
Examples	of	Maximum	Likelihood	Estimation	(MLE)	

Part	A:	Let’s	play	a	game.		In	this	bag	I	have	two	coins:	one	is	painted	green,	the	other	purple,	and	both	
are	weighted	funny.		The	green	coin	is	biased	heavily	to	land	heads	up,	and	will	do	so	about	90%	of	the	
time.		The	purple	coin	is	slightly	weighted	to	land	tails	up,	about	60%	of	flips.		Both	coins	are	otherwise	
identical.		In	this	game,	I’ll	pull	a	coin	out	of	the	bag	without	looking,	flip	it	in	secret,	and	tell	you	what	
landed	up,	either	heads	or	tails.		To	win	this	game,	you	have	to	guess	which	color	of	coin	I	picked	out	of	
the	bag.	
	
At	first	glance	this	game	may	seem	to	be	“a	coin	toss”	(pun!),	with	a	chance	of	guessing	the	color	right	
50%	of	the	time.		But	it	turns	out	to	be	easier	than	that,	since	we	know	that	each	coin	behaves	
differently.		Suppose	I	tell	you	that	I	flipped	a	tails.		Well,	we	know	the	green	coin	hits	tails	only	10%	of	
flips,	while	the	purple	coin	could	hit	tails	60%	of	flips.		i.e.,	

Probability	of	tails	given	coin	is	green	is	10%,	
Probability	of	tails	given	coin	is	purple	is	60%.	

Now	since	we	know	the	probabilities	of	tails	conditioned	on	which	coin	is	drawn,	we	know	the	
likelihoods:	

	 Likelihood	of	having	a	green	coin	given	tails	was	flipped	is	10%,	
	 Likelihood	of	having	a	purple	coin	given	tails	was	flipped	is	60%.	

When	I	tell	you	that	a	tails	was	flipped,	you	can	infer	that	it	is	6	times	more	likely	that	the	coin	I	drew	
was	a	purple	coin.		So	if	you	wanted	to	maximize	your	chances	of	winning	the	game,	you	should	choose	
the	coin	color	which	maximizes	your	likelihood	of	wining,	given	the	information	you	have	about	what	
was	flipped.			

That	is,	if	you	see	tails,	choose	purple;	if	you	see	heads,	choose	green.	

THIS	IS	EXACTLY	MAXIMUM	LIKELIHOOD	DECODING!		It	is	nothing	more	than:		you	choose	the	option	
that	is	most	likely	to	be	true	given	your	observation.		Here,	the	observation	is	a	heads	or	a	tails	(you	
could	say,	a	1	or	a	0)	and	you	are	choosing	a	color.		In	neuroscience,	it	is	a	spike	count	(a	number)	and	
you	are	choosing	a	stimulus	value.			

Now,	what’s	the	fraction	of	correct	responses	you	will	deliver	when	being	given	an	observed	responses,	
using	maximum	likelihood	decoding?			

To	figure	this	out,	consider	the	two	possibilities.			

Say	the	truth	is	that	a	green	coin	was	flipped.		How	often	will	you	get	it	right?		90%	of	the	time	a	heads	
will	occur,	and	according	to	your	maximum	likelihood	decoding	rule	you	will	say	“green,”	so	be	correct.		
So	90%	of	the	time	when	green	is	flipped,	you’re	correct.	

Say	the	truth	is	that	a	purple	coin	was	flipped.		How	often	will	you	get	it	right?		60%	of	the	time	you’ll	
get	a	tails,	and	say	“purple,”	so	be	correct.		So	60%	of	the	time	when	green	is	flipped,	you’re	correct.	

What’s	your	error	rate	on	balance?		We	are	assuming	each	coin	in	truth	is	flipped	an	equal	number	of	
times.		So	your	fraction	of	correct	responses	is	the	average	of	these	numbers,	75%.	



Cool!			Maximum	likelihood	decoding	sure	beats	guessing.	

THIS	IS	EXACTLY	THE	PROCEDURE	YOU	WILL	FOLLOW	IN	GENERAL	to	figure	out	your	fraction	of	correct	
responses.		The	only	difference	in	the	neural	case	is	that	there	are	more	than	two	possible	observations	
(heads	and	tails),	instead	integer-valued	spike	counts.		But	you	do	the	same	thing.		You	have	your	
maximum	likelihood	decoding	rule	in	hand.		You	assume	one	of	the	options	(i.e.,	one	stimulus	value)	is	
true,	and	see	what	percentage	of	the	time	your	rule	gives	you	the	right	answer.		Then	you	assume	the	
other	option	is	true,	and	see	what	percentage	of	the	time	your	rule	gives	you	the	right	answer.		You	
average	these	percentages,	and	that	is	your	fraction	of	correct	responses.	

	
	

	 	



	

Part	B:	Let’s	play	another	game.	 	 In	this	game	we	have	
two	 world	 class	 sprinters	 running	 the	 150m	 dash:	
Donovan	Bailey,	and	Michael	Johnson.		Each	runner	has	
a	 normal	 (Gaussian)	 distribution	 for	 their	 finishing	
times:	 Donovan	 has	 a	 mean	 of	 15	 seconds	 with	 a	
standard	deviation	of	 1second,	Michael	 has	 a	mean	of	
17	seconds	with	a	standard	deviation	of	1.5	seconds.		In	
this	 game,	 I’ll	 tell	 you	 the	 finishing	 time	 of	 one	 of	 the	
runners,	 and	 you	 win	 if	 you	 guess	 who	 ran	 that	 time	
correctly.		To	get	started,	you	could	use	MATLAB	to	plot	
the	finishing	time	distributions	of	each	runner,		and	get	
the	plot	on	the	right,	via	 this	code:	 (using	the	gaussian	
formula	from	class	together	with	linspace,	xlabel,	ylabel,	
legend	commands:)	

xlist=linspace(10,25,1000); 
  
m1=15 
s1=1 
m2=17 
s2=1.5 
  
gsn1=1/(sqrt(2*pi*s1^2))*exp(-(xlist-m1).^2/(2*s1^2)); 
gsn2=1/(sqrt(2*pi*s2^2))*exp(-(xlist-m2).^2/(2*s2^2)); 
  
  
%makes text bigger in upcoming plot labels 
set(0,'defaultaxesfontsize',20); 
set(0,'defaulttextfontsize',20);  
  
figure 
plot(xlist,gsn1,'r','LineWidth',4) 
hold on 
plot(xlist,gsn2,'b','LineWidth',4) 
legend('donny','mike') 
xlabel('time'); ylabel('probability') 
	

Suppose	I	give	you	a	running	time	of	21.5	seconds.		While	it’s	a	slow	time	for	the	American	Johnson,	the	
probability	of	Canadian	Bailey	running	over	20	seconds	is	extremely	small.		Thus	if	you’d	want	to	win,	
you’re	better	off	to	say	that	Michael	Johnson	ran	the	21.5.		

ONCE	AGAIN,	THIS	IS	MAXIMUM	LIKELIHOOD	DECODING!		You	are	given	an	observation	(here,	a	time),	
and	you	choose	the	option	that	was	most	likely	to	produce	that	time	(here,	Johnson).		You	can	then	
apply	this	method	to	determine	the	best	guess	to	win	this	game	given	any	running	time:		it’s	the	guess	
corresponding	to	the	higher	likelihood	(i.e.,	maximum	likelihood).	

To	compute		the	fraction	of	correct	responses,	you’d	follow	the	procedure	above.		That	would	involve	
summing	(integrating)	the	area	under	the	histograms	that	correspond	to	correct	choices.		For	
histograms,	as	on	the	assignment,	it’s	easier:		you	sum	up	the	probabilities	in	the	corresponding	bins.	

	



Part	C:	A	big	part	of	maximum	likelihood	estimation	involves	working	with	data	and	probability	
distributions.		In	practice,	you	will	not	have	smooth	curves	like	the	above	blue	and	redo	ones,	but	will	
need	to	build	your	own	histograms.	Use	the	following	code	to	generate	and	then	then	visualize	some	
random	data:	

	 D = 2*randn(1,10)+6; 
hist(D); 

	

You’ll	see	that	there	are	only	a	few	samples	in	the	data,	and	your	histogram	is	pretty	sparse.		You	might	
not	be	able	to	estimate	“overlap”	points	between	this	and	another	histogram	very	well,	to	see	above	
and	below	what	value	you	should	choose	an	option	based	on	this	histogram.	

Generate	1000	samples	from	D	using	the	same	formula,	instead	of	10,	and	plot	the	histogram.		You	
should	be	able	to	get	a	better	idea	now.		To	visualize	the	1000	samples	more	finely,	increase	the	number	
of	histogram	bins	to	100	with:	

hist(D,100); 
 
To	get	a	good	smooth	histogram	now,	you	might	need	to	draw	even	more	samples.		YOU	COULD	RUN	
INTO	THIS	TYPE	OF	ISSUE	ON	YOUR	ASSIGNMENT.		MAKE	SURE	YOU	ARE	DOING	ENOUGH	SAMPLES	TO	
GET	SMOOTH	HISTOGRAMS,	JUST	INCREASING	NUMBER	OF	TRIALS.	
	
	
Part	D:		OPTIONAL.		In	our	HW	problem,	we	can	get	around	the	issue	of	not	having	enough	samples	by	
just	increasing	the	trial	count,	i.e.,	asking	the	computer	for	more!		In	real	life,	often	we	will	be	given	a	
small	set	of	data	and	will	need	to	use	another	strategy	to	make	informed	guesses	about	where	other	
samples	came	from.		We’ll	discuss	how	to	do	this	using	mean	and	variance	statistics	(or	the	square	root	
of	variance,	the	standard	deviation,	often	called	std	dev	or	std).		You	do	not	need	to	do	this	for	the	
assignment,	but	it’s	worth	knowing	about	for	sure.	
	
Suppose	I	have	a	machine	that	spits	out	two	different	kinds	of	white	powder.		One	powder	is	the	stuff	
that	covers	‘sourpatch	kids’	candy,	is	extremely	delicious,	and	I	want	to	eat	it.		The	other	powder	is	Ricin,	
a	powerful	neurotoxin.		Based	on	experiments	I	have	conducted	with	a	population	of	undergrads,	I	know	
that	the	machine	will	distribute	both	powders	with	equal	probability,	and	that	the	Ricin	is	less	massive,	
having	a	lower	weight.		I	have	been	able	to	find	the	weights	in	grams	of	20	powder	samples,	below	as	
matrix	PD1:	
	
    PD1 = [2.7800    3.2000    3.0400    2.6900    2.9600    3.1300    2.7600    2.9800    2.4900    2.9200; 
           1.8600    2.6900    2.3200    2.9100    2.0500    3.0700    2.2600    2.1000    2.1000    2.1200] 
 

The	rows	represent	different	classes	of	powders,	determined	by	how	the	undergrads	responded	to	the	
powders.		The	columns	are	different	sample	numbers.		First,	determine	which	row	corresponds	to	the	
Ricin,	by	finding	which	class	has	a	lower	weight.		To	do	this,	take	the	mean	across	the	second	(column)	
dimension:	
	
	 mean(PD1,2) 
	
Assign	each	row	as	either	being	one	of	candy	or	poison	based	on	the	average	weight.		Now	get	an	idea	
for	the	distribution	of	mass	within	each	group:	



	
	 std(PD1, 0, 2)	
 
Note	that	the	0	argument	is	necessary,	due	to	an	optional	flag	used	in	the	definition	of	std	which	is	not	
important	here	(see	doc	std)	for	details	if	you’re	interested.		We	see	that	each	row	has	a	different	
variance,	but	it	is	difficult	to	see	how	these	relate	to	the	means.		First	we	can	plot	the	means:	
	

plot([1 2], mean(PD1,2), ‘b-‘); 
	
which	is	sort	of	hard	to	view,	so	plot	it	again	replacing	the	default	‘b-‘	with	‘r.’	or	‘go’	or	‘mx:’	and	view	
the	effects	(google	matlab	linespec	for	further	details).		We	can	then	incorporate	our	knowledge	of	the	
variance	within	each	row	by	overlaying	the	standard	deviation	from	each	mean.		First,	run	a	‘doc	
errorbar’	and	read	the	options,	then	try:	
	
	 errorbar([1 2], mean(PD1,2), std(PD1,0,2), 'ro', 'markerSize', 12) 
	
The	x-axis	corresponds	to	the	column	number,	and	the	y-axis	to	the	mass	in	grams.		The	vertical	lines	at	
each	datapoint	correspond	to	the	standard	deviation	about	the	mean	of	each	data	row.		You	can	then	
imagine	plotting	two	normal	distributions,	as	in	part	B,	with	the	mean/std	you’ve	calculated,	and	doing	
MLE	as	before.		Here,	we’ll	just	use	the	errorbar	plot	to	make	some	educated	guesses.	
	

Ask	yourself:		say	I	have	four	samples,	represented	as	ordered	pairs	of	ID	letters	and	weights:	(A,	
2.28),	(B,	3.25),	(C,	3.22)	,	(D,	2.65).		Which	sample	would	you	say	was	likely	poison?		Which	
sample	would	you	say	is	safe	for	human	consumption?		Between	the	two	remaining	samples,	
which	would	you	wish	to	sample,	and	which	would	you	offer	to	your	friend/enemy,	and	why? 


