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ronal response properties are typically probed by intracellular mea-
surements of current-voltage (I-V) relationships during application of
current or voltage steps. Here we demonstrate the measurement of a
novel I-V curve measured while the neuron exhibits a fluctuating
voltage and emits spikes. This dynamic I-V curve requires only a few
tens of seconds of experimental time and so lends itself readily to the
rapid classification of cell type, quantification of heterogeneities in
cell populations, and generation of reduced analytical models. We
apply this technique to layer-5 pyramidal cells and show that their
dynamic I-V curve comprises linear and exponential components,
providing experimental evidence for a recently proposed theoretical
model. The approach also allows us to determine the change of
neuronal response properties after a spike, millisecond by millisecond,
so that postspike refractoriness of pyramidal cells can be quantified.
Observations of I-V curves during and in absence of refractoriness are
cast into a model that is used to predict both the subthreshold response
and spiking activity of the neuron to novel stimuli. The predictions of
the resulting model are in excellent agreement with experimental
data and close to the intrinsic neuronal reproducibility to repeated
stimuli.

I N T R O D U C T I O N

Accurate models of electrically active cells and their inter-
actions are central requirements for the understanding of
the computational processes taking place in nervous tissue. The
construction of network models, even at the level of cortical
columns, requires the identification of cell classes and the
quantification of both their typical behavior and the heteroge-
neities within a population. The volume of data that is required
for this tissue-level modeling demands a high-throughput ap-
proach in which response properties can be routinely mea-
sured.

Electrophysiology provides an array of techniques for the
extraction of neuronal response properties. Standard methods
involve probing the response to step-change stimuli leading to
current-voltage (I-V) curves for the steady-state or instanta-
neous response. Used systematically with pharmacology, they
can yield a full conductance-based description (Hodgkin and
Huxley 1952; Koch 1999) although the time required is pro-

hibitive for routine neuron-by-neuron classification. More re-
cently, an elegant optimization method (Huys et al. 2006) has
been proposed that promises to significantly facilitate the
construction of biophysically detailed models, given some
prior knowledge of the kinetics of the channels present.

Detailed models, comprising hundreds of compartments, are
important for understanding the biophysical properties probed
during electrophysiological and pharmacological manipula-
tions. Such models can be used for network simulations on
high-performance computers, but the complexity associated
with a high level of detail means that it can be difficult to get
a deep understanding of the network states that emerge in these
simulations. At the other end of the spectrum of neuron models
are single-variable integrate-and-fire type models. The mathe-
matical analysis of this class of models has given a great deal
of insight into the emergence of dynamic network states
(Abbott and van Vreeswijk 1993; Brunel and Hakim 1999;
Gerstner 2000; Gerstner and van Hemmen 1993), and they are
readily extended to include further biological details such as
subthreshold currents (Brunel et al. 2003; Richardson et al.
2003) and adaptation (Gigante et al. 2007).

An interesting link can be made between one-variable mod-
els and I-V curves; both involve the reduction of multi-variable
dynamics, comprising voltage and channel activation states, to
a relation between the net membrane current and voltage.
Standard stimuli used for measuring I-V curves comprise
step-change current and voltage pulses (Hodgkin et al. 1952) or
slow voltage ramps (see, for example, Swensen and Marder
2000). However, if a more naturalistic stimulus were used to
generate an I-V curve, then a reduced model derived from that
I-V curve could provide a more efficient description of the
neuronal dynamics. Ultimately the success or not of such a
method should be judged by the extent to which it can predict
experimental data.

Here we introduce a method that measures the I-V curve
during ongoing activity. An attractive feature is that it can be
used to measure response properties in time slices triggered to
events in the voltage trace—an aspect that will be used to
quantify the refractory properties of pyramidal cells. A model
derived from the I-V curve measurements will then be tested
against novel stimuli, which were not used for parameter
extraction, and its predictive power evaluated.
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M E T H O D S

Slice preparation and whole cell recordings

Parasagittal neocortical brain slices (300 !m thick) from C57/B16J
mice (P12–14, n ! 8 and P20, n ! 4) were prepared using a
vibratome (Leica VT1000 S, Leica Microsystems GmbH, Germany)
in ice-cold extracellular medium (ACSF; containing in mM: for
P12–14 mice and incubation chamber, 125 NaCl, 25 NaHCO3, 25
glucose, 2.5 KCl, 1.25 NaH2PO4, 2 CaCl2, and 1 MgCl2; for P20 mice
slice cutting, 110 choline chloride; 25 NaHCO3; 25 D-glucose, 11.6
sodium ascorbate, 7 MgCl2, 3.1 sodium pyruvate, 2.5 KCl, 1.25
NaH2PO4, and 0.5 CaCl2). Slices were transferred to a chamber
containing ACSF bubbled with 95% O2-5% CO2 and incubated
at 35°C for 30 min and then at room temperature (20 –22°C) until
use. All experiments were performed at 35°C. Pyramidal neurons
were identified by video-enhanced infrared microscopy using the
20"0.95NA water-immersion lens of an upright microscope
(BX51WI; Olympus, Tokyo, Japan). Double somatic whole cell
recordings were obtained from layer-5 pyramidal neurons. One pipette
injected the current while the voltage was measured simultaneously
from both. However, a two-electrode protocol for the measurement of
intracellular voltage during current injection is not necessary if an
active electrode compensation (AEC) technique (Brette et al. 2005,
2007a,b) is used that digitally removes the artifacts introduced by the
electrode filter using a Wiener-Hopf optimal filtering. A review of this
method, and the particular optimization principle used here, together
with the comparison between single and dual electrode recordings can
be found in APPENDIX B. The injected current waveforms were
constructed from two summed Ornstein-Uhlenbeck processes (see
APPENDIX A for details) with time constants "fast ! 3 ms and "slow !
10 ms. There were two sets of variances (low, #fast ! #slow ! 0.18
and high, #fast ! 0.36, #slow ! 0.25) and four sets of DC biases 0.0,
0.02, 0.03, and 0.06 in relative units, yielding a total of 8 combina-
tions of waveforms. Each waveform had a duration of 40 s and was
preceded and followed by a 3-s null (0 current) stimulus used to
measure background noise levels. The set of eight waveforms was
injected twice at an interval of 15 min to test for the intrinsic
reliability of the cells as well as to check the stability of the cellular
properties over the duration of the recordings. To produce an average
firing rate in the desired range (1–15 Hz), the waveforms were
multiplied by a factor (in the range 250–750 pA) to give the current
injected into the neurons. All current waveforms contained square
pulses at the beginning and end of experiment, allowing for standard
measures of input resistance and capacitance. The intracellular solu-
tion contained the following (in mM): 135 K-gluconate, 4 KCl, 4
Mg-ATP, 10 Na2- phosphocreatine, 0.3 Na-GTP, and 10 HEPES
(pH ! 7.3; 270 mosmol/l). Biocytin (3 mg/ml) was routinely added to
allow post hoc staining of the recorded cells. Pipette capacitance was
compensated, and whole cell recordings with access resistance
#20M$ were obtained using Multiclamp 700A amplifiers (Molecular
Devices, Foster City, CA). The membrane potential was filtered at 10
kHz and digitized at 20 kHz using an ITC-18 (InstruTech, Port
Washington, NY). All experiments were carried out following proto-
cols approved by the Swiss Federal Veterinary Office.

Mathematical model

The basic model used is the exponential integrate-and-fire (EIF)
model (Fourcaud-Trocmé et al. 2003), given here by Eqs. 7 and 9,
which was also extended to include refractory properties by making
the three parameters Em, 1/"m, and VT dependent on the time since the
last spike (called the rEIF model). For example, given that the last
spike occurred at time tk the value of Em was calculated as Em(t) !
E m

0 % A1e&(t&tk)/"1 % A2e&(t&tk)/"2, where E m
0 denotes the value of Em

obtained away from a spike. The amplitudes A1, A2 and time constants
"1, "2 were obtained by fitting the set of I-V curves measured in time
slices after each output spike (see Fig. 3). For 1/"m and VT, a single

exponential term was sufficient, and a dynamics for 'T was not
required.

Equation 7 with the definition of F(V) given in Eq. 9 was integrated
using an Euler scheme with a time step corresponding to the sampling
rate of the recordings (20 kHz). The action potentials of the model
appear as a rapid rise in voltage and the integration was stopped when
V reached 0 mV. Because the downswing of the spike is not explicitly
described in the model, the integration was interrupted for 2 ms after
detection of an action potential (typical duration of the action potential
downswing) and restarted at a reset Vre, which was in general close to
or above the prespike threshold VT

0. The shifting of the spike initiation
threshold VT toward a more depolarized value after a spike prevents
the immediate generation of a second action potential. For the non-
refractory EIF model, it was necessary to use a reset value that is
sufficiently subthreshold to prevent repetitive firing. For this model,
Vre ! &55 mV followed by a 10-ms refractory period in all the
simulations was used.

The performance index (Jolivet et al. 2004; Kistler et al. 1997) used
to compare spike trains generated by the model to the experimental
recordings was taken to be the coincidence factor (

( $
Ncoinc % )Ncoinc*

0.5+Nmodel & Nneuron,

1

!
(1)

Ncoinc is the number of coincidences with precision ' ! 5 ms,
!Ncoinc" ! 2f'Nneuron is the number of expected chance coincidences
generated by a Poisson process with the same firing rate f as
the neuron, Nneuron and Nmodel are the number of spikes in the spike
trains of the neuron and the model, respectively (! is a normal-
ization factor that is of no importance in the following as only
ratios of ( are considered). In Fig. 4B, the ratio (/(- is plotted,
where ( evaluates the overlap between the prediction of the model
and a target experimental spike train, and (- is calculated between
the target spike train and a second experimental recording obtained
with the same driving current. Only pairs of trials with an exper-
imental reliability (- . 0.75 between recording sessions spaced by
15 min were used. Setting the threshold at this level still included
neurons that fire at low rates (around 1 Hz) but excluded those in
which a significant drift in cellular properties (significantly in-
creasing or decreasing voltage baselines or firing rates) was seen
over the time between the repeated measurements.

R E S U L T S

To produce fluctuating voltage traces, a stochastic current
was injected into somatosensory pyramidal cells via a whole
cell somatic patch-clamp electrode. Basic electrophysiology
provides an equation that relates the capacitive charging cur-
rent and the summed effect Im(V, t) of the transmembrane
currents to this injected current Iin(t)

C
dV

dt
& Im+V, t, & Inoise $ Iin +t, (2)

In this formulation, Im comprises both transmembrane cur-
rents and equilibrating currents flowing between the soma
(point of current injection) and the dendrites and axon. The
noise term Inoise comprises effects from weak background
synaptic activity and other sources of high-frequency variabil-
ity. Equation 2 may be re-arranged to yield the dynamic
transmembrane current

Im +V, t, & Inoise $ Iin +t, % C
dV

dt
(3)

The injected current waveform Iin is known a priori and the
derivative dV/dt may be calculated from the experimentally
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measured voltage. Therefore once the capacitance C has been
determined (conveniently achieved by examining the variance
of Im; see following text), the transmembrane current Im can be
calculated as a function of time t (Fig. 1A).

Dynamic I-V curve

Both Im(t) and V(t) are parameterized by time, whereas for
an I-V curve, a direct relation between the two is required. A
scatter plot of V(t) on the x axis versus Im(t) on the y axis is
given in Fig. 1B where only data in the subthreshold voltage
range and run up to the spike are included at this stage (by
excluding all data that fall in a 200-ms window following each
spike peak). For a given voltage, a Gaussian distribution is seen
for the values of the current (Fig. 1B, inset), which is largely
due to the intrinsic noise Inoise (83% of the SD). The average

current, as a function of voltage, defines the dynamic I-V curve
Id(V)

Id +V, $ Mean /Im+V, t,0 (4)

Practically, this quantity may be calculated by collecting all
the points in the trajectory with a voltage in the range V 1 '/2,
where ' is a bin of sufficiently small width. The dynamic I-V
curve for a layer-5 pyramidal cell is given in Fig. 1B (red
squares) and comprises linear and strong negative components.

Determination of the capacitance

The calculation of the membrane current via Eq. 3 requires
the capacitance C to be known. Using an estimate Ce for the
capacitance, this equation can be cast in the form

Iin+t,

Ce
%

dV

dt
$

Im+V, t,

C
& # 1

Ce
%

1

C$ Iin +t, &
Inoise

C
(5)

The variance (see Fig. 1B, inset) at a voltage V takes the
form

Var%Iin

Ce
%

dV

dt &v

$ Var%Im

C&v

& # 1

Ce
%

1

C$
2

Var /Iin0v & Var%Inoise

C &
v

(6)

The right-hand side of Eq. 6 is minimized when Ce ! C (Fig.
1, C and D), yielding the correct cellular capacitance. In
calculating Eq. 6, the covariance of Iin and Im at a voltage V is
assumed to vanish, which is justifiable for the variance calcu-
lated over the subthreshold I-V curve. This approach yields a
capacitance that is consistent with standard methods (con-
firmed by responses to square-pulse currents) and is justified by
the low variability around the mean identified in the previous
section.

One-variable neuron models

An important family of neuronal models in widespread use
(for recent reviews, see Burkitt 2006; Gerstner and Kistler
2002; Lindner et al. 2004) has a voltage dynamics of the form

dV

dt
$ F +V , &

Iin +t,

C
(7)

where in general F(V ) is a nonlinear function of voltage. These
dynamics are supplemented by a threshold Vth above which an
action potential is registered, followed by a reset to a sub-
threshold voltage Vre. In the absence of injected current, the
rate of change of voltage is equal to the function F(V ), so its
zeros can be used to identify stable fixed points of the voltage
such as the resting potential, and unstable points such as the
spike-initiation threshold.

Different models for F(V ) have been proposed with the most
common choice being the linear, leaky integrate-and-fire
model for which F(V ) ! (Em – V)/"m where Em is the resting
potential and "m the membrane time constant. Nonlinear forms
for F(V ) have also been proposed that explicitly describe spike
initiation, such as the quadratic integrate-and-fire model (Gut-
kin and Ermentrout 1998; Izhikevich 2004; Latham et al.
2000), which is also the canonical form of type I models

Iin(t) 1nA

V(t) 20mV

Im(t) =
Iin - CdV/dt

50ms

1nA
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FIG. 1. Experimental protocol for the dynamic I-V curve. A: fluctuating
current Iin(t) was injected into the soma and the voltage V(t) measured.
Following Eq. 3, the rate of change of voltage, multiplied by the capacitance
C (176 pF), was subtracted from the injected current to yield the time-
dependent transmembrane current Im(t). B: scatter plot of Im(t) as a function of
V(t) with all points lying in a 200-ms window following a spike peak excluded.
Inset: distribution (shaded region) of Im(t) for the voltage –57 mV (resting
potential, solid line on main B) fitted to a Gaussian (inset, solid line). The
transmembrane current distribution in the absence of injected current (inset,
dashed line), calculated using the 1st 50 ms of the voltage trace in A, shows
that most of the variability (83% of the SD) arises from intrinsic noise. The
average transmembrane current (1-mV voltage bins) yields the dynamic I-V
curve (main B, red squares) comprising a linear subthreshold part and an
inward spike-generating component at higher voltages. C: finding the cellular
capacitance (see text). Plots of the average Iin/Ce – dV/dt calculated with 3
different estimates of the capacitance Ce have gradients that monotonically
decrease with Ce but variances that are nonmonotonic (bar graph inset). D: the
variance (Eq. 7) at the resting potential is minimized at the correct capacitance.
The color of the 3 symbols corresponds to that of C. For graphs B–D, 40 s of
experimental data were used.

658 BADEL, LEFORT, BRETTE, PETERSEN, GERSTNER, AND RICHARDSON

J Neurophysiol • VOL 99 • FEBRUARY 2008 • www.jn.org

 on January 8, 2010 
jn.physiology.org

D
ow

nloaded from
 

http://jn.physiology.org


(Ermentrout 1996; Ermentrout and Kopell 1986). An alter-
native proposal for the nonlinearity is the EIF model
(Fourcaud-Trocmé et al. 2003) that includes the activation
of the spike-generating sodium current. It has been shown
(Fourcaud-Trocmé and Brunel 2005) that the functional
form used to model the spike-initiation is a crucial determi-
nant of the neuronal response to rapid synaptic signaling.

The dynamic I-V curve provides an experimental method for
measuring F(V ) directly. On comparing Eqs. 2 and 7, a natural
interpretation is

F +V , $ %Id+V,/C (8)

where Id was defined in Eq. 4. With this choice, the intrinsic
current of the model will be the same as in the experimental
data on average. Although the temporal effects of voltage-
gated currents are averaged out in this one-variable (somatic
voltage) model, it was shown in the previous section that after
the intrinsic variability is accounted for, the unexplained vari-
ability around the mean is low, so it can be expected that Eq.
8 would have the potential to provide an accurate description of
neuronal dynamics.

In Fig. 2A, the function F(V ) (expansion of data in Fig. 1B)
measured from a pyramidal cell is plotted (symbols). There are
two fixed points where F(V ) ! 0 for the resting potential and
spike-initiation threshold, a linear region where the cellular
response is passive and a rapid nonlinear component at higher
voltages. A semi-log plot (see inset) shows that the nonlinear
component is exponential (y axis), and therefore these mea-
surements provide convincing empirical evidence for the EIF
model (Fourcaud-Trocmé et al. 2003) for pyramidal cells for
which

F +V, $
1

"m
#Em % V & 'T exp#V % VT

'T
$$ (9)

The EIF model has four parameters: the membrane time
constant "m, the resting potential Em, the spike-initiation
threshold VT, and the spike width 'T, which controls the
sharpness of the initial phase of the spike. A least-squares fit
of the full form of Eq. 9 to the pyramidal-cell I-V curve data
(Fig. 2A, solid line) is seen to be in excellent agreement with
the pyramidal-cell dynamic I-V curve. It should be noted that
the spike initiation for pyramidals is sharper than that of the
hippocampal interneuron model (Wang and Buzsáki 1996) used
in the original EIF paper (Fourcaud-Trocmé et al. 2003) in
common with the “kink”-like spikes identified in recent ana-
lyzes of pyramidal-cell voltage recordings (McCormick et al.
2007; Naundorf et al. 2006).

Variation across the population

By comparing the results from different recordings (n ! 12),
we found that the qualitative shape of the dynamic I-V curve
was remarkably stable across layer-5 pyramidals with the
EIF model always providing an excellent match. After
fitting the model to data on a neuron-by-neuron basis, we
examined the histograms of model parameters (Fig. 2B).
The coefficients of variation (CV) for the membrane time
constant, distance to threshold and spike width were 32, 25,
and 33%, respectively, demonstrating a significant degree of
heterogeneity in the population, with implications for net-
work modeling.

Postspike curve

The dynamic I-V method can also be applied to transient
changes in response properties, such as the postspike recovery
period excluded from the treatment illustrated in Figs. 1 and 2.
To this end, we separated the postspike data into the time slices
shown in Fig. 3A, and for each time slice, the dynamic I-V
curve was again calculated. The resulting postspike I-V curves
are quantitatively different and relax to the prespike form over
a period of many tens of milliseconds. The EIF functional form
(Eq. 9) also provided a good fit to the postspike data, which
was unexpected, allowing for the refractory properties to be
quantified in terms of the dynamic effects on the EIF param-
eters (Fig. 3B). The dynamics of the parameters could be fitted
by a single exponential term except for the resting potential Em
(requiring a biexponential form), which showed a prominent
sag indicative of the transient activation of a hyperpolariz-
ing current or of the deactivation of a depolarizing current,
such as Ih.

Verification of the models

These pre- and postspike response properties were used to
construct two models which were tested against further exper-
iments. The first model comprises Eqs. 7 and 9 with a “hard”
subthreshold postspike reset and is identical to the EIF model
(Fourcaud-Trocmé et al. 2003). The second is a novel refrac-
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FIG. 2. Quantification of the dynamic I-V curve. A: the experimentally
measured I-V curve [plotted with the sign inverted to yield the function F(V ),
symbols] plotted together with the exponential integrate-and-fire (EIF) model
fit (line) with parameters "m ! 17.2 ms, Em ! &57.0 mV, VT ! &42.0 mV,
and 'T ! 1.51 mV. The curve crosses the V axis at 2 voltages: &57 mV
(resting potential) and –38 mV (spike-initiation threshold). Inset: semi-log plot
of the I-V curve and fit (with linear component subtracted) during the upswing
of the action potential showing a clear exponential rise (fit with the exponential
up to –30 mV followed by a rounding-off of the action potential around its
peak value of %30 mV). B: the distributions of the EIF parameters for a sample
of pyramidal cells (n ! 12) with means 1 SD: "m ! 23.3 1 7.5 ms, Em !
&57.8 1 4.4 mV, VT – Em ! 12.6 1 3.2 mV, and 'T ! 1.2 1 0.4 mV. The
capacitance (data not shown), which is a function of cell geometry and size,
also varied across the population with C ! 260 1 75 pF.
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tory EIF model (rEIF) for which the “soft” refractory period
relaxes with the dynamics identified in Fig. 3 (see METHODS).

For each cell investigated, a range of test currents, with
different means and variances, were injected to produce volt-
age traces with firing rates in the range of 1–15 Hz. A unique
set of model parameters was extracted individually for each
cell via a fit to the dynamic I-V curve from a single 40-s voltage
trace of intermediate firing rate (for the nonrefractory model,
the voltage data in a 200-ms window following each spike peak
were excluded from the analysis). The parameters of this
model were then fixed to be tested on the other current
waveforms and compared with the response from the same
cell. Each test current was injected into the cell twice so that
the intrinsic reliability of the cell could also be quantified. The
measures of the quality of prediction of the rEIF and EIF
models and the cellular reliability, comprised: the average
firing rate, the number of predicted spikes (within 15 ms of the
spike peak) and the accuracy of the subthreshold voltage. For
the latter, the root-mean-square (RMS) difference between the
model voltage and the experimental voltage was examined
using data at least 150 ms away from spikes. For the voltage
distributions, only data between 0.5 ms before and 3 ms after
the spike were excluded. The results are plotted in Fig. 4.

Both models predict the positions of isolated spikes
accurately and have a subthreshold voltage in close agree-
ment with the experimental data. However, the hard reset of
the EIF is a poor model of the postspike behavior of layer-5

pyramidal cells. In Fig. 4A, bottom, the EIF is seen to miss
a spike in a closely spaced pair (left) and to add a spurious
spike due to an underestimation of the threshold (right). At
these firing rates, such effects were relatively rare and both
models matched the firing rates well (Fig. 4, B and C)
although with the EIF predicting a weak excess of spikes at
higher rates. The positions of the spikes were also accu-
rately predicted (see METHODS) where for the rEIF in Fig. 4D,
it is seen that the model rarely predicts #75% of the spikes
correctly with a mean 1 SD of 83 1 8% and where the EIF
model has a mean 1 SD of 72 1 14% spikes predicted
relative to the intrinsic reliability. Finally, the typical RMS
difference of the subthreshold voltage for the rEIF model
was 1.7 mV and for the EIF 2.0 mV, both of which again
compare favorably with the RMS for repeated stimuli at 1.4
mV as can be seen in Fig. 4E, as well as in F, which
compares the voltage distributions themselves.

Efficiency of the method

The results presented so far were obtained from 40-s voltage
traces. To compare the results against those from shorter
recordings, we compared the I-V curves obtained by using only
the first 10 s of data with those obtained using the whole 40-s
trace. We found little difference between the model fits for the
two recording durations (Fig. 5). It can be noted that the
limiting factor for a clean fit is the collection of a sufficient
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number of spikes (in this case around 50 for the 10 s measure-
ment) during the recording.

D I S C U S S I O N

We have demonstrated a novel method for measuring an I-V
curve that characterizes the neuronal response under conditions
of ongoing, naturalistic voltage fluctuations. For cortical py-
ramidal cells the prespike I-V curve was very well fitted by the
EIF model (Fourcaud-Trocmé et al. 2003). The distribution of
fitting parameters for a population of cells was also given with
CV values demonstrating a significant degree of heterogeneity.
The dynamic I-V curve was also measured in postspike time
slices and the refractory properties quantified. An unexpected
result was that the refractory I-V curves were still well fitted by
the EIF functional form, allowing for the derivation of a
refractory extension of the basic EIF model (rEIF).

Both the EIF and rEIF models were tested against further
experiments and shown to predict spike times accurately with
the rEIF showing particularly close agreement with the exper-
imental data. In comparison with the neuronal response to
repeated stimuli, it was shown that the predictive ability of
models generated from the dynamic I-V method is largely
limited by the intrinsic reliability of the neuron.

The method is highly efficient, requiring a few tens of
seconds of experimental time. The low-noise data gathered
here (see Fig. 2A) required 40-s voltage traces. However, if the
neuron is firing at around a few hertz, 210–20 s is more than
enough to categorize the pre- and postspike response properties
(Fig. 5). This efficiency makes the method suitable for the
high-throughput routine neuronal classification and model fit-
ting to experimental data that is required for the generation of
network models that include cellular heterogeneities.

Applications and extensions

A number of elaborations of the method suggest themselves,
specifically with a view to analyze the role of subthreshold
voltage-activated currents. Apart from the postspike sag re-
sponse of Em (Fig. 3B), such effects were not explicit in the data:
the subthreshold I-V curve was linear (Fig. 2A), and the additional
dynamics from any voltage-activated channels were not required
to accurately fit experimental data for traces with firing rates in
the range 1–15 Hz. This is not entirely unexpected as the
rapidly fluctuating voltage tonically activates voltage-gated
channels with slower dynamics, and so their effect will largely
be seen as a change of the total membrane conductance. The
strength of this effect should vary with the different means and
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variances of the input current, though this was not significant
over the range of currents used here. Nevertheless, more refined
measurements that could combine fluctuating current with ramps
(Swensen and Marder 2000) might be used to examine the
potential effects of the h-current, persistent sodium current, or
other currents that might be present. As a related point, it would
be simple to extend the method to the case of fluctuating
conductance injection (Destexhe et al. 2001). Although both
current and conductance fluctuations lead to very similar volt-
age distributions (Burkitt 2001; Richardson 2004; Richardson
and Gerstner 2005), the frequencies present in the spectrum of
the fluctuations increases with the level of conductance (Des-
texhe and Rudolph 2004). The faster temporal structure of
conductance-based input could potentially interact differently
with the dynamics of intrinsic currents to alter the measured
response properties. Such an effect might be measurable in
neurons with subthreshold currents with fast dynamics (with
time scales similar to the membrane time constant), but for
currents such as Ih (with relatively slow dynamics), this effect
could be expected to be weak. Finally, coupled to dendritic
recordings or by stimulating presynaptic units simultaneously,
the dynamic I-V curve may also be employed to study how the
activation of dendritic conductances affects the processing of
information in the soma.

Implications for neural modeling

During the last couple of years, there has been much debate
in the theoretical neuroscience community concerning the
appropriate minimal description of subthreshold response and
spike generation. In particular, the choice of a strict voltage
threshold, as in the classical integrate-and-fire model (Lapicque
1907; Stein 1967), has been critically analyzed (Fourcaud-
Trocmé et al. 2003), and various generalizations have been
proposed, including canonical phase models (Ermentrout 1996;

Ermentrout and Kopell 1986; Gutkin and Ermentrout 1998),
quadratic, (Latham et al. 2000) and exponential (Fourcaud-
Trocmé et al. 2003) integrate-and-fire models. Refractory prop-
erties have also been studied in several forms (Jolivet et al.
2004; Kistler et al. 1997; Lindner and Longtin 2005), and the
inclusion of a second, slow variable has proven effective in
reproducing more complex subthreshold dynamics such as
resonance (Brunel et al. 2003; Izhikevich 2004; Richardson
et al. 2003) and adaptation (Brette and Gerstner 2005; Clopath
et al. 2007; Gigante et al. 2007; Jolivet et al. 2004). The
dynamical I-V curve data for cortical pyramidals, and associ-
ated modeling, presented here provides clear empirical evi-
dence for the EIF model (Fourcaud-Trocmé et al. 2003),
which, even with a hard reset, was able to give an accurate
prediction of the spike times. It is interesting to note that the
measured spike width 'T for pyramidal cells is considerably
sharper than that predicted from the original fits to an inter-
neuron model with Hodgkin-Huxley spike-generating currents
(Wang and Buzsáki 1996). Given that the leaky integrate-and-
fire (IF) model is recovered from the EIF model in the limit
'T3 0, this empirical result goes some way in explaining the
success of leaky IF models in predicting firing rates (Rauch et
al. 2003) and spike times (Jolivet et al. 2006; Paninski et al.
2004).

Our findings also clearly highlight the importance of refrac-
tory properties for the correct modeling of cortical pyramidals.
The measured refractory properties comprised conductance in-
crease and, most importantly, a significantly increased threshold
for spike initiation allowing for a postspike reset that is above
the prespike threshold. Although the idea of exponentially
relaxing refractory properties is far from new (Fuortes and
Mantegazzini 1962; Geisler and Goldberg 1966), it has until
recently (Chacron et al. 2007; Gerstner and van Hemmen 1993;
Lindner and Longtin 2005) received little analytical attention.
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Although the refractory dynamics of "m, Em, and VT were used
for the rEIF model (Fig. 4), a two-variable model comprising
only voltage and an exponential relaxation for the threshold VT
captures the essential features of the pyramidal refractory
period and still provides an accurate description of the
postspike dynamics (model not shown); expending further
analytical effort to understand this effect would be worthwhile.

Finally, as part of our analyses, the distribution of fitting
parameters was measured across a sample population of cells.
These revealed a degree of heterogeneity that could well have
implications for the modeling of network stability and the
sharpness of transitions between dynamic states, such as rhyth-
mogenesis. The majority of analyzes of recurrent networks of
spiking neurons has been performed on networks of homoge-
neous populations. The experimentally measured distributions
provided here can be used in future studies that investigate the
effects of heterogeneity on emergent states in neuronal tissue.

A P P E N D I X A : O R N S T E I N - U H L E N B E C K P R O C E S S

The Ornstein-Uhlenbeck process (Uhlenbeck and Ornstein 1930) is
the Gaussian stochastic process defined by the equation

"
dx

dt
$ ! % x &'2#2"' +t, (A1)

Here, ' is a Gaussian white noise process with the properties
!'(t)" ! 0, !'(t)'(t-)" ! ((t – t-), where ( is the Dirac ( function. The
process (Eq. A1) has stationary mean !x(t)" ! !, variance !x2(t)" &
!x(t)"2 ! #2, and exponential autocorrelation

!x+t,x+t-," % !x+t," !x+t-," $ #2e
&(t&t-(

" (A2)

To produce a numerical realization of the Ornstein-Uhlenbeck
process x(t), we discretize the time interval into equally spaced points
tk ! k't, where 1/'t is the desired sampling frequency. By integrating
Eq. A1, the change in the value of x(t) between tk and tk%1 is found
to be

xk%1 % xk $
! % xk

"
't &'2#2't

"
)k (A3)

where 3k 2 !(0, 1) are independent Gaussian random numbers with
zero mean and unit variance. For our recordings at 20 kHz, we
generated the currents by applying Eq. A3 iteratively with a time step
't ! 0.05 ms. To produce a single current template, this was
performed twice (with different random-number seeds) with the fast
and slow time constants "fast and "slow and their amplitudes #fast and
#slow, and the two processes summed together with an additional DC
bias added to the current as required. This procedure was carried out
over the set of biases and variances (each time with a different
random-number seed) to yield the eight waveforms described in
METHODS.

A P P E N D I X B : S I N G L E - E L E C T R O D E R E C O R D I N G S

The faithful extraction of cell response properties requires accurate
measurements of the membrane voltage. However, when injecting
current and monitoring voltage simultaneously from a single elec-
trode, the filtering properties of the electrode may affect the measure-
ments to a considerable extent. Although standard techniques are
available to compensate electrode capacitance and access resistance,
in the case of strong, high-frequency stimuli, this correction is not
sufficient (Fig. 6), and some additional compensation is required.

Recently an active electrode compensation (AEC) technique was
introduced (Brette et al. 2005, 2007a,b) that solves this problem,
allowing for the simultaneous injection of current and measurement of
voltage using a single electrode. To verify this compensation tech-
nique for the dynamic I-V curve protocol, we performed recordings in
double-patch configuration with one electrode (referred to as electrode
1) simultaneously injecting current and recording voltage, while the
other electrode (control electrode 2) was used only to monitor the
voltage. In general, the uncompensated voltage measured from elec-
trode 1 showed a significant deviation from the control (Fig. 6).
Following the AEC methodology, we will now explain how these
artifacts can be removed from the voltage trace of electrode 1 through
the estimation of the electrode filter without knowledge of the voltage
from the control electrode, so as to allow for the measurement of
dynamic I-V curves from single-electrode recordings.

Electrode filter

We assume that the voltage across the electrode is a linearly filtered
version of the input current I(t). The recorded voltage V rec is the sum
of the true membrane voltage V and the electrode voltage V el, the
latter of which we write as a convolution integral of the current with
the (unknown) electrode filter f(s)

V rec +t, $ V +t, & V el +t, $ V +t, &)
0

4

f+s, I +t % s,ds (B1)

On the other hand, for a linear membrane the voltage can also
be written in terms of a filter g(s) such that V(t) ! V0 % 50

4
g(s)

I(t – s)ds. Therefore we cannot expect to determine the electrode
filter directly but rather the combined filter f̃(s) ! f(s) % g(s) of the
system consisting of the electrode and the neuron. It is this filter that
will be determined in the next section.

Optimization procedure

We have seen in the main text that the membrane capacitance can
be estimated from a variance minimization procedure. In our single-
electrode approach, the variance must be calculated using the true,
corrected membrane voltage, V(t) ! V rec(t) & 50

4
f(s)I(t – s)ds. In

analogy with Eq. 6, left, of the main text, we therefore minimize the
function

E $ var% I

Ce
% V̇ rec &)

0

4

f +s, İ +t % s,ds&
V

(B2)

with respect to both the filter f(s) and the capacitance Ce, where the dot
denotes the time derivative. Practically, the discrete form of this
equation is used

E $ var * Ii

Ce
% V̇ i

rec & +
k!0

M

fk İi&k,
i*$

(B3)

Here, V i
rec and Ii are the uncompensated voltage and current data at

time step i, and the derivatives are calculated as forward differences,
V̇ i

rec ! (V i%1
rec – Vi

rec)/'t, and İi ! (Ii%1 – Ii)/'t, where 't denotes the
time step of the recording (1/'t ! + is the sampling frequency in
kHz). fk is the kth value of the filter and represents how much of the
recorded voltage at a given time is due to the current that was injected
k time steps earlier. M is the total number of points in the filter (a way
to efficiently choose this parameter is discussed in the following text).
The subscript i ! $ indicates that the variance is calculated over the
set $ of those data points that are both (i) close to the resting potential
((V rec – Vrest( #0.5 mV), so that we can expect the membrane to
behave linearly, and (ii) lie . 200 ms after the peak of a spike, so that
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any refractory effects that would alter the membrane response are
avoided. We emphasize that the cost function in Eq. B3 differs slightly
from that in the standard AEC method (Brette et al. 2007a,b) because
it acts on the derivatives of the voltage, making it independent of a
potential voltage offset.

To minimize Eq. 6, right, we first introduce the notations

#x,y $
1

N
+
i*$

xi yi %
1

N 2 #+
i*$

xi$#+
i*$

yi$ (B4)

S x,y
j $

1

N
+
i*$

xi yi&j %
1

N2 # +
i*$

xi$# +
i*$

yi&j$ (B5)

X x,y
j,k $

1

N
+
i*$

xi&j yi&k %
1

N2 # +
i*$

xi&j$# +
i*$

yi&k$ (B6)

for functions x(t) and y(t) that have been discretized in time and
where the normalization factor N is the number of elements in the
sums (i.e., the number of data points where V rec is within 0.5 mV
of the resting potential). It should be noted that in the following
expressions, the indices j and k range from 0 to M, so that i – j or
i – k can effectively be negative. This can be dealt with by padding
the voltage data with a constant value for negative times. The
minimization proceeds in two steps: we first cancel the derivative
of Eq. B3 with respect to Ce, which gives an expression for Ce as
a function of the fk

1

Ce

$
#V̇ rec,I

#I,I
%
+
k!1

M

f k SI, İ
k

#I,I
(B7)

Then this expression is inserted back into Eq. B3, which is then
minimized over the filter variables fk. It is convenient to write the
resulting filter (which describes the linear response of the combined
electrode and neuron system) as a single vector, f! ! (f1, f2, . . . , fM), so
that the result of the minimization can be written in compact form as

f! $ A&1b! (B8)

where b! is a vector of covariance between the uncorrected membrane
current and the derivative of the injected current, and A is a matrix of
covariance involving only the injected current (A&1 denotes the matrix
inverse to A). Using the Eqs. B4—B6, the quantities A and b! are given by

A $ - A1, 1 . . . A1, M

···
· · ·

···
AM, 1 · · · AM, M . with A j, k $ X İ, İ

j,k % S I, İ
j S I, İ

k /#I,I (B9)

b! $ - b1

···
bM . with bj $ S F, İ

j (B10)

where the subscript F in Eq. B10 denotes the uncorrected membrane
current, F ! V̇ rec – (#V̇rec,I/#I,I)I.
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Further details of this active electrode compensation technique may be found in Brette et al. (2007a,b).
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In practice, the value of the cost function (Eq. B3) at the minimum
diminishes with increasing filter length M but increases again for large
M due to numerical errors; thus there is an optimal value for M that
can be found by standard optimization methods. We observed that in
general, a value of M such that the total length of the filter is
approximately one membrane time constant (10–20 ms) provides a
good choice.

Correction for the membrane filtering

The optimal filter derived in the previous section contains a slow
component that is due to the membrane filtering. This component
must be identified and removed from the overall filter to obtain the
correct electrode filter. As can be seen in Fig. 6, the filter comprises
a fast, high-amplitude rise and fall followed by a slow relaxation. To
decouple the component of the electrode from that of the membrane,
the slow relaxation is fitted with the sum of two exponentials, one with
a fast time constant (of the order of 0.2–0.5 ms) that is due to the
electrode, the other with a slower time constant (of the order of tens
of milliseconds) that is due to the membrane. Then the slow expo-
nential is subtracted from the combined filter to yield the electrode
filter (Fig. 6). Using this electrode filter, the component of the voltage
due to the electrode can be calculated and subtracted from the voltage
trace to obtain the correct membrane voltage (Fig. 6, right). The entire
method described in the main text can then be applied to the corrected
voltage trace. Finally, it can be noted that a more sophisticated
electrode compensation method can also be used (Brette et al.
2007a,b) based on a deconvolution procedure.

G R A N T S

C.C.H. Petersen, W. Gerstner, and L. Badel acknowledge support from the
Swiss National Science foundation. R. Brette acknowledges support from a
French Agence Nationale de la Recherche grant (HR-CORTEX). M.J.E.
Richardson was partially supported by a European grant Fast Analog Com-
puting with Emergent Transient States during his stay in Lausanne and
currently holds a Research Councils United Kingdom Academic Fellowship.

D I S C L O S U R E

The authors state that there are no conflicts of interest.

R E F E R E N C E S

Abbott LF, van Vreeswijk C. Asynchronous states in a network of pulse-
coupled oscillators. Phys Rev E 48: 1483–1490, 1993.

Brette R, Gerstner W. Adaptive exponential integrate-and-fire model as an
effective description of neuronal activity. J Neurophysiol 94: 3637–3642,
2005.

Brette R, Piwkowska Z, Rudolph M, Bal T, Destexhe A. A non-parametric
electrode model for intracellular recording. Neurocomputing 70: 1597–
1601, 2007a.

Brette R, Piwkowska Z, Rudolph-Lilith M, Bal T, Destexhe A. High-
resolution intracellular recordings using a real-time computational model of
the electrode. http://arxiv.org/abs/0711.2075, 2007b.

Brette R, Rudolph M, Piwkowska Z, Bal T, Destexhe A. How to emulate
double-electrode recordings with a single-electrode? A new method of
active electrode compensation. Soc Neurosci Abstr 31: 688.2, 2005.

Brunel N, Hakim V. Fast global oscillations in networks of integrate-and-fire
neurons with low firing rates. Neural Comput 11: 1621–1671, 1999.

Brunel N, Hakim V, Richardson MJE. Firing-rate resonance in a generalized
integrate-and-fire neuron with subthreshold resonance. Phys Rev E 67:
051916, 2003.

Burkitt AN. Balanced neurons: analysis of leaky integrate-and-fire neurons
with reversal potentials. Biol Cybern 85: 247–255, 2001.

Burkitt AN. A review of the integrate-and-fire neuron model. I. homogeneous
synaptic input. Biol Cybern 95: 1–19, 2006.

Chacron MJ, Lindner B, Longtin A. Threshold fatigue and information
transfer. J Comput Neurosci 23: 301–311, 2007.

Clopath C, Jolivet R, Rauch A, Lüscher HR, Gerstner W. Predicting
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