Generalized Leaky Integrate-and-Fire Model

Building blocks of models for cortical computation

Stefan Mihalas

Assistant Investigator

Affiliate Assistant Professor

Lecture plan

- 1. Motivation: why we study mouse cortex
- 2. Single neuron models: From dynamical systems to hybrid systems
- 3. Generalized leaky integrate-and-fire model
- 4. Fitting GLIF models
- 5. Cell classification using GLIF models

1. Why study cortex?

Cerebral cortex can vary in size

Fueling Discovery

Cerebral cortex can vary in size

Perrenoud, 2012

But the basic microstructure is very similar across areas

And across species

Hill and Walsh, Nature 2005

Cortical column computations

Hope:

- Cortical columns implement canonical computations
- The function of the cortex arises from a hierarchical organization of such computations

Constructing minimalistic models which reproduce a desired function

for BRAIN SCIEN Fueling Discovery Mesoscopic models

Long term goal: Integrate models across scales into a model of cortical computation in the mouse visual system

Activity in local circuits

Mesoscopic models

In Vitro single neuron models

Single neuron activity

2. Why spiking models?

• Time scale separation of the subthreshold vs spiking dynamics

• Spikes are stereotyped

Fueling Discovery

11

3. Generalized Leaky Integrate and Fire Models

Corinne Teeter, Stefan Mihalas ¹²

Leaky Integrate and Fire Models

LIF with reset rules

LIF with after-spike currents - optimization

LIF with after-spike currents

LIF with after-spike currents and voltage dependent threshold

Dynamics: between spikes

$$I'_{j}(t) = -k_{j}I_{j}(t); \ j = 1, ..., N$$
$$V'(t) = \frac{1}{C} \left(I_{e}(t) + \sum_{j} I_{j}(t) - G(V(t) - E_{L}) \right)$$
$$\Theta'_{s}(t) = -b_{s}\Theta_{s}(t)$$

LIF with after-spike currents and voltage dependent threshold

LIF with after-spike currents spiking and voltage dependent threshold

Dynamics: between spikes

 $I'_{j}(t) = -k_{j}I_{j}(t); \ j = 1, \dots, N$ $V'(t) = \frac{1}{C} \left(I_{e}(t) + \sum_{j} I_{j}(t) - G\left(V(t) - E_{L}\right) \right)$ $\Theta'_{s}(t) = -b_{s}\Theta_{s}(t)$ $\Theta'_{v}(t) = a(V(t) - E_{L}) - b_{v}(\Theta_{v}(t) - \Theta_{\infty})$

Reset: if $V(t) > \Theta_v(t) + \Theta_s(t)$ $I_j(t_+) \leftarrow f_j \times I_j(t_-) + \delta I_j$ $V(t_+) \leftarrow E_L + f_v \times (V(t_-) - E_L) - \delta V$ $\Theta_v(t_-) \leftarrow \Theta_v(t_-) + \delta \Theta$

$$\Theta_s(t_+) \leftarrow \Theta_s(t_+) + \delta \Theta_s$$
$$\Theta_v(t_+) \leftarrow \Theta_v(t_-)$$

LIF with after-spike currents spiking and voltage dependent threshold

4. Allen Cell Types Database

Jim Berg, Hongkui Zeng

alleninstitute.org | brain-map.org

Excitatory layer 2/3/4 layer 4 layer 4 layer 4 ing starting the neurons Cux2-CreERT2 Nr5a1-Cre Scnn1a-Tg3-Cre **Rorb-IRES2-Cre** layer 6 pan-excitatory layer 5 Genetic **Markers via Cre Lines** SIc17a6-IRES-Cre Rbp4-Cre **Ntsr1-Cre** Inhibitory neurons Pvalb-2A-Flpo; Slc32a1-IRES-Cre Vip-IRES-Cre Sst-IRES-Cre pan-inhibitory

Calb2-IRES-Cre

Gad2-IRES-Cre

Nos1-CreERT2

Julie Harris

Electrophysiology Protocol

Leaky Integrate and Fire Models - optimization

LIF with reset rules - optimization

LIF R ASC AT - optimization

LIF R ASC AT – optimization Maximum likelihood based on internal noise (MLIN)

Generalized Leaky Integrate and Fire Models

Average explained variance

- Glif 5: 75% excitatory 84% for inhibitory
- Biophysical perisomatic 65%
- Biophysical all-active 69%

Defining cell types based on models

Single Cell Type Models Conclusion

- A large diversity of neurons can be characterized and modeled
- GLIF models still outperform detailed biophysical ones due to individual recording length limitation
- Parameters in GLIF models can be used to classify cell types
- visit our website: <u>http://www.brain-map.org/</u>

