How do you determine the stimuli encoded by a neuron?

- Get lucky/genious (lec 1 Hubel + Wiesel, Hollywood)
- Have really simple sensor (lec 1 wind directon)
- Try everything
  - But ... there as many 16x16 black/white images than atoms in the universe
- Try random things, see what 'lights up' the neuron, and generalize!

... Reverse engineering the brain via spike triggered averages

## **Multivariate Statistics**

• Probability: P(x)

- Say: probability of x
- Mean: what are the chances of event x happening?

P

• Example: when you roll a d6, what is the probability of landing a 5?

$$(roll = 5) = \frac{1}{6}$$

• Conditional Probability: P(x|y)

- Say: probability of x given y
- Mean: given the knowledge of y having happened, how probable is x?
- Example: what is the probability of landing a 5 given the roll was over 3?

$$P(roll = 5|roll > 3) = \frac{1}{3} \qquad P(roll = 5|sky = blue) \\ P(roll = 5|roll > 3, isOdd(roll))$$

Bayes Inversion

• Conditional probabilities can be 'inverted':

$$P(x|y) = \frac{P(y|x)P(x)}{P(y)}$$











|                                                                                                                                                                                                   | _ |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| Spike triggered average (STA)                                                                                                                                                                     |   |
| Let's do an example for a 1-D, temporal stimulus                                                                                                                                                  |   |
| generate_spiketrain_from_linear_filter.m                                                                                                                                                          |   |
| T=100 * 10^3; %total duration of spike train, in milliseconds<br>deltat=1; %in ms                                                                                                                 |   |
| <pre>time_list=deltat*(1:length(stim_list)); %list of times</pre>                                                                                                                                 |   |
| spike_train %list of 0/1 spike/or not each timestep<br>stim_list %list of stimulus values at each timestep<br>                                                                                    |   |
| <pre>figure;<br/>subplot(211)<br/>plot(time_list,stim_list);<br/>title('stimulus','FontSize',18)<br/>subplot(212)<br/>stem(time_list,spike_train,'.')<br/>xlabel('time (ms)','FontSize',15)</pre> |   |
| title('spike raster plot','FontSize',15)                                                                                                                                                          |   |

























