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Fig. 9.3: The instantaneous firing intensity extracted from experiments can be fitted by an
exponential escape rate. A. A real neuron is driven by a time-dependent input current (top)



Fig. 9.3: The instantaneous firing intensity extracted from experiments can be fitted by an
exponential escape rate. A. A real neuron is driven by a time-dependent input current (top)
generating a fluctuating voltage with occasional spikes (middle), which are repeated with high
precision, but not perfectly, across several trials (bottom). B. The black histogram (very small) shows
the number of times (bin count, vertical axis) that the model voltage calculated from Eq. (9.1) falls in
the bin iy — 9 (horizontal axis) and the real neuron fires. Gray histogram indicates distribution of
voltage when the real neuron does not fire. The ratio (black/black plus gray) in each bin gives the
firing probability P, (1 — 9) (open circles, probability scale on the right) which can be fitted by Eq.

(9.8) using an exponential escape rate (solid line), f (u — 9) = L exp[ﬂ (u — Q)] with a steepness
of f = (4 mV)” ' and a mean latency at threshold of 70 = 19 ms From Jolivet et al. 2006.
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Fig. 11.12: Decoding hand velocity from spiking activity in area Ml of cortex. A Schematics. B. The
real hand velocity (thin black line) is compared to the decoded velocity (thick black line) for the x—
(top) and the y—components (bottom). Modified from Truccolo et al. (521).
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What’s role of coupling / correlations?
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What'’s role of coupling / correlations? Decoding
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p(s) is multiplied by the model-defined likelihood p(r|s) to obtain the

posterior p(s|r).

preserves 20% more information than the uncoupled model, which indicates
that there is additional sensory information available from the population
response when correlations are taken into account. Error bars show 95%



