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SUMMARY There is increasing evidence from in vivo
recordings in monkeys trained to respond to stimuli by mak-
ing left- or rightward eye movements, that firing rates in certain
groups of neurons in oculo-motor areas mimic drift-diffusion pro-
cesses, rising to a (fixed) threshold prior to movement initiation.
This supplements earlier observations of psychologists, that hu-
man reaction-time and error-rate data can be fitted by random
walk and diffusion models, and has renewed interest in optimal
decision-making ideas from information theory and statistical de-
cision theory as a clue to neural mechanisms.

We review results from decision theory and stochastic ordi-
nary differential equations, and show how they may be extended
and applied to derive explicit parameter dependencies in optimal
performance that may be tested on human and animal subjects.
We then briefly describe a biophysically-based model of a pool
of neurons in locus coeruleus, a brainstem nucleus implicated in
widespread norepinephrine release. This neurotransmitter can
effect transient gain changes in cortical circuits of the type that
the abstract drift-diffusion analysis requires. We also describe
how optimal gain schedules can be computed in the presence of
time-varying noisy signals. We argue that a rational account of
how neural spikes give rise to simple behaviors is beginning to
emerge.
key words: Stochastic differential equations, drift-diffusion

process, dynamical systems, phase oscillators, decision-making

models.

1. Introduction: Optimal decisions

Here we summarize a considerable body of work car-
ried out in our group over the past five years. We
are variously applied mathematicians, neuroscientists,
and cognitive psychologists, and our goal is develop a
series of linked models describing the collective neu-
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ral computations involved in decision making and their
behavioral outcomes. Much of our thinking is guided
by the notion that computably optimal strategies pro-
vide limits to, and may even guide, human and animal
performance. Here we focus on mathematical methods
and modeling strategies, involving stochastic differen-
tial equations, dynamical systems and signal processing
theory. We also sketch the behavioral and neurobio-
logical background to this work, and we provide many
references.

We start with a phenomenological drift diffusion
(DD) model for the identification of a noisy stimulus
drawn at random from a pair of options: the two-
alternative forced choice task (2AFC). We derive op-
timal operating conditions for this process, presuming
that certain DD parameters, describing cortical func-
tion, may be adjusted to suit the stimuli and task at
hand. Neurotransmitter release provides a mechanism
for such adjustments, and we continue by sketching
how a biophysically-based model of spiking noradren-
ergic neurons in the locus coeruleus (LC) can be sim-
plified and their response to stimuli analyzed. This
brainstem area is believed to modulate gain in corti-
cal circuits. We conclude by outlining the derivation of
optimal gain schedules for a DD-type process with vari-
able signal, noise and feedback, and comparing these to
direct recordings of LC activity.

The drift diffusion (DD) process, governed by the
SDE

dx = ±adt + σdW , with thresholds ± z , (1)

where σ is the standard deviation of a Wiener (white
noise) process W (t) and ±a denote the drift rates cor-
responding to the two stimuli, has been used since the
1960’s to model human reaction time and error statis-
tics in the 2AFC and other tasks [1]. Not only is it the
continuum limit of the sequential probability ratio test
(SPRT), known to be the optimal decision-maker for
2AFC tasks with accumulating noisy data [2], [3], but
its threshold-crossing behavior closely matches human
behavioral data [4], [5]. Moreover, direct neural record-
ings from oculomotor brain areas of monkeys perform-
ing choice tasks has recently shown that firing rates of
groups of neurons selective for the response correspond-
ing to the chosen alternative rise toward a threshold
that signals the onset of motor response in a manner
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that seems to match sample DD paths [6]–[8]. Eqn. (1)
can also be derived from “high level” leaky competing
accumulator (artifical neural network) models of neural
function, as noted in §§2-3 below.

In this application a is the mean growth rate of
the log likelihood ratio and x(t) its accumulated value.
If the stimuli are presented with equal frequency, sam-
ple paths are started at x(0) = 0 and a response is
recorded when x(t) first exceeeds +z or falls below −z,
thus defining the reaction time (RT) on that trial. For
drift +a, crossing +z denotes correct responses and −z
errors, and vice versa. First passage time distributions
yielding mean RTs, and error rates (ER) are readily
computed for (1) from the backward Kolmogorov or
Fokker-Planck equation associated with it [9]:

RT =
z

a
tanh

(az

σ2

)

; ER =
1

1 + exp
(

2az
σ2

) . (2)

For fixed signal to noise ratio (SNR) a/σ, as z increases,
ER decreases but at the expense of longer RTs: this
speed-accuracy tradeoff is well-known in psychology [1].
However, as suggested by Gold and Shadlen [10], one
can explicitly compute thresholds that maximize the
average reward rate:

RR =
1 − ER

RT + D + Dpen · ER
; (3)

here the numerator represents the average fraction of
correct responses and the denominator denotes the av-
erage time between responses: the sum of RT, an
experimenter-imposed response-to-next-stimulus inter-
val (RSI) D, and possibly an additional penalty de-
lay Dpen incurred by errors. (In applying this formula
to data gathered from human or animal subjects, one
must further subdivide RT into the “decision time” that
represents information processing, and an “overhead
time” due to visual processing and motor response la-
tencies [11]. The latter tends to remain fixed for a given
subject, and may be combined with D.)

Substituting Eqn. (2) into (3) gives:

RR =
[z

a
+ D

+
(

D + Dpen −
z

a

)

exp

(

−
2az

σ2

)]−1

. (4)

Of the original DD parameters in Eqns. (2) and (4) only
the two ratios z̃ = z/a and ã = (a/σ)2 (∼ SNR) appear.
Regarding ã, D and Dpen as fixed and differentiating
with respect to z̃, one finds that the unique maximum
of RR as a function of threshold for fixed SNR and
delays occurs when the following condition holds:

exp(2ãz̃) − 1 = 2ã(D + Dpen − z̃) ; (5)

note that only the sum Dtot = D + Dpen appears in
this expression. We may solve for z̃ and ã in terms of
RT and ER from (2) to obtain

Fig. 1 Thick curve shows the optimal performace curve given
by Eqn. (7), and histogram bars show data collected from 80 hu-
man subjects, sorted according to total rewards accrued. White
bars: all subjects; light gray bars: lowest 10% excluded; medium
gray bars: lowest 50% excluded; dark gray bars: lowest 70% ex-
cluded. Error bars indicate standard error.

z̃ =
RT

1 − 2ER
, ã =

1 − 2ER

2RT
log

(

1 − ER

ER

)

, (6)

and substituting Eqns. (6) into (5) yields a speed-
accuracy tradeoff that corresponds to maximizing RR:

RT

Dtot
=

[

1

ER log
(

1−ER
ER

) +
1

1 − 2ER

]−1

. (7)

This optimal performance curve (OPC) uniquely re-
lates the normalised reaction time (RT / [D+Dpen]) to
ER: no other parameters appear. Hence data collected
for different subjects (who may exhibit differing SNRs,
even when viewing the same stimuli), and for differing
RSIs and penalty delays, can be pooled and compared
with the theory. See [11] for full details.

Fig. 1 shows the OPC of Eqn. (7) as a bold curve,
the form of which may be understood by noting that the
left hand end, where error rates and normalised reaction
times are both low, corresponds to high SNRs (decisions
are quick and accurate), while at the right hand end the
SNR approaches zero, and the optimum strategy is to
guess without spending time to examine the stimulus,
also giving a small reaction time. In between, the curve
describes the optimal speed/accuracy compromise.

Fig. 1 also shows a histogram of behavioral data
compliled from human subjects indicating that those
who score in the top 30% overall on a series of tests
with differing dalays and SNRs follow the optimal curve
remarkably closely. More detailed data analysis [11] re-
veals that, in each block of trials for which stimulus
recognition difficulty (∼ SNR) and RSI are held con-
stant, these subjects rapidly adjust their thresholds to
achieve this. However, other subjects, and especially
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the lowest-scoring 10%, display suboptimal behavior,
with significantly longer reaction times and correspond-
ingly lower ERs. Previous studies have shown that hu-
mans often favor accuracy over reward [12]–[14], and
alternative objective functions have been proposed to
account for this behavior.

For example, one can propose a modified reward
rate, weighted toward accuracy by additionally penal-
izing errors, as suggested by the proposal that human
subjects experience a competition between reward and
accuracy (COBRA) [13], [14]:

RA = RR −
q

Dtotal

ER ; (8)

here the factor q specifies the additional weight placed
on accuracy, and the characteristic time Dtotal is in-
cluded in the second factor, so that the units of both
terms in RA are consistent.

Maximizing RA as above we obtain a family of
OPCs parameterized by q:

RT

Dtotal

=
E − 2q −

√

E2 − 4q(E + 1)

2q
, (9)

where

E =

{

1

ER log
(

1−ER
ER

) +
1

1 − 2ER

}

. (10)

If rewards are monetary, one can also postulate a
situation in which errors are rewarded (albeit less lav-
ishly than correct reponses), or penalized by subtrac-
tion of previous winnings:

RRm =
(1 − ER) − qER

RT + Dtotal

(11)

This leads to the following OPC family:

RT

Dtotal

= (1+q)

{

1
ER − q

1−ER

log
(

1−ER
ER

) +
1 − q

1 − 2ER

}−1

.(12)

Both Eqns. (9) and (12) reduce to (7) for q = 0, as
expected. Fig. 2 shows an example of the second family
(12). Eqn. (9) gives a similar family, but the maxima
move leftwards with increasing q rather than rightwards
as in Fig. 2.

Both of these proposals involve a weight parameter
q, which will typically be subject-dependent, since dif-
ferent people may place a greater or lesser weight on ac-
curacy, even if they understand that a specific balance
is implied, as in Eqn. (12). Values of q should then
be fitted to indivduals or subgroups of subjects, and
the theory becomes descriptive rather than prescrip-
tive. We are currently assessing such theories against
our original behavioral data [11], and carrying out ad-
ditional experiments, but in Fig. 2 we show that an
average weight (= 0.62) may be assigned to the entire
group.
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Fig. 2 Optimal performance curves of (12) for the modified
reward rate function RRm of (11) with q varied in steps of 0.1
between −0.2 (lowest curve) and 0.8 (highest curve). The dashed
curve corresponds to q = 0 (Eqn. (7)) and the bold solid curve
to q = 0.62: the best fit to all the subjects in the study (white
bars). Error bars indicate standard error.

2. A biophysically-based neural model

The DD decision theory sketched above, based on the
SDE (1), is an example of a ‘high level’ cognitive model.
By themselves such models can be helpful in formal-
ising questions in cognitive psychology and brain sci-
ence more generally [15], but it is of course desirable
to connect them with biophysically detailed models of
the neural substrates involved in specific behaviors. We
now review a recent example of such a model, empha-
sising the mathematical ideas used to simplify it so that
analyses are possible.

As shown in [11], the DD process (1) can be derived
in suitable limits from artificial neural network (connec-
tionist) models of neural activity (see [16]–[18] and §3
below), which are in turn related to firing rate mod-
els that may be derived from biophysically-detailed,
spiking, ionic current equations [19], [20] describing sin-
gle cell activity, and “integrate-and-fire” simplifications
thereof [21]–[24].

We have begun studies of specific cortical neural
groups involved in the decision process, as well as oth-
ers that, via neurotransmitter release, are responsible
for control and attention selection. As described in the
forthcoming review paper [25], the brainstem nucleus
locus coeruleus (LC) plays an important role in the lat-
ter [26], [27], releasing norepinephrine (NE) widely in
the cortex when its cells fire action potentials. Direct
recordings in monkeys and pupillometry in humans re-
veal that the LC displays two operational modes: a
“tonic” state in which the baseline firing rate in the
absence of salient external stimuli is relatively high
and transient responses to stimuli are relatively small,
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and a “phasic” state in which baseline rates are lower
but transient responses significantly larger [25]. Tonic
modes are associated with poor performance on choice
tasks and phasic modes with good performance [27].
This has led to the proposition that, while average lev-
els of NE are important in tuning cortical circuits, the
transient dynamics also plays a major role [25].

We model LC with a heterogeneous set of single-
compartment, periodically spiking, ionic current neu-
rons, originally proposed by Connor et al. [28], and sub-
sequently reduced to a planar system by Rose and Hind-
marsh [29] by assuming that the fast currents are equi-
librated. Details of this specific case are given in [30];
here we describe the general strategy. Ionic current
models, pioneered by Hodgkin and Huxley [31] in their
Nobel Prize winning work, take the general form:

Cv̇ = Iion(v, w1, . . . , wN ) + Iext(t) , (13)

ẇi =
γi

τi(v)
(wi∞(v) − wi) ; i = 1, . . . , N , (14)

where Eqn. (13) describes the voltage dynamics, with C
denoting cell membrane capacitance, Iion the multiple
ionic currents, and Iext(t) synaptic and external inputs.
Eqns. (14) describe the dynamics of the gating variables
wi, each of which represents the fraction of open chan-
nels in the cell membrane that pass ions of type i, and
γi is a positive parameter. At steady state, gating vari-
ables approach voltage-dependent limits wi∞(v), usu-
ally described by sigmoidal functions [19], [20].

One can appeal to time scale separation to set fast
gating variables, for which γi/τi(v) is large, at their
equilibrium values, thereby eliminating the correspond-
ing variables wi. Similarly, very slow variables can be
taken constant in studying mid range dynamics. In this
way the relatively high (N + 1)-dimensional dynam-
ics of Eqns. (13-14) can be reduced to a phase space
spanned by v and a few mid-range wi’s. This proce-
dure may be justified via geometric singular perturba-
tion theory [32].

As noted, Rose and Hindmarsh [29] had already re-
duced the Connor model to two variables, v and a single
representative channel variable w. This planar system
may be further reduced to a one-dimensional oscilla-
tor via the phase response curve (PRC) method [33],
[34]. This reduction, which can also be applied in higher
dimensional cases and to more complex bursting neu-
rons [35], [36], relies on the existence of an attracting,
normally hyperbolic limit cycle Γ [37] (representing the
periodic spikes in isolation). One defines a non-uniform
“angular” coordinate φ along the limit cycle and com-
plementary “radial” coordinates that span isochronal
(= equal time or equal phase) surfaces transverse to
Γ and assumes that external inputs and coupling are
sufficiently weak that the original voltage and gating
variables can be written as functions v(φ), wi(φ), with
values determined by phase on the isolated limit cy-
cle. The isochronal foliation enables one to determine

 

 

a)

b)

Fig. 3 (a) Phase space structure for the two-variable Rose-
Hindmarsh model, showing attracting limit cycle and isochrons.
The thick dashed and dash-dotted lines are nullclines for v̇ = 0
and ẇ = 0, respectively, and squares show points on the per-
turbed limit cycle, equally spaced in time, under small constant
input current Iext. (b) PRCs for the Rose-Hindmarsh model:
asymptotic form z(φ) ∼ [1 − cos φ] shown solid, and numerical
computations dashed. Adapted from [30].

the effects of instantaneous (delta function), infinitesi-
mal perturbations in voltage due to external or synap-
tic inputs in terms of a single PRC function Z(φ) that
encodes the phase shift due to such a perturbation in
terms of the phase at which it is applied. This function
captures and summarizes much of the detailed ionic dy-
namics. Moreover, in cases in which the limit cycle Γ
is close to a bifurcation, analytical expressions for Z(φ)
in terms of parameters in the original equations (13-
14) can be derived [33], [38], [39]. Fig. 3 illustrates the
procedure for the Rose-Hindmarsh model.

Applied to a heterogeneous coupled LC network
subject to independent additive white noise in external
currents, this yields a set of SDEs each of the form:

dφi =



ωi + Z(φi)(I(t) +
∑

j

f(φi, φj))



 dt

+ σZ(φi)dW (t) + O(σ2) , (15)

where I(t) and f(φi, φj) denote inputs due to exter-
nal stimuli and from synaptic and electrotonic coupling
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Fig. 4 Peri-stimulus time histograms of LC activity for poor
(a) and good (c) performance periods during a target identifica-
tion task, taken from single neurons, averaged over ∼ 100 trials,
from [27]. Panels (b,d) show corresponding histograms computed
by simulating 100 Rose-Hindmarsh neurons (gray bars) and from
Fokker-Planck equation for (15) (solid curve), with analytical de-
cay bounds (dashed curve).

from other LC cells, and σdW (t) denotes a Wiener pro-
cess of variance σ. Note that all inputs are “filtered”
through the PRC Z(φi). See [30] for further details.

The probability density of phases, p(φ, t), for (15)
in the weakly-coupled limit may be found from the as-
sociated forward Kolmogorov or Fokker-Planck equa-
tion [9] and (semi-) analytical expressions derived for
the flux of phases through φ = φs = 0, corresponding
to the cell firing an action potential. This, in turn al-
lows us to compute average firing rates of (groups of)
LC cells in response to stereotyped stimuli representa-
tive of simple visual recognition tasks [27], [40]. Fitting
noise (σ) and oscillator frequency distributions P (ωi)
to interspike interval data in the absence of stimuli, we
may then compute firing rate histograms for compari-
son with experimental data.

Fig. 4 illustrates the main result of [30]: that the
magnitude of the transient response to stimulus, rel-
ative to baseline, is inversely proportional to baseline

spiking frequency of LC in the absence of stimuli. This
partially explains the correlations between low baseline
activity and strong phasic response on the one hand,
and higher baseline activity and lower response on the
other [25], [27].

These results, and others with different stimuli rep-
resenting more complex decision tasks [30] and differ-
ent neural models [39], show that analytically-tractable
reduced descriptions of neural groups can be derived
from biophysically detailed ion-channel models. A ma-
jor challenge is to assemble such groups into ‘global’
models of interacting brain mechanisms known to be ac-
tive in perception and decision-making, e.g. the medio-
temporal and lateral interparietal areas, superior col-
liculus and frontal eye fields (MT, LIP, SC, FEF), in-
volved in motion-detection and response saccades in
monkeys [6]–[8], and to integrate other brain areas such
as LC and thalamus. At the level of connectionist mod-
els, we have begun to study how gain changes such as
those due to the transient increases of LC spike rates
of Fig. 4 can affect cortical neurons. We briefly review
this before concluding the paper.

3. Optimal gain schedules

Neurophysiological studies have shown that, among
other actions, NE modulates cortical activity, making
neurons relatively more responsive to synaptic inputs
while decreasing their spontaneous (noisy) activity [41].
The resulting enhanced synaptic throughput was sim-
ulated in a connectionist network by increasing gain
(g(t), see below) [42]. This makes precise the conjec-
ture that LC activity influences cortical function [25],
and suggests how time-dependent gain effects may con-
tribute to improved performance, as we now describe.

A firing rate model for decision-making in 2AFC
takes the form:

dy1 =
[

−αy1 + fg(t) (−βy2 + a1(t))
]

dt

+ g(t)σ(t)dW1 , (16)

dy2 =
[

−αy2 + fg(t) (−βy1 + a2(t))
]

dt

+ g(t)σ(t)dW2 , (17)

where Wj are independent Weiner processes and the
function fg(t) relating firing rate to inputs is typically
sigmiodal:

fg(t)(x) =
1

1 + exp (−4g(t) (x − b))
, (18)

or piecewise-linear, being bounded above (by 1) and
below (by 0). Here we allow time-varying stimuli aj(t),
noise level σ(t) and gain g(t) (the maximum slope of
fg(t)) (cf. [16], [17]).

If decay (leak) α and/or inhibition β are large,
then (16-17) has a one-dimensional stochastic slow
manifold [43] that attracts solutions in a probabilis-
tic sense. Moreover, linearizing (18) at the point of
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Fig. 5 Comparison of optimal gain theory with empirical data
for a target detection task. (a) Optimal gain schedules for the
firing rate model, with a processing time lag of 0.1 sec following
sensory cue and signal that rises from 0 with constant noise, as
shown in (b). (c) The corresponding optimal time course of LC
firing rate. (d) Histogram of LC firing rates recorded in monkey
during good performance, from [27].

maximum slope and subtracting (17) from (16) yields
a scalar Ornstein-Uhlenbeck (OU) process for the dif-
ference x = y1 − y2 in firing rates:

dx = (λx + g(t)a)dt + g(t)σdW , (19)

where λ = g(t)β − α and a = a1 − a2. If g is constant
and the network is balanced in that leak rate equals
inhibition (λ = 0), Eqn. (19) reduces to the DD SDE
(1) with a = a1 − a2. In this case a balanced firing
rate model with constant SNR closely approximates the
optimal DD decision-maker [11], [18].

The SPRT optimality theory assumes that the two
distributions from which samples are drawn are station-
ary: effectively, that a and σ are constant in (1). In
practice, visual and other stimuli may vary on fast time
scales, so that one is faced with decoding a signal that
waxes and wanes during the decision process. In [18]
we address this problem of varying SNR and, using
the linearised one-dimensional OU SDE (19) with time-
dependent coefficients a(t) and σ(t), we develop general
expressions for optimal multiplicative gain schedules
g(t). These implement the matched filter strategy of
signal processing [44]. We compute optimal gs for spe-
cific simple cases of stimuli that rise both slowly and
rapidly and, using a linear model of norepinephrine re-

lease as a function of LC firing rate, we find that the
transient LC firing rates thus predicited are qualita-
tively similar to experimental PSTH records such as
those of Fig. 4. See Fig. 5. This lends further support
to the hypothesis that LC activity, triggered by the ar-
rival of salient stimuli in cortical decision areas, can
tune those areas (as well as motor areas) to improve
accuracy and speed responses [25].

4. Conclusion

We have reviewed recent work in modeling neural and
behavioral responses to stimuli at both the level of bio-
physical detail, beginning with ion channel models of
Hodgkin-Huxley type, and at that of abstracted “higher
level” connectionist and drift-diffusion SDEs. While
numerous gaps remain between models at these dis-
parate spatial and temporal scales, we believe that the
general outlines of an integrated theory of neural func-
tion in simple decision-making tasks are beginning to
emerge.
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