et al. (2003, 2004) modelled the ELL-NP
network as a homogeneous ensemble of N LIF neurons. The membrane potential
of the mth pyramidal cell U,,(t) obeys

au,
dt

=-U, +u +% Z:J: K, (s)y;(t—s)ds + I,(t). (4.3)

Here, u is a static bias current applied to all neurons, and the standard LIF
spike-reset rules apply (see §4b). The spike train output for neuron j is
y;(t)=>_40(t—t;) with t;, as the kth threshold crossing of neuron j, and the
feedback from the NP bipolar cells is modelled as a temporal convolution of
spike train inputs with the filter K, ()= e =m)/7s )220 (t — 7). The
inhibition is of strength ¢/N<O0, where each inhibitory pulse has a time-
scale 74, and 7p represents a fixed delay. A schematic of the ELL-NP
network is shown in figure 7b.

Restricting g to be at most the same order as o7, and the feedback strength g to
be small, Doiron et al. (2004) and Lindner et al. (2005) used linear response
techniques to analytically describe the spike train of a representative neuron of
the ELL network via its power spectrum S (figure 7¢). A clear peak in S is present
when og >0, indicative of an oscillation in the spike train. The peak is absent
when the correlated forcing is replaced with the uncorrelated forcing (og=0).
These results match those observed in experiments for similar stimuli conditions
(Doiron et al. 2003, 2004). Of critical importance is the delay parameter 7, which
sets the time-scale of the oscillation: the ELL-NP model predicted that delayed
inhibitory feedback from the NP to the ELL was responsible for the oscillation.
This was subsequently verified by pharmacological blockade of this feedback
(Doiron et al. 2003). In summary, the combination of the single-cell spiking
dynamics (as modelled by a LIF mechanism) and a globally coupled delayed
network architecture allows the electrosensory system to code spatially extended
input correlations (i.e. prey versus communication style signals) with a temporal
organization (i.e. oscillation) of its single neuron responses.

5. Challenges for the future

A central task is to integrate the three theoretical disciplines reviewed here:
single neuron dynamics, signal transduction and network architecture. A two-
pronged approach is to develop a collection of central examples, or ‘neural
blueprints’, along with allied mathematical toolboxes that abstract the
blueprints from specific biological models. Unlike, for example, normal forms
and their reduction techniques in ODEs, these blueprints and their associated
toolboxes must be motivated and categorized by not only their cellular dynamics
and network architectures, but also the qualitative signal transduction functions
that they perform.
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Blueprints with one or two of the theoretical disciplines have been successfully
identified; examples include the blueprint of the phase/IF models and the
mathematical toolbox of multiple time-scale analysis for ODEs, the blueprints of
small networks producing multifrequency oscillations and the tools of coupled
cell theory, and the blueprint of low-dimensional stimulus representations
identified with the toolbox of spike-triggered analysis allied with information
theory and optimal statistical tests. Finally, the bipolar neuron is another such
blueprint, illustrating how the spatial distribution of distinct temporal inputs can
maximize a neuron’s selectivity for coincident inputs, as analysed through a
perturbation analysis.

Successful blueprints at the overlap between the three disciplines would show
how network architecture and biophysical dynamics combine to enable a
particular signal transduction function. The simplified Wilson—Cowan type
models with slow manifolds form blueprints for long time-scale neural
integration, derived through the toolbox of temporal averaging. The IF
representation of the ELL network is another blueprint, here illustrating how
spatial codes distinguishing stimuli (i.e. global versus local correlations) can be
translated into temporal codes (i.e. oscillations). Here, the corresponding toolbox
is the linear response theory for stochastic networks with feedback, which
computes the temporal correlations in network spike times. The recent work on
dendritic spine networks suggests a blueprint for spatially extended dynamics in
single dendritic branches, derived using the toolboxes of Green’s functions and
cable theory.

Numerous challenges remain as theoretical neuroscientists seek to find the
blueprints and mathematical frameworks that will meet the challenges posed by
increasingly rich experimental studies. We list three features of this biological
data, one from each of the three fundamental theoretical topics, that we
anticipate will be essential in generating these blueprints. Signal transduction:
evidence for Barlow’s hypothesis (1961) that neural systems are optimized to
process natural scenes, as illustrated in the thalamic bursting work of Lesica &
Stanley (2004) as well as the electric fish prey/communication discrimination
shown in Doiron et al. (2003, 2004); network architecture: there is increasing
evidence for non-random connectivity, ranging from topographic arrangement of
sensory input to small-scale clustering and structure of cortical connections
(Song et al. 2005); single-cell dynamics: presence of multiple time-scales in the
dynamics of single cells such as adaptation and bursting that give rise to long-
term correlations in spike times.

Several emerging mathematical methodologies will be of use in developing
blueprints that illustrate these and other biological features. We list three of these
that we find especially promising in their potential to tie together our three
fundamental topics. (i) Event-triggered statistics can be applied to network (rather
than single cell) activity, identifying features of signals that are encoded owing to
network architecture. (ii) The slowly evolving modes of neural populations can be
used to build low-dimensional computational (Laing 2006) and analytical (Knight
2000) models of stimulus-driven networks; as above, networks with common low-
dimensional dynamics could be grouped into common blueprints. (iii) Techniques
for the analysis of temporal codes can be applied to deduce how network
interactions, rather than membrane dynamics alone, shape selectivity for specific
stimuli (Chacron et al. 2005; Masuda et al. 2005).
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In our vision, the future development of neural blueprints, allied with
mathematical techniques that allow for their extension and interpretation, will
not only inspire the growth of new fields in applied mathematics, but also
streamline the process of experimental discovery in neurobiology.

We gratefully acknowledge a careful reading and helpful insights from Kevin Lin and John Rinzel.
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