
From Spiking Neuron Models to Linear-Nonlinear Models
Srdjan Ostojic1,2*, Nicolas Brunel3

1Center for Theoretical Neuroscience, Columbia University, New York, New York, United States of America, 2 Laboratoire de Physique Statistique, CNRS, Université Pierre
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Abstract

Neurons transform time-varying inputs into action potentials emitted stochastically at a time dependent rate. The mapping
from current input to output firing rate is often represented with the help of phenomenological models such as the linear-
nonlinear (LN) cascade, in which the output firing rate is estimated by applying to the input successively a linear temporal
filter and a static non-linear transformation. These simplified models leave out the biophysical details of action potential
generation. It is not a priori clear to which extent the input-output mapping of biophysically more realistic, spiking neuron
models can be reduced to a simple linear-nonlinear cascade. Here we investigate this question for the leaky integrate-and-
fire (LIF), exponential integrate-and-fire (EIF) and conductance-based Wang-Buzsáki models in presence of background
synaptic activity. We exploit available analytic results for these models to determine the corresponding linear filter and static
non-linearity in a parameter-free form. We show that the obtained functions are identical to the linear filter and static non-
linearity determined using standard reverse correlation analysis. We then quantitatively compare the output of the
corresponding linear-nonlinear cascade with numerical simulations of spiking neurons, systematically varying the
parameters of input signal and background noise. We find that the LN cascade provides accurate estimates of the firing
rates of spiking neurons in most of parameter space. For the EIF and Wang-Buzsáki models, we show that the LN cascade
can be reduced to a firing rate model, the timescale of which we determine analytically. Finally we introduce an adaptive
timescale rate model in which the timescale of the linear filter depends on the instantaneous firing rate. This model leads to
highly accurate estimates of instantaneous firing rates.
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Introduction

Neurons encode stimuli by emitting trains of actions potentials
in response to sensory inputs. To uncover the corresponding
neural code, the mapping between sensory inputs and output
action potentials needs to be described with the help of a
quantitative model [1]. In the recent years, generalized linear
models have become a popular class of models for that purpose
[2–4]. The most basic version of these models is the linear-
nonlinear (LN) cascade, in which the instantaneous firing rate of
the neuron is estimated by applying to the sensory signal
successively a linear temporal filter and a static non-linear
function. Phenomenological models of that kind are attractive
because they are simple and efficient, and yet allow for enough
freedom to fit experimental data. A drawback of this approach is
however a lack of a direct relationship between the parameters of a
LN cascade and the underlying biophysics, and it has been
debated to what extent such descriptions capture the temporal
dynamics of spike trains of real neurons [5,6].
In more detailed models of the neural input-output mapping,

membrane potential dynamics play the role of the intermediate
between input currents and output action potentials [7]. While
more biophysically faithful than linear-nonlinear models, these
spiking neuron models are also significantly more complex and a
significant amount of effort has been invested in reducing the

dynamics of populations of spiking neurons to an effective
mapping between their input and the output firing rate [8–17].
In the firing rate models (see [18] chapter 7.2 and [7] chapter 6),
the input-output mapping of individual units is essentially a linear-
nonlinear cascade, the linear filter being usually a simple
exponential. Hence the two problems of relating a LN cascade
to biophysical parameters and representing dynamics of spiking
neurons by a firing rate model are very closely related.
In this communication, we examine to what extent a linear-

nonlinear cascade can quantitatively reproduce the firing rate
dynamics of spiking neuron models. To this end, we exploit known
analytic results for integrate-and-fire models to obtain parameter-
free expressions for the linear filter and static non-linearity. We
then compare quantitatively the estimates of instantaneous firing
rates obtained from various LN models with results from
simulations of spiking neurons. For both the leaky integrate-and-
fire (LIF) and exponential integrate-and-fire (EIF) models, in most
of parameters space we find a good match between the estimate
and the simulation results. In the case of the EIF, we show that a
single exponential provides a good approximation for the linear
filter, so that the LN cascade reduces to a firing rate model, the
time constant of which we compute analytically. We then
introduce an adaptive timescale rate model in which the decay time
of the linear filter depends on the instantaneous firing rate, and
show that this model provides a significant improvement with
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respect to both the basic rate model and the LN cascade. Finally,
we examine a conductance-based spiking neuron and find that in
this case also the adaptive timescale rate model provides an
excellent description of firing rate dynamics.

Results

We model a typical setup in which a given stimulus is repeatedly
applied to a preparation, and action potentials of a neuron are
recorded over many trials. We represent this neuron as a spiking
neuron (either integrate-and-fire or conductance based) receiving a
time-varying input. Here we consider only the case of input
current, but our results could be easily extended to an input
conductance. This current is assumed to consist of a sum of two
components: an input signal, i.e. a time-varying input that is
identical in all trials, and a background noise that is uncorrelated from
trial to trial. The input signal can be interpreted as a feed-forward
input from sensory pathways responding reliably to a stimulus
which is identically repeated over trials, while the noise component
represents the background activity of the surrounding network and
inputs from other areas not directly controlled by the stimulus.
Because of the noise, the spiking output varies from trial to trial.
We therefore represent the output by its Peri-Stimulus Time
Histogram (PSTH), i.e. the time dependent firing rate of the
neuron [1], where the instantaneous firing rate is obtained by
averaging over trials (see Fig. 1 and Materials and Methods).
Equivalently, the PSTH can be interpreted as the firing rate of a
large population of uncoupled neurons that all receive an identical
input signal as well as background noise that is uncorrelated from
neuron to neuron.
Our aim is to examine the extent to which the mapping between

the input signal and the output firing rate can be approximated by
a linear-nonlinear (LN) cascade consisting of two steps: (i) a linear
temporal filter applied to the input signal; (ii) a static non-linear
function applied to obtain the instantaneous firing rate (see Fig. 1).
A standard method for determining the elements of a LN cascade
is to use reverse correlations [19,20], i.e. apply a signal with white-
noise temporal statistics, compute the spike triggered average of

the signal, which corresponds to the linear filter, and then
determine the associated static non-linear function. Here we use a
different approach: we exploit the known analytic results for
integrate-and-fire neurons to infer the linear filter and the static
non-linearity for particular limits of parameter values. Extending
these expressions to the whole parameter space, we obtain the
linear filter and static non-linearity in a parameter-free form. We
then systematically assess the accuracy of the corresponding LN
cascade by comparing its predictions for the firing rate with
numerical simulations of spiking neurons.
To limit the available parameter space, we assume that the

temporal statistics of the noise input are Gaussian with mean I0,
standard deviation s and no temporal correlation (white noise),
while the temporal statistics of the signal input are Gaussian with
zero mean, standard deviation Is (which we refer to as the amplitude
of the signal), and correlation time ts (colored noise). Because of
background noise, in absence of signal (Is~0), the neuron is not
silent, but fires at a baseline rate r0 determined by I0 and s. In this
study, instead of varying I0, we vary r0, which is equivalent since
all model neurons considered in this paper have continuous and
monotonically increasing f -I curves.. The parameter space that we
explore is thus four-dimensional and consists of r0, s, Is and ts.

Determining the elements of the LN cascade
We wish to approximate the trial-averaged firing rate r(t) of the

neuron using a linear-nonlinear cascade:

r(t)~F (D ! s(t)) ð1Þ

where s is the signal input, D is a temporal linear filter, F is a static

non-linearity, and D ! s(t)~
Ð?
0 dtD(t)s(t{t) is the convolution

between D and s. Moreover, s(t)~Isn(t), where n(t) is a Gaussian
process of zero mean, unit variance and correlation time ts.
The LN approximation of firing rate dynamics becomes exact

in two extreme cases: (i) the linear limit of vanishing signal
amplitude Is?0; (ii) the adiabatic limit of very long signal
correlation time, ts??. We first determine the linear filter D and
the static non-linearity F in these two limits. To extend the
obtained expressions to the full parameter space, we simply set the
linear filter D and the static non-linearity F to be independent of
the input parameters Is and ts, in which case the linear and
adiabatic limits fully determine D and F . In this section we
describe the general approach, which we later apply to specific
neural models.

Linear filter. For a signal of vanishing amplitude Is, the
variation of the firing rate r(t) around the baseline firing rate r0 is
small. Expanding Eq. (1) to linear order, the LN model reduces to

r(t)~F (0)zF ’(0)IsD ! n(t) ð2Þ

where F (0)~r0.
On the other hand, in the linear limit the firing rate of the

spiking neuron is given by

r(t)~r0zIsRn ! n(t) ð3Þ

where Rn(t) is the so-called rate response function of the neuron in
presence of white noise [12,21–23]. The Fourier transform of Rn(t)
can be computed analytically for the leaky integrate-and-fire model
[12,24,25], and for the exponential integrate-and-fire model an
efficient numerical method has been designed to determine Rn(t)
from the Fokker-Planck equation [26]. For completeness, the
analytic derivation for the LIF is included in the Appendix.

Author Summary

Deciphering the encoding of information in the brain
implies understanding how individual neurons emit action
potentials (APs) in response to time-varying stimuli. This
task is made difficult by two facts: (i) although the
biophysics of AP generation are well understood, the
dynamics of the membrane potential in response to a
time-varying input are highly complex; (ii) the firing of APs
in response to a given stimulus is inherently stochastic as
only a fraction of the inputs to a neuron are directly
controlled by the stimulus, the remaining being due to the
fluctuating activity of the surrounding network. As a result,
the input-output transform of individual neurons is often
represented with the help of simplified phenomenological
models that do not take into account the biophysical
details. In this study, we directly relate a class of such
phenomenological models, the so called linear-nonlinear
models, with more biophysically detailed spiking neuron
models. We provide a quantitative mapping between the
two classes of models, and show that the linear-nonlinear
models provide a good approximation of the input-output
transform of spiking neurons, as long as the fluctuating
inputs from the surrounding network are not exceedingly
weak.

From Spiking Neurons to Linear-Nonlinear Models
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Comparing Eqs. (2) and (3), it is straightforward to identify
F ’(0)D(t) and Rn(t). Note that Rn(t) depends on the properties of
background noise through r0 and s.

Static non-linearity. In the limit ts??, the input signal
varies on a timescale that is much longer than the timescale of the
linear filter, so that D ! n(t)~D0n(t), where D0~

Ð?
0 dtD(t), and

in the LN approximation

r(t)~F (D0s(t)): ð4Þ

In the same limit, as the input signal varies slowly, at each point
in time the neuron effectively receives a white noise input of mean
I0zs(t) and standard deviation s. The response to such an input
is given by the so-called f{I or transfer function W :

r(t)~W(I0zs(t)) ð5Þ

The transfer function for the LIF and EIF models receiving
white noise is known analytically [27]. For the EIF an efficient
numerical method has been designed to determine W from the
Fokker-Planck equation [26]. In both cases, the shape of W
depends on the standard deviation s of background noise.

Comparing Eqs. (4) and (5) leads to the following identification:

F (L)~W(I0zL=D0): ð6Þ

Extension to the full parameter space. For finite signal
amplitude Is and correlation time ts, the LN cascade does not
provide an exact description of firing rate dynamics, but only an
approximation. Here we choose the linear filter D and the static
non-linearity F to be independent of the parameters of the signal
Is and ts. In that case, the two limits Is?0 and ts?? determine
D and F uniquely, up to multiplicative constants D0 and F ’(0).
From Eq. (6), these two constants are constrained by
F ’(0)D0~W’(I0). As the two constants enter the LN model only
as a product, without loss of generality we set F ’(0)~1, so that
D0~W’(I0). We therefore get:

D(t)~Rn(t) ð7Þ

F (L)~W(I0zL=W’(I0)) ð8Þ

where W is the transfer function and Rn is the rate response
function of the neuron. The units of D(t) are Hz/mV, so that
D ! s(t) is the linear estimate of the firing rate in Hertz.

Figure 1. Comparing the input-output mapping of a spiking neuron to a linear-nonlinear cascade. A: A spiking neuron receives an input
current consisting of a signal component that is identical in all trials and a noise component that is uncorrelated from trial to trial. Averaging trains of
action potentials across trials gives a time-dependent output firing rate. B: Our aim is to obtain an estimate of the output firing rate by applying to
the input signal a linear temporal filter followed by a static non-linearity. C: Illustration in the case of an exponential integrate-and-fire model. From
top to bottom: input signal; raster plot of action potentials in a subset of 200 trials; comparison between the instantaneous firing rate and the output
of the linear non-linear model.
doi:10.1371/journal.pcbi.1001056.g001
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Leaky integrate-and-fire neurons
We start by examining the leaky integrate-and-fire (LIF) model

[28], in which action potentials are generated when the
membrane potential crosses a fixed threshold value, the dynamics
of the membrane potential being governed only by a leak current.
Despite its apparent simplicity, this model is capable of
reproducing quantitatively the transfer function of neocortical
pyramidal cells in presence of in vivo like noisy inputs [29]. The
LIF model has been studied extensively [30–32], and a number of
analytic results are available for it. We first describe the linear
filter and static non-linearity for the LIF model, and then assess
the accuracy of the LN approximation for the input-output
mapping.

Linear filter. As we set the linear filter D of our LN cascade
to be independent of input parameters, D is given by the rate-
response function of the model neuron. For the LIF model, the
rate response function to oscillatory inputs in presence of white
noise has been studied in [12,24]. Its analytical expression is
known in frequency (see Materials and Methods Eq. (31)), and we
use the Fast Fourier Transform to obtain the values in time, as in
[33]. The derivation of the rate response function is included in
the Appendix. Some analytic results for D(t) have been obtained
for the limit t?0 [34,35]. In particular, in that limit, D(t) diverges
as t{1=2, so that the LIF model is capable of responding very
quickly to changes in the input signal.
Background noise strongly modulates the response of the

neuron [36,37], so that both the timecourse and amplitude of
the linear filter D(t) for tw0 depend on the mean I0 and standard
deviation s of the background noise, as shown in Fig. 2.

For strong background noise, D(t) is a monotonically decreasing
function, the decay time being of the order of a couple of
milliseconds. This decay time depends on the mean I0 of the
background noise, or equivalently the baseline firing rate r0 of the
neuron [33]. For r0?0, D(t) becomes proportional to the sub-
threshold filter exp ({t=tm) (this result was not reported in
previous works, see Materials and Methods for the derivation), the
decay time of D(t) is thus given by the membrane time constant
(10 ms in our case). As r0 is increased, the decay time decreases, so
that it is always faster than tm.
For weak background noise, D(t) displays oscillations, at a

frequency approximately given by the baseline firing rate r0 (see
Fig. 2). The decay time of D(t) in this case is much longer (of the
order of tens to hundreds of milliseconds), and it increases as the
standard deviation s of background noise is decreased.
The amplitude of the linear filter approximately scales as the

inverse of the standard deviation s of background noise, so that
the amplitude of the firing rate modulation in response to an input
signal of a given amplitude Is strongly depends on the amplitude of
background noise.
It is interesting to compare the analytic linear filter D(t) with

linear filters obtained numerically using reverse correlations
analysis. In the simulations, we inject an input signal s(t) with
very short correlation time (ts~1 ms), and various amplitudes Is,
as well as a background noise of mean I0 and standard deviation s.
The numerical linear filter is then obtained by computing the
spike-triggered average of s(t) only. As shown in Fig. 2, our
analytic filter matches well the numerical STAs, in absence of any
fitting parameter. While this was expected for small Is, the match

Figure 2. Linear filter and static non-linearity for the leaky integrate-and fire neuron, for three different sets of parameters for
background noise. A: Analytic filter compared with the numerical spike triggered averages of the input signal, for three different amplitudes Is of
the signal. The correlation time ts of the signal was set to 1 ms. B: Analytic non-linearity, compared with numerically estimated non-linearities for
three different values of the correlation time ts of the signal. The green area corresponds to deviations of one standard deviation around the mean
for ts~5 ms (green curve). The horizontal dotted line indicates the value of the baseline firing rate r0 while the dashed line represents the tangent of
unit slope. Going from left to right in the columns the parameters characterizing the background noise are: (i) r0~5 Hz, s~4 mV; (ii) r0~30 Hz,
s~6 mV (iii) r0~30 Hz, s~0:5 mV.
doi:10.1371/journal.pcbi.1001056.g002
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is good for any value of Is. This fact, observed previously in [38],
supports our choice of a linear filter independent of Is.

Non-linearity. The analytic derivation of the transfer
function W of the LIF in presence of white noise can be found
in [27], and the expression is reproduced in Materials and
Methods Eq. (27). For weak noise, W exhibits a sharp threshold,
above which it is concave. As the standard deviation of noise is
increased, the threshold is replaced by an inflexion point.
The static non-linearity F is obtained by rescaling the transfer

functionW of the neuron, in such a way that the firing rate at the origin
is equal to the baseline firing rate r0, and the slope is unity (see Eq. (8)).
As shown in Fig. 2, depending on whether r0 lies in the convex or
concave region ofW, the non-linear function F is either super-linear or
sub-linear. Depending on the parameters of background noise, F can
thus display qualitatively different behaviors.
To compare our static non-linear function F with the static non-

linearity that would be obtained using a reverse correlation
analysis, we follow the standard method [18]: we first compute the
linear estimate L(t) of the instantaneous firing rate (in bins of
1 ms); for each bin, we then compare the linear estimate with the
actual firing rate obtained from simulations. For a given value of
L, there is a distribution of actual firing rates. The numerical non-
linearity is given by the average of this distribution as function of
L. The width of the distribution, which can be significant, is not
due to statistical noise in the data, but rather to the limitations of
the LN model, as this distribution corresponds to variations in the
output firing rate that cannot be accounted for by a linear-
nonlinear transformation of the signal. In Fig. 2, the numerical
non-linearities are compared with the non-linear function F
obtained from the transfer function, for different values of the
signal correlation time ts. While a good match is expected for very
large ts, F is close to the reverse-correlation estimates even for
small ts. This observation supports our choice of F independent of
the signal correlation time ts.

Accuracy of the LN approximation for the rate
dynamics. Once the linear filter and the static non-linearity
are determined, we are in position to compare the estimate of the
instantaneous firing rate provided by the LN cascade with the
actual, numerically determined firing rates for different points in
parameter space.
Fig. 3 A illustrates the comparison between the numerical

PSTH and three different approximations: (i) the linear approx-
imation, in which only the linear filter is applied to the signal; (ii)
the nonlinear approximation, in which only the static non-linearity
F is applied to the signal; (iii) the full LN cascade. The main
qualitative differences between the three approximations can be
clearly seen in Fig. 3 A. In the linear approximation, the firing
rates can take negative values; applying subsequently the non-
linearity corrects for this, and further amplifies or attenuates the
firing rates depending on whether the non-linearity is super-
threshold or sub-threshold. In the purely non-linear approxima-
tion, the firing rate depends only on the instantaneous value of the
signal, so that the firing rate fluctuates too fast compared to the
PSTH. Applying a linear filter corrects for that. Note that in this
example, Is is large enough, and ts short enough, so that the
instantaneous firing rate has very large fluctuations (between 0 and
100Hz) on fast time scales. Thus, we are far from the parameter
ranges where one would expect the approximations made to
derive filter and non-linearity to hold.
The degree to which various approximations match the

numerical PSTH clearly depends on the parameters of the input
signal and background noise. To get a quantitative comparison,
we computed the Pearson’s correlation coefficient r between the
estimates and the numerical PSTH, as well as the root mean

square (RMS) distance d between both, for various values of the
parameters (see Methods for pros and cons of the two measures).
The correlation coefficient is 1 in case the two traces are identical,
and 0 in case the traces are fully uncorrelated, the precise value
depending only on the temporal dynamics of the traces and not on
their mean and standard deviation. To interpret the measured
values of r, we also compute the correlation between the signal
and the PSTH, which corresponds to the performance of an
estimate of the firing rate obtained by simply rescaling the mean
and variance of the signal. For example, in Fig. 3A, the correlation
between signal and PSTH is 0.78 (corresponding to d*14Hz)
while the correlation between the LN model and the PSTH is 0.92
(d*8Hz). This means that in this example, values of r of order 0.8
correspond to poor approximations of the PSTH, while values of
order 0.9 or more represent significant improvements compared to
a trivial rescaling of the signal.
Fig. 3 displays the performance of different models as the

amplitude Is of the signal is increased, the other parameters being
held constant. For Is?0, the linear and LN models become
identical. In that limit, the correlation coefficient r between the
models and the PSTH approaches 1, but does not strictly reach
this limit because of statistical fluctuations in the data: for Is small,
the signal-induced variations in the output firing rate are small,
and become comparable to the fluctuations in the numerical
PSTH that are due to the finite number of trials used for
averaging.
As Is is increased, large values of the input signal lead to

increasingly precise and reliable emission of action potentials. As a
consequence, the variations of the output firing rate become
larger, and the non-linearity plays an increasingly important role.
The accuracy of the LN model progressively deteriorates, but r
remains above 0:9 far into the non-linear regime. As an
illustration, Figs. 3 A and C display the comparison between the
LN estimates and the numerical PSTHS for two values of input
signal amplitude Is, all other parameters being identical. The
accuracy of the purely non-linear model is approximately
independent of Is, but relatively low (r&0:8). It is only in the
limit of very strong signal amplitude that the accuracy of the non-
linear model becomes comparable to the LN model.
The correlation between the signal and the output increases as

the correlation time of the signal is increased (Fig. 3). In parallel,
the accuracy of the LN model also increases, but to a relatively
smaller degree.
Although the non-linear filter and static non-linearity depend on

the parameters of background noise (see Fig. 2), the performance
of the model varies weakly with the baseline firing rate r0 and
noise amplitude s. The main exception is the limit of small s in
which none of the models significantly improves over the
correlation between the signal and the output (see Fig. 3 B for
an illustration). The reason for this is that for weak noise D(t)
displays oscillations at long timescales: the input signal at a given
time influences the output rate on a range of different timescales,
and the non-linear interferences between these timescales are not
well described by a linear-nonlinear cascade. However, the LN
approximation performs well already for sw2 mV, the correlation
coefficient between the LN estimate and the PSTH being larger
than 0:9. This correlation coefficient further increases with
increasing s, while it appears to be independent of the baseline
firing rate r0.
In summary, the linear-nonlinear model of input-output

mapping provides a good approximation of the firing rate
dynamics for most of the parameter space, two notable exceptions
being the limit of weak background noise (s?0) and the limit of
very large input signal (Is&1).

From Spiking Neurons to Linear-Nonlinear Models
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Figure 3. Comparison between estimates of the firing rate and numerical simulations, for the leaky integrate-and-fire model. A:
Illustration for a given set of parameters (r0~5 Hz, s~6 mV, Is~3:3 mV, ts~5 ms). From top to bottom: input signal trace; raster of action
potentials in a subset of 200 trials; comparison between the numerical PSTH (black) and the linear, LN, and nonlinear estimates. B: Comparison
between PSTH and LN estimate at low noise (r0~30 Hz, s~0:5 mV, Is~0:4 mV, ts~5 mV). C: Comparison between PSTH and LN estimate at very
strong input signal (r0~5 Hz, s~6 mV, Is~6:5 mV, ts~5 mV). In panels A–C, the values of r and d indicate respectively the correlation coefficiant
and root-mean-square distance between the predicted firing rate and the numerical PSTH. D: Correlation coefficient between the numerical PSTH
and various estimates as the amplitude Is and correlation time ts of the signal are varied, for fixed background noise parameters (r0~5 Hz and
s~6 mV). From left to right: (i) Is is varied for ts~5 ms; (ii) ts is varied for Is~5 mV; (iii) Is is varied for three increasing values of ts (ts~1,5 and
10 ms), shown with curves of increasing darkness. E: Correlation coefficient between the numerical PSTH and various estimates as the baseline firing
rate r0 and the amplitude s of the noise input are varied, for input signal parameters ts~5 ms and Is~0:5s. From left to right: (i) s is varied for
r0~10 Hz; (ii) r0 is varied for s~6 mV; (iii) data for four increasing values of r0 (r0~5,15,25 and 35 Hz) is shown with curves of increasing darkness.
doi:10.1371/journal.pcbi.1001056.g003
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Exponential integrate-and-fire neurons
The exponential integrate-and-fire (EIF) model [21] is a

generalized integrate-and-fire model in which the action potentials
are generated by an exponential current instead of a fixed
threshold. It is the simplest model capable of reproducing
membrane potential dynamics and action potential times of
cortical neurons in presence of a noisy input, and it has been used
to successfully fit data from layer 5 pyramidal cells [39],
interneurons [40] as well as cerebellar Purkinje cells [41]. In this
section, we examine an EIF neuron with parameters correspond-
ing to pyramidal cells (see Materials and Methods).

LN cascade. The linear filterD(t) and the static non-linearity F
for the EIF model are qualitatively similar to the LIF model, a crucial
difference being that for the EIFmodelD(t) remains finite in the limit
t?0, and therefore exhibits slower timescales. The influence of
background noise on D(t) is qualitatively comparable to the LIF
model: for large background noise D(t) decays monotonically, while
for weak background noise it displays oscillations (see Fig. 4).
Depending on the parameters of background noise, the static non-
linearity displays the super-linear and sub-linear regimes, as in Fig. 2.
Fig. 5 displays the performance of the linear, nonlinear and LN

approximations as a function of the parameters of input signal and
background noise. Similarly to the LIF model, the LN cascade
provides a good approximation of the firing rate dynamics in most
of the parameter space except for the limits of weak background
noise and very large signal amplitude.

Rate model. In the case of the EIF model, as the linear filter
D(t) remains finite in the limit t?0, it is possible to exploit the
known asymptotic results to derive a simpler analytic
approximation for the firing rate dynamics, in which the linear
filter is exponential with a single, effective timescale t eff :

D eff (t)~A exp ({t=t eff ): ð9Þ

With such an exponential filter, the linear non-linear cascade of
Eq. (1) can be rewritten as

r(t)~W(I) ð10Þ

t eff
d

dt
I~{IzI0zs(t), ð11Þ

so that the dynamics of the firing rate are given by a rate model
(see [18] chapter 7.2 and [7] chapter 6).
To derive an analytic expression for the timescale t eff of the

equivalent exponential filter, we note that the amplitude of the
Fourier transform of D decays as r0=(DT2ptmf ) for large
frequencies f , while for vanishing frequencies it reaches a finite
value equal to the slope W’ of the transfer function W, evaluated at
the baseline firing rate r0 and background noise amplitude s [21].
Matching these asymptotics to those of the Fourier transform
A=(1zi2pf t eff ) of an exponential filter, we get:

t eff ~tmDT
W’(r0)
r0

ð12Þ

A~W’(r0)=t eff : ð13Þ

To compare quantitatively the full linear filter D with the
approximate exponential filter Deff , in Fig. 4 we display the root
mean square distance d between the Fourier transforms of D and
Deff , as a function of the baseline firing rates r0 and noise
amplitude s. Independently of r0, d displays a minimum as
function of s, at a location smin close to 4 mV for small r0. Around
that minimum, the exponential filter provides an excellent
approximation of the full filter. For very small s, the exponential
approximation clearly fails to reproduce the oscillations in D(t).
As shown in Fig. 4 C, the value of t eff is a decreasing function

of the baseline firing rate r0, and a decreasing function of the noise

Figure 4. Linear filter and single timescale approximation for the exponential integrate-and-fire model. A: Comparison between the
full filter and the single timescales approximation for three different values of noise amplitude s and fixed baseline firing rate r0~25 Hz. From top to
bottom: s~8 mV, s~4 mV and s~1 mV. Left column: linear filter in frequency; right column: linear filter in time. B: Root-mean-square distance d
between the Fourier transform of the linear filter and the single timescale approximation, as function of noise amplitude s. Data for three values of r0
(5, 25, and 45 Hz) is shown with lines of increasing contrast. C: The effective timescale t eff obtained from the single timescale approximation, as
function of baseline firing rate r0 . Data for three values of s (1, 4, and 7 mV) is shown with lines of increasing contrast.
doi:10.1371/journal.pcbi.1001056.g004
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amplitude s (Fig. 4). The effective timescale t eff is faster than the
membrane time constant tm (10 ms in our case) in most of
parameter space. The only exception is the limit of small s, in
which the exponential filter is a bad approximation of the full
linear filter, so that values of t eff larger than tm are an artifact of
the approximation.
Fig. 6 illustrates the comparison between a numerical PSTH

and the estimate obtained from the rate model. Fig. 5 displays the
accuracy of the rate model approximation, quantified by the
correlation coefficient between the estimate and the PSTH, as a
function of the parameters of the input signal and background
noise. In most of the parameter space, the accuracy of the rate
model is comparable to the performance of the LN approxima-
tion in which the full filter is used. For some values of the
parameters, the rate model appears to outperform the full LN
cascade. This happens when the exponential filter is faster than
the full linear filter, in which case the rate model predicts large
firing rate transients better than the full LN model, but
overestimates small transients in contrast to the full LN cascade.
When the input signal amplitude is large, large transients
dominate in the value of r, so that the rate model leads to
larger values of r than the full cascade.
Similarly to the full LN model, the performance of the rate

model degrades in the two limits of weak background noise and
very large input signal amplitude. The advantage of the rate model
over the full LN cascade is its simplicity, which allows for a very

efficient and robust implementation.
Adaptive timescale rate model. While the LN and rate

models provide good estimates of firing rate dynamics in most of
parameter space, their accuracy deteriorates as the amplitude Is of
input signal increases. To improve the firing rate estimates in that

parameter regime, we introduce adaptive models, in which the
linear filter is allowed to change over time.
So far, the linear filterD and static non-linearity F used in various

approximations were evaluated at the baseline firing rate r0 and
held constant in time. However, for large input signal amplitude, the
instantaneous firing rates deviate strongly from r0. As noted
previously, the timescale of D decreases with increasing r0, hence
at high r0 the neurons respond faster to inputs, but the LN model
does not incorporate this effect. To improve the estimates of firing
rate at large Is it seems therefore natural to replace at every timestep
the static linear filter D(r0) by the linear filter corresponding to the
instantaneous firing rate r (i.e. the estimate of the firing rate at the
previous time step). We call such a model an adaptive linear-
nonlinear model as at every timestep the linear filter is matched to
the instantaneous firing rate. With such a modification, the firing
rate response becomes faster for larger input currents.
In the adaptive LN model, the linear filter has to be computed

in principle at every timestep by integrating the Fokker-Planck
equation, which is computationally cumbersome. Instead, for the
EIF model, at every timestep we approximate the instantaneous
filter by the corresponding exponential filter (see Eq. 9). We thus
obtain an adaptive timescale rate model:

r(t)~W(I) ð14Þ

t eff (r)
d

dt
I~{IzI0zs(t): ð15Þ

In this model the timescale t eff depends implicitly on time
through the instantaneous firing rate, and can be obtained from

Figure 5. Correlation coefficient between the numerical PSTH and various estimates of the firing rate, for the exponential
integrate-and-fire model. A: Effect of varying parameters Is and ts of the input signal, for r0~5 Hz and s~8 mV. From left to right: (i) the signal
amplitude Is is varied for a correlation time ts~5 ms; (ii) ts is varied for Is~5 mV; (iii) Is is varied for three increasing values of ts (ts~1,5 and 10 ms),
shown with curves of increasing darkness. B: Effect of varying parameters of the background noise for ts~5 ms and Is~0:5s. From left to right: (i)
The amplitude of background noise s is varied for r0~10 Hz; (ii) r0 is varied for s~6 mV; (iii) data for four increasing values of r0 (r0~5,15,25 and
35 Hz) is shown with curves of increasing darkness.
doi:10.1371/journal.pcbi.1001056.g005
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t eff ~tmDT
W’(r)
r

ð16Þ

where r is the instantaneous firing rate (i.e. the estimate of the
firing rate at the previous time step).
Fig. 6 illustrates the comparison between a numerical PSTH and

the estimate obtained from the rate model. When the instantaneous
firing rates are high, the adaptive-timescale rate model provides a
better estimate than the non-adaptive models. For small firing rates,
the adaptive-timescale model overestimates some transients; this
effect is due to the fact the the effective timescale t eff at low rates is
faster than the timescale of the full linear filter D.
As shown in Fig. 5 B, in contrast to non-adaptive models, the

accuracy of the adaptive-timescale rate model does not degrade
with increasing input signal amplitude, but remains constant, the
correlation coefficient r between the numerical PSTH and the
estimate being greater than 0:95. Overall, the adaptive-timescale
rate model thus provides an excellent estimate of the firing rate
dynamics in most of parameter space. In particular, as function of
background noise amplitude s, r displays a broad maximum
where it reaches values of 0:99 (cf. Fig. 6). The accuracy of the
adaptive-timescale rate model deteriorates in the limit of very
small noise amplitude.

Conductance based model
So far we examined only models of the integrate-and-fire type,

which are one-dimensional in the sense that action potential
generation is controlled by a single variable, the membrane
potential. In contrast, in biophysically more detailed models, the
dynamics of the membrane potential are coupled to the dynamics
of a number of ionic conductances, so that these models have
higher dimensionality. In spite of this additional complexity, we
will show that our results can be easily extended to a standard
conductance-based model of Hodgkin-Huxley type, the Wang-
Buzsáki model [42].
Studying the dynamics of conductance-based models in the

presence of noise is in general very challenging, and the transfer
and linear response functions are in general not known
analytically. It has however been found that the exponential
integrate-and-fire model with appropriately chosen threshold,
reset, spike sharpness and refractory period closely reproduces the
transfer and linear response functions of the Wang-Buzsáki model
[21]. Although the values of these four parameters were chosen so
as to reproduce the scaling of the transfer function around
threshold and at strong inputs, the linear response functions of the
Wang-Buzsáki and EIF models also match for any value of input
parameters. In the original study this was observed with the help of
direct numerical simulations of both models. We evaluated the
transfer function and linear response function of the EIF model
using the direct integration of Fokker-Planck equation [26] and
comparing with simulations of the Wang-Buzsáki models we
confirm the previously observed close match.
The linear filter and static non-linearity for the Wang-Buzsáki

model can thus be directly obtained from the transfer function and
linear response function of the EIF model with appropriate
parameters (see Materials and Methods). Fig. 7 illustrates the
comparison between the firing rates obtained from the LN
approximation, and numerical simulations of the full conductance-
based model. As for the EIF model, the match between the LN
estimate and the numerical PSTH is good. Moreover, the
simplified rate models developed for the EIF model carry over
to the Wang-Buzsáki model, and provide simple approximations
for the rate dynamics using the transfer function alone. In
particular, the adaptive-timescale rate model leads to very high
correlation coefficients between the estimated firing rate and the
numerical PSTH (cf. Fig. 7). Note that such a high value of r can
be somewhat misleading: in Fig. 7 A the correlation coefficient of
0:99 corresponds to a root-mean square distance of 5 Hz between
the predicted firing rate and numerical PSTH. This is significantly
larger than the error in the PSTH, which is for these parameters of
the order of 1 Hz (see Materials and Methods).

Discussion

In this study, we examined the ability of phenomenological
models to describe the firing rate output of spiking neurons in
response to a time-varying input signal that the neurons receive on
top of background synaptic noise. The phenomenological models
we considered belong to the class of linear-nonlinear cascade
models: the firing rate is estimated by first applying a linear filter to
the input signal and then correcting for deviations from linearity
using a static non-linear function. Instead of using a fitting
procedure, the linear filter and static non-linearity were obtained
in a parameter-free form by exploiting analytic results valid for
particular limits of input signal parameters. This approach allowed
us to systematically quantify the accuracy of the phenomenological
models by comparing their predictions with results of numerical
simulations of spiking neurons.

Figure 6. Comparison between estimates of the firing rate and
numerical simulations, for the exponential integrate-and-fire
model. Illustration for a given set of parameters (r0~5 Hz, s~8 mV,
Is~6 mv, ts~5 ms). From top to bottom: input signal trace; raster of
action potentials in a subset of 200 trials; comparison between the
numerical PSTH (black) and the LN estimate, the rate model and the
adaptive timescale rate model. The values of r and d indicate
respectively the correlation coefficiant and root-mean-square distance
between the predicted firing rate and the numerical PSTH.
doi:10.1371/journal.pcbi.1001056.g006

From Spiking Neurons to Linear-Nonlinear Models

PLoS Computational Biology | www.ploscompbiol.org 9 January 2011 | Volume 7 | Issue 1 | e1001056



We found that linear non-linear models provide a quantitatively
accurate description of firing rate dynamics of leaky integrate-and-
fire, exponential integrate-and-fire and conductance-based mod-
els, as long as the background noise is not excessively weak. In the
limit of vanishing variance of background noise, the spiking of
neurons exhibits locking to the input signal [43] that cannot be
accounted for by the linear-nonlinear cascade. The accuracy of the
cascade models also decreases as the amplitude of the input signal
is increased, but this effect becomes quantitatively important only
for very strong input signals that lead to instantaneous firing rates
in the range of hundreds of hertz. As methods for computing
analytically the linear filter and static non-linearity are available
only for white noise background inputs, we have not systematically
studied the situation in which the background noise is colored.
However, one could in principle compute numerically both linear
filter and static non-linearity, and then use the same approach as
introduced here.
For the exponential integrate-and-fire and conductance-based

models, the linear filter can be accurately approximated by a single
exponential in a large range of noise amplitudes, so that the linear-
nonlinear model can be reduced to a firing rate model. We
obtained a simple analytic expression for the time constant of the
rate model, directly relating it to the biophysical parameters of the
neuron. The value of the time constant in particular depends on
the sharpness of action potential initiation and the baseline firing
rate of the neuron.
Interestingly, the EIF model is essentially the only non-linear

integrate-and-fire model that can be described by such a simple
rate model, since it is the only model in this class whose firing rate
response decays as 1=f in the high frequency limit, independently
of whether the background noise is white or colored [21]. The

firing rate response of LIF neurons decay as 1=
ffiffiffi
f

p
in the case of

white noise [12,24], which makes it impossible to reduce the LIF
model to a simple rate model. In the case of colored noise, the
response stays finite in the high frequency limit [12]. This fact
makes it possible to approximate the LIF model with colored noise
by an even simpler rate model, in which the firing rate depends
instantaneously on the input through the f -I curve (the ‘nonlinear’
model described here, see also [15,44]). A comparison of the
predictions of the nonlinear model with simulations of the LIF
neuron with colored noise however showed that the accuracy of
the nonlinear model did not improve significantly with respect to
the white noise case (data not shown), presumably because the
response function of LIF model does not become totally flat as the
noise correlation time is increased [44]. Finally, the firing rate
response of QIF neurons decays as 1=f 2. This model could
therefore be approximated by a two-variable rate model, in order
to reproduce this high frequency behavior.
Finally, we introduced a simple generalization of the rate model

in which the time constant depends on the instantaneous firing
rate of the neuron. This adaptive-timescale rate model reproduces with
a high precision the firing rate dynamics of exponential integrate-
and-fire and conductance-based models, even for input signals of
very large amplitude. This model can be extended to the case of
colored noise, and its accuracy degrades gracefully as the
correlation time of the background noise is increased (data not
shown).

Comparison with previous studies
Phenomenological firing-rate models (and the closely related

neural field models) are basic tools of theoretical neuroscience, and
several earlier studies have looked for quantitative mappings

Figure 7. Comparison between estimates of the firing rate and numerical simulations, for the Wang-Buzsáki model. A: Illustration for
a given set of parameters (r0~30 Hz, s~10 mV, Is~5 mV, ts~5 ms). From top to bottom: input signal trace; raster of action potentials in a subset of
200 trials; comparison between the numerical PSTH (black) and the LN estimate and the adaptive-timescale rate model. The values of r and d indicate
respectively the correlation coefficiant and root-mean-square distance between the predicted firing rate and the numerical PSTH. B: Correlation
coefficient between the numerical PSTH and various estimates of the firing rate as the amplitude Is of the input signal is varied. The values of other
parameters are r0~30 Hz, s~10 mV, and ts~5 ms. C: Correlation coefficient between the numerical PSTH and various estimates of the firing rate as
the amplitude s of background noise is varied. The values of other parameters are r0~30 Hz, Is~0:6s and ts~5 ms.
doi:10.1371/journal.pcbi.1001056.g007
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between such models and more biophysically detailed, spiking
neuron models. To our knowledge, our study is the first to
compare extensively across parameter values the output of a
phenomenological rate model to the firing rate dynamics of
spiking neurons.
The question of how to reduce the firing rate dynamics of

populations of spiking neurons to simplified ‘firing rate’ models has
been the subject of numerous previous studies. Most reductions
however ignore the single cell dynamics and eventually end up
with rate equations in which the only time scale is a synaptic time
scale (see e.g. [45]). Such a reduction can be performed rigorously
in the limit in which the dynamics of the synapses are slow [9,46].
Another approach is to use another slow variable, e.g. an
adaptation variable, as the only dynamical variable (see e.g.
[15]). The drawback of this type of approach is that one can only
capture the dynamics on the slow time scales, and all the fast time
scales related to spiking dynamics are lost. Shriki et al (2003)
reduced the dynamics of a network of specific conductance-based
model neurons to firing rate dynamics, but their approach is based
on numerical fits of both the static non-linearity and of the
dynamical firing rate response.
The correspondence between linear-nonlinear cascade models

and spiking neuron models has been examined in several earlier
works. In [47,48], techniques were developed for computing the
linear filter and static non-linearity for integrate-and-fire models,
while similar questions for the Hodgkin-Huxley model were
addressed in [49,50]. In these works, the authors consider the
situation in which background noise is absent, so that the neuron
does not fire spontaneously in absence of input signal. In our
framework, this corresponds to the double limit of s?0 and r0?0.
The limit of periodically firing neurons, i.e. vanishing noise but non-
zero firing rate, was investigated in [51]. In [16], linear-nonlinear
cascade models were used to approximate the firing rate dynamics
of a spike response model with escape noise [7]. In contrast, here we
examined integrate-and-fire and conductance-based models in
presence of more biophysically realistic diffusion noise. Similarly
to our case, in [7] the linear filter was determined analytically,
however the static nonlinearity was obtained by fits to the data.

Predicting full spike trains
To produce trains of action potentials, the linear-nonlinear

cascade model is often supplemented by a third step, a stochastic
Poisson process which at every time step generates an action
potential with a probability given by the instantaneous firing rate
obtained from the cascade. In this study, we have not attempted to
compare the full statistics of spike trains produced by such a linear-
nonlinear-Poisson model with the statistics of spike trains of
integrate-and-fire neurons. Instead we have concentrated on the
instantaneous firing rate, which is equivalent to the first-order
statistics of spike trains. The instantaneous firing rate provides
information about the timing of individual spikes, but does not
specify the correlations between successive spikes in a given train.
It has been argued that the refractory period and other post-spike
effects play an important role in determining precise spike timing
[5,52–54].
To reproduce faithfully the full statistics of spike trains of spiking

neurons, the linear-nonlinear cascade would have to be supple-
mented with post-spike history filters leading to correct higher
order statistics. Several modeling approaches have been developed
to include post-spike filters [54,55], most prominently generalized
linear models (GLMs) [3,56] and spike-response models (SRMs)
[7]. The main difference between these two classes of models is
that in SRMs, the quantity obtained after applying the linear filters
to the inputs and previous spikes is interpreted as the membrane

potential, while no such assumption is made in GLMs. In
consequence SRMs are usually fitted to intra-cellular recordings
[57], while GLMs are more often applied to extra-cellular
recordings [4,56]. In both classes of models, because of post-spike
filters, the firing rate is an implicit function of the input signal,
while in conventional LN models as used here the firing rate is an
explicit function of the input signal, a very desirable property (for
details see [16,58]). It is not clear how to generalize an LN cascade
to take into account correlations in the spike train while preserving
this property. It should be noted that the linear filter we use
incorporates effects of refractoriness - this is most noticeable at low
noise, where the filter exhibits oscillations due to effective
refractoriness (see also [55]). While additional effects would need
to be incorporated in post-spike filters, these filters should affect
only the higher order statistics of spike trains, and not the
instantaneous firing rates.

Relationship with experimental data
A large number of studies have exploited linear-nonlinear

models to fit experimentally measured data. In the majority of
these studies [2,4–6,54], the linear-nonlinear model represents the
mapping between the stimulus and neuronal firing, and therefore
typically encapsulates several processing stages that transform the
stimulus into a direct input to the neuron. In contrast, here we
considered the mapping between the direct input to the neuron
and its output. Such direct mappings have been studied
experimentally in vitro [55,59–63]. In these studies, the input-
output mapping of cortical neuron was investigated in absence of
background noise (note in particular that the spike-triggered
average inputs display oscillations as in our low noise case). In vivo
recordings indicate that background synaptic noise is a funda-
mental component of cortical processing [64,65], as ongoing
neural activity in higher cortical areas implies that only a part of
the total input to a neuron can controlled by a sensory stimulus.
More recent in vitro studies [22,23,29,61] have therefore injected
artificial background activity on top of the repeating signal. These
studies have however mostly explored the linear regime, and it
seems important to further examine the non-linear regime, varying
systematically signal and noise parameters.
Exponential integrate-and-fire models have been used to predict

individual action-potentials of cortical neurons, however post-spike
adaptation currents had to be taken into account [39,66,67]. We
therefore expect that the linear-nonlinear and rate models we
developed here for the eIF model will have to be supplemented
with additional adaptation components to reproduce accurately
the firing rate dynamics of cortical neurons.

Materials and Methods

Integrate-and-fire models
In integrate-and-fire models, action potentials are generated

solely from the underlying dynamics of the membrane potential
[7]. These dynamics are given by [21]:

tm
dV

dt
~{Vzy(V ){I(t) ð17Þ

where the membrane potential V is determined with respect to the
resting potential of the cell, tm~10 ms is the membrane time
constant, y(V ) is a spike generating current, and I is the total
current (expressed in mV) elicited by synaptic inputs to the
neuron.
We studied two different versions of the integrate-and-fire

model:
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– Leaky integrate-and-fire (LIF) model — in this model, y(V )~0,
there is no spike-generation current, and an action potential
(AP) is emitted when the membrane potential crosses a fixed
threshold value VT . The membrane potential is subsequently
reset to a value VR after a refractory period trp. The values
used in the simulations were VT~20 mV, VR~10 mV and
trp~2 ms.

– Exponential integrate-and-fire (EIF) model — in this model, the spike
generation current is exponential:

y(V )~DT exp
V{VT

DT

# $
: ð18Þ

Once the membrane potential crosses the threshold VT , it
diverges to infinity in finite time. This divergence represents the
firing of an action potential. Following the divergence, the
membrane potential is reset to a value VR after a refractory time
trp. The parameter DT quantifies the sharpness of the AP
initiation. The parameter values used in most of this study were
DT~1mV, (a typical value for pyramidal cells [39]), VT~10mV,
VR~3mV and trp~2 ms.

Conductance based model
We used the Wang-Buzsáki model [42], which is a modified

Hodgkin-Huxley model. The dynamics of the membrane potential
are given by

cm
dV

dt
~{IL{INa{IK{I(t) ð19Þ

where cm is the membrane capacitance (cm~1mF=cm2),

IL~gL(V{VL) is the leak current (gL~0:1mS=cm2;VL~

{65 mV), INa~gNam
3h(V{VNa) is the sodium current, IK~

gKn
4(V{VK ) is the delayed rectifier potassium current, and I(t)

is the total synaptic input current.
The activation of the sodium current is assumed instantaneous:

m(V )~
am(V )

am(V)zbm(V )
, ð20Þ

while the kinetics of the gating variables h and n are given by:

dx

dt
~ax(V )(1{x){bx(V )x, ð21Þ

with x~h,n.
The functions ax and bx are given by:

am(V )~
0:1(Vz35)

1{ exp {0:1(Vz35)ð Þ
bm(V )~4 exp {(Vz60)=18ð Þ ð22Þ

ah(V )~0:35 exp {(Vz58)=20ð Þ bh(V )~
5

1z exp {0:1(Vz28)ð Þ
ð23Þ

an(V )~
0:05(Vz34)

1{ exp {0:1(Vz34)ð Þ
bn(V )~0:625 exp {(Vz44)=80ð Þ

ð24Þ

The maximum conductance densities and reversal potentials are:
gNa~35mS=cm2, VNa~55 mV; gK~9mS=cm2, VK~{90 mV.

Inputs to the neurons
As explained in the main text, in this study we assume that the

synaptic inputs to the neuron are separated into two groups: (i)
inputs that are identical across trials, and which we call the
‘‘signal’’ inputs; (ii) inputs that are uncorrelated from trial to trial,
which we call the background noise. In consequence, the total
synaptic input I(t) can be written as

I(t)~Isignal(t)zInoise(t): ð25Þ

We further assume that both signal and noise inputs consists of a
sum of large number of synaptic inputs, each individual synaptic
input being of small amplitude. We therefore use the diffusion
approximation [30], and represent both signal and noise inputs as
Gaussian random processes. Within the diffusion approximation,
the difference between a conductance-based input and a current-
based input is merely a rescaling of the membrane time constant
[68], hence here we consider only a current-based input.
For convenience, the mean of the input signal Isignal(t) is taken

to be zero. The correlation time ts and the standard deviation Is of
Isignal(t) are parameters which we systematically vary in this study.
Realizations of Isignal(t) are generated using

ts
d

dt
Isignal~{IsignalzIsj (t) ð26Þ

where j (t) is a Gaussian process, with zero mean, unit variance
and vanishing correlation time. The same realization of j (t) is
used in all trials.
The background noise Inoise(t) is a Gaussian process of mean I0,

standard deviation s and vanishing correlation time, uncorrelated
from trial to trial. The parameters I0 and s were systematically varied.

Transfer function and linear response of integrate-and-
fire neurons
Here we provide the summary of definitions and expressions for

the transfer function and linear response functions of integrate-and-
fire neurons. For completeness full derivations are provided below.
The transfer function W determines the average firing rate of a

neuron in response to a steady input of the form I0zs
ffiffiffiffiffi
tm

p
g(t),

where g(t) is a random process of zero mean and unit variance
representing background noise, and tm is the membrane time
constant.
For the leaky integrate-and-fire neuron receiving background

noise uncorrelated in time, the transfer function is given by [27]

W(I0)~ 2tm

ðVT{I0
s

Vr{I0
s

du exp u2
ðu

{?
dv exp{v2

2

64

3

75

{1

: ð27Þ

For the exponential integrate-and-fire neuron receiving back-
ground noise uncorrelated in time, the transfer function can be
expressed as [21]

W(I0)~
2tm
s2

ð?

{?
dV

ð?

max (V ,VR)
dx(DT exp (

x{VT

DT
)zI0)

" #{1

:ð28Þ

A convenient method of evaluating Eq. (28) is to integrate the
steady state Fokker-Planck equation [26].

(22)

(23)

(24)
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The rate response function Rn(t) specifies the trial-averaged
firing rate of the neuron in response to a time-varying input of
small amplitude [12]. More precisely, in response to an input of
the form I0zI1(t)zs

ffiffiffiffiffi
tm

p
g(t), with g(t) a Gaussian random

process independent from trial to trial and I1(t) identical in all
trials, at the linear order the firing rate of the neuron is given by

r(t)~r0z

ð?

0

dtRn(t{t)I1(t) ð29Þ

where r0~W(I0). Taking the Fourier transform, Eq. (29) becomes

r̂r(v)~2pr0d(v)zR̂Rn(v)ÎI1(v): ð30Þ

where r̂r, ÎI1 and R̂Rn are the Fourier transforms of r, I1 and Rn.
For the LIF receiving a background noise uncorrelated in time,

the response function in frequency Rn can be calculated from the
Fokker-Planck equation [12,24]. The result reads:

R̂Rn(v)~
r0

s(1zivtm)

Lu
Ly

(yT ,v){
Lu
Ly

(yR,v)

u(yT ,v){u(yR,v)
ð31Þ

where yT~(VT{I0)=s, yR~(Vr{I0)=s, and u(y,v) is given in
terms of a combination of hypergeometric functions, or equiva-
lently as the solution of the differential equation

d2u

dy2
~2y

du

dy
z2ivtmu ð32Þ

with the condition that u is bounded as y?{?.
For the EIF, no explicit expression is available for R̂Rn, but a

method has been developed for computing R̂Rn numerically from
the Fokker-Planck equation [26]. That procedure is essentially
equivalent to integrating Eq. (32) for the LIF model. This is the
method we use here. For details, see [26].

Comparison between model predictions and simulations
To assess the precision of the firing rates predicted by various

models, we have systematically compared the predicted firing rates
with results of simulations of the LIF, EIF and Wang-Buzsáki
neurons.
The membrane potential dynamics of the neuronal models were

simulated using a standard second-order Runge-Kutta algorithm
with a time step of 10ms. For each set of parameters, a fixed, 5 s
long random instance of the input signal was applied in 50,000
trials. The output firing rate was then computed by averaging over
trials the spike trains binned in windows of 1 ms.
To obtain the predicted firing rates, the original input signal was

sampled at intervals of 1 ms, convolved with the linear filter
(determined with a precision of 1 ms) and/or fed through the static
non-linearity.
To compare quantitatively the prediction with the numerical

firing rate, we computed the Pearson’s correlation coefficient:

r~
S(r{SrT)(̂rr{Sr̂rT)Tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

S(r2{SrT2)TS(̂rr2{Sr̂rT2)T
q ð33Þ

where r(t) is the numerical firing rate and r̂r is the firing rate
predicted by the model. The average is taken over time bins

SXT~
1

T

XT

i

Xi ð34Þ

where T is the total number of bins.
The value of the Pearson correlation coefficient r(r,̂rr), which

lies between 21 and 1, represents the fraction of variance of r
accounted for by a linear, instantaneous transformation of r̂r. A
caveat of the correlation coefficient is that its value can be high
even if the means and variances of r(t) and r̂r(t) are very different:
r quantifies only the match between the temporal variations of the
two time series. We have therefore checked separately that, when
values of r are high, the LN and rate models provide accurate
predictions of the mean and variance of the firing rate (data not
shown).
An alternative standard measure of the similarity between r(t)

and r̂r(t) is the root mean square distance d defined by

d(r,̂rr)~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

T

XT

i

(ri{r̂ri)
2

vuut : ð35Þ

If the means and variances of the two time series are identical,
there is a simple relationship between d(r,̂rr) and r(r,̂rr):

r(r,̂rr)~1{
d2(r,̂rr)

2Var(r)
ð36Þ

An advantage of the RMS distance d(r,̂rr) over the correlation
coefficient r(r,̂rr) is that d takes into account the match between
the means and variances of r(t) and r̂r(t). A disadvantage is that the
scale of d(r,̂rr) varies when the input parameters are varied. To
compare the predictions of the models as the parameters are
varied, we have therefore chosen the dimensionless measure
provided by the correlation coefficient r.
For a fixed set of parameters, the RMS distance d is a very

useful comparison between the PSTH and various models, as it
provides the mean error in units of Hz: we therefore display these
values to the graphs comparing the predictions of different models
for fixed parameter values (Figs. 3 A, 6 and 7).
The value of d is bounded from below by the error induced by

the finite number of trials used to estimate the PSTH. For a given
instantaneous firing rate r, the error can be estimated to beffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n=(Ndt)

p
where N~50000 is the number of trials and dt~1 ms

is the size of the time bin. As the instantaneous firing rates vary
from 0 to 100{200 Hz in Figs. 3 A, 6 and 7, the error on the
PSTH is of the order of 1{2 Hz. Note that this precision is far
superior to the one that can be reached in experiments, where the
number of trials is typically smaller by several orders of magnitude.

Calculating the rate response function of the leaky
integrate-and-fire neuron
For the leaky integrate-and-fire neuron receiving background

noise uncorrelated in time, the rate response in frequency R̂Rn can be
obtained from the first-order perturbation of the steady-state
Fokker-Planck equation [24]. The original perturbation study [24]
was done in the context of a recurrent inhibitory network, but the
rate response response function can be deduced in exactly the same
way [12,25]. Here we provide the direct derivation of the rate
response response function, following the same steps as in [24].
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We consider a leaky integrate-and-fire neuron with membrane
potential dynamics defined by Eq. (17), receiving an input current
of the form

I(t)~I0zI1(t)zs
ffiffiffiffiffi
tm

p
g(t) ð37Þ

where g(t) is a Gaussian white noise process of zero mean and unit
variance, uncorrelated from trial to trial.
To study the stochastic dynamics of the membrane potential, we

look at the probability distribution of the membrane potential V as
function of time. The dynamics of the corresponding probability
density P(V ,t) obey the Fokker-Planck equation [69]:

tm
L
Lt
P~

L
LV

(V{I0{I1(t))P½ %z s2

2

L2

LV2
P: ð38Þ

This equation expresses the conservation of probability in time,
and can also be written as

L
Lt
P~{

L
LV

J ð39Þ

where the current of probability density J is given by

tmJ~(I0zI(t){V )P{
s2

2

L
LV

P: ð40Þ

The instantaneous firing rate is given by the flux of probability
density through the threshold membrane potential VT :

r(t)~J(VT ): ð41Þ

The membrane potential is reset to VR after crossing the
threshold, hence J is discontinuous at VR and obeys:

J(Vz
R ){J(V{

R )~r(t): ð42Þ

As the membrane potential cannot exceed the threshold, for
VwVT P(V ,t)~0. Since the probability density current J
depends on the derivative of P with respect to V , P must be a
continuous function of V , hence

P(VT ,t)~0, Vt, ð43Þ

P(Vrz,t){P(Vr{,t)~0, Vt: ð44Þ

Eqs. (41–44) are the four boundary conditions for the Fokker-
Planck Equation. In addition we will require that P(V ,t) be
integrable as V?{?.

Steady state. If I1(t)~0, the neuron receives a steady input
current, and its output rate is constant in time, r(t)~r0. Eqs. (41)
and (42), then imply that J(V ,t)~r0 for VRvVvVT and
J(V ,t)~0 for VvVR. From Eq. (40) the steady-state probability
density P0(V ) is proportional to r0. Integrating Eq. (40) determines
P0(V ) up to a multiplicative constant, which is obtained from the
normalization condition for P. The final result reads

r0~ 2tm

ðVT{I0
s

Vr{I0
s

du exp u2
ðu

{?
dv exp{v2

2

64

3

75

{1

: ð45Þ

First order perturbation. For convenience, we now
introduce the rescaled notations:

y~
V{I0

s
, yth~

VT{I0
s

, yr~
Vr{I0

s
ð46Þ

Q(y,t)~
2tmr0
s

P(V ,t), Q0(y)~
2tmr0
s

P0(V ): ð47Þ

To calculate the linear perturbation of the firing rate arising
from a time-varying input current I1(t) we write

r(t)~r0(1zr1(t)) ð48Þ

Q(y,t)~Q0(y)zQ1(y,t): ð49Þ

Keeping only first-order terms, the Fokker-Planck equation
becomes

tm
L
Lt
Q1~LQ1{

I1(t)

s

d

dy
Q0 ð50Þ

where Lf~ d

dy
yfz

d2

dy2
f , and the boundary conditions read

Q1(yth)~0, Q1(y
z
r ){Q1(y

{
r )~0, ð51Þ

LQ1

Ly

&&&&
yth

~{r1(t),
LQ1

Ly

&&&&
yzr

{
LQ1

Ly

&&&&
y{r

~{r1(t): ð52Þ

To solve Eq. (50), we take its Fourier transform which yields

ivtm
L
Lt
Q̂Q1~LQ̂Q1{

ÎI1
s

d

dy
Q0, ð53Þ

where Q̂Q1 and ÎI1 are the Fourier transforms of Q1 and I1.
In Fourier space, the boundary conditions become

Q̂Q1(yth)~0, Q̂Q1(y
z
r ){Q̂Q1(y

{
r )~0, ð54Þ

LQ̂Q1

Ly

&&&&&
yth

~{r̂r1(v),
LQ̂Q1

Ly

&&&&&
yzr

{
LQ̂Q1

Ly

&&&&&
y{r

~{r̂r1(v) ð55Þ

where r̂r1 is the Fourier transform of r1.
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The solution of Eq. (53) can be expressed as

Q̂Q1(y,v)~
az1 (v)w1(y,v)zbz1 (v)w2(y,v)zQ̂Qp

1(y,v) ywyr

a{1 (v)w1(y,v)zb{1 (v)w2(y,v)zQ̂Qp
1(y,v) yvyr

(

ð56Þ

where Q̂Qp
1 is a particular solution of the non-homogeneous

equation and w1 and w2 are two independent solutions of the
homogeneous equation.
As shown in [24], a particular solution is given by

Q̂Qp
1~{

I1
s(1zivtm)

d

dy
Q0: ð57Þ

The homogeneous equation reads

ivtmw~Lw: ð58Þ

Two independent solutions of Eq. (58) can be expressed as [24]

w1(y,v)~M½(1{vtm)=2,1=2,{y2% ð59Þ

w2(y,v)~

ffiffiffi
p

p

C(
1zvtm

2
)
M½(1{vtm)=2,1=2,{y2%z

ffiffiffi
p

p

C(
vtm
2

)
2yM½1{vtm=2,3=2,{y2%

ð60Þ

where M½a,b,c% are confluent hypergeometric functions [70].
The full solution for Q̂Q1 is obtained by determining the four

unknown coefficients a{1 , az1 , b{1 and bz1 from the four boundary
conditions. The boundary conditions however depend on r̂r1,
which is not known at this point.
This discrepancy is resolved by noting that w2 decays

exponentially as y?{? while w1 decays algebraically. Hence
only w2 is integrable, and if Q̂Q1 is to be integrable we must have
a{1 ~0. Enforcing this condition leads to

r̂r1(v)~
ÎI1

s(1zivtm)

Lyu
&&
yth

{Lyu
&&
yr

u(yth){u(yr)
ð61Þ

where

u(y,v)~ exp y2w2(y,v): ð62Þ

In conclusion, we have

R̂Rn(v)~
r0

s(1zivtm)

Lyu
&&
yth

{Lyu
&&
yr

u(yth){u(yr)
: ð63Þ

Note that the function u is a solution of

ivtmu~L!u ð64Þ

where L!f~{y
d

dy
fz

d2

dy2
f , i.e. L! is the operator adjoint to L.

In practice, when evaluating Eq. (61), it is often preferable to
evaluate u by integrating Eq. (64) rather than using available
implementations of the confluent hyper-geometric functions.

Limit of vanishing firing rate. We consider here the limit
I0?{?, keeping s fixed. In that limit yth?? and r0?0. In the
limit y??, we have ( [70], Eq.13.5.1)

M(a,b,{y2)*
C(b)

C(b{a)
y{2a

and therefore

u(yt,v)*
2

ffiffiffi
p

p

C
ivtm
2

# $
C

1zivtm
2

# $ exp y2yivtm{1

leading to

Lu
Ly

*2yu,

and therefore

R̂Rn(v)*
2yTr0

s(1zivtm)
:

The next step is to relate the numerator of the above equation to
the derivative of r0 with respect to the mean input. Starting from
the equation for the f-I curve, W(I0), we find that

W’(I0)*yT??
2r0yT
s

and therefore

R̂Rn(v)*yT??
W’(I0)

(1zivtm)
:

so that in the limit of r0?0 the rate response function of the LIF
model becomes proportional to the impedance of the voltage.
Note that the limits n0?0 and v?? do not commute.
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