Reduction of neurons to phases

[Coddington and Levinson, 1955, Winfree, 1974, Guckenheimer, 1985]

In nbhd. of limit cycle, define variable $\frac{d\theta}{dt} = \omega$ along trajectories, where $\omega = \frac{2\pi}{T}$

nbhd.

Strategy: start on limit cycle itself, where say $V(\theta)=V(\omega t)$.

Then define level sets of θ with same "asymptotic phase" on limit cycle

Following Brown, Moehlis, Holmes Neural Comp 04

Finding $z(\theta)$.

limit cycle

level sets of

 $\theta(V,q)$

$$z(heta) = \lim_{\Delta V o 0} rac{\Delta heta}{\Delta V}$$

 $\partial \theta$

 ∂V

 $\Delta \theta$

standard way to calculate partial deriv. -- must know $\theta(x)$ in nbhd. of lim cycle.

Glass and Mackey, Winfree, Ermentrout and Kopell, Izhikevich, Park and Kim, and others

BUT! Easier to wait and measure $\Delta \theta$ as difference in asym. phase

Calculating the phase response curve:

- Perturb an uncoupled neuron with a brief voltage stimulus ΔV at different times in its cycle, parameterized by θ
- Measure the resulting phase-shift $\Delta \theta$ with respect to the unperturbed system

For Hodgkin-Huxley neurons with $I = 10 \mu A/cm^2$:

$$|z(\theta)| = \lim_{\Delta V \to 0} \frac{\Delta \theta}{\Delta V}$$

Have phase dynamics ... that you could directly derive from the laboratory ! Glass and Mackey, Winfree

$$\frac{d\theta}{dt} = \omega + z(\theta) \times \begin{bmatrix} I_{syn}(t) \end{bmatrix}$$
natural frequency
phase response curve
(phase sensitivity curve)
$$z(\theta) = \lim_{\Delta V \to 0} \frac{\Delta \theta}{\Delta V}$$

$$\pi \qquad \theta \qquad fire \\ \theta = 0$$

Phase response curves for different neurons look very different!

Following Brown, Moehlis, Holmes Neural Comp 04

These differences follow from the underlying normal forms

Phase response curves for normal form neuron models

 $k(1 - cos(\theta))$

 $k_1 sin(\theta - k_2)$

Use phase response curves to study synchrony in "network" of two coupled neurons

The Hodgkin-Huxley model

Moral: "Fast" excitatory coupling can synchronize HH neurons ...

Analyze via Poincare map between firing times of θ_1

Phase-difference map $\theta_{12} = \theta_1 - \theta_2$

 $\theta_{12}(n+1) = \theta_{12}(n) + h \{ z(\theta_{12}(n)) - z(-\theta_{12}(n)) \} + \mathcal{O}(h^2)$

E.g., for HH neuron, $z(\theta) \sim -\sin(\theta)$, so

 $\theta_{12}(n+1) \approx \theta_{12}(n) - 2h\sin(\theta_{12})$

_Let's try (as our last example)

Very common in neural models ...

The "Hodgkin Huxley plus A current" model

$$\frac{d\theta_1}{dt} = \omega + h * z(\theta_1)\delta(t - t_2^j)$$
$$\frac{d\theta_2}{dt} = \omega + h * z(\theta_2)\delta(t - t_1^j)$$

Moral: Excitatory coupling actually DEsynchronizes HH neurons with A currents Stable "anti-synchronized" state However, inhibition *does* synchronize ... "When inhibition, not excitation,

synchronizes..." Van Vreeswijk et al 1995