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Leonhard Euler’s Introductio in analysin infinitorum (1748) is an important work in the history

of mathematics. In it, Euler provided the foundation for much of today’s mathematical analysis,

focusing in particular on functions and their development into infinite series as central objects of

study. Below (in sans-serif font) is the text of John Blanton’s English translation of Chapter VI of

this work by Euler.1
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114. Since a0 = 1, when the exponent on a increases, the power itself increases, provided

a is greater than 1. It follows that if the exponent is infinitely small and positive, then the

power also exceeds 1 by an infinitely small number. Let ω be an infinitely small number, or a

fraction so small that, although not equal to zero, still aω = 1+ψ, where ψ is also an infinitely

small number. From the preceding chapter we know that unless ψ were infinitely small, then

neither would ω be infinitely small. It follows that ψ = ω, or ψ > ω, or ψ > ω. Which of

these is true depends on the value of a, which is not now known, so we let ψ = kω. Then

we have aω = 1 + kω, and with a as the base for the logarithms, we have ω = log(1 + kω).

EXAMPLE

In order that it may be clearer how the number k depends on a, let a = 10. From the table of

common logarithms, we look for the logarithm of a number which exceeds 1 by the smallest

possible amount, for instance, 1 + 1
1000000 , so that kω = 1

1000000 . Then log
(
1 + 1

1000000

)
=

log 1000001
1000000 = 0.00000043429 = ω. Since kω = 0.00000100000, it follows that 1

k = 43429
1000000

and k = 1000000
43429 = 2.30258. We see that k is a finite number which depends on the value

of the base a. If a different base had been chosen, then the logarithm of the same number

1 + kω will differ from the logarithm of the number already given. It follows that a different

value of k will result.

1from Leonhard Euler, Introduction to Analysis of the Infinite. Translated by John D. Blanton. New York: Springer-
Verlag, 1988, 1990. pp. 92-100.
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115. Since aω = 1 + kω, we have ajω = (1 + kω)j , whatever value we assign to j. It follows

that

ajω = 1 +
j

1
kω +

j(j − 1)

1 · 2
k2ω2 +

j(j − 1)(j − 2)

1 · 2 · 3
k3ω3 + · · · .

If now we let j = z
ω , where z denotes any finite number, since ω is infinitely small, then j is

infinitely large. Then we have ω = z
j , where ω is represented by a fraction with an infinite

denominator, so that ω is infinitely small, as it should be. When we substitute z
j for ω then

az = (1+kz/j)j = 1+
1

1
kz+

1(j − 1)

1 · 2j
k2z2+

1(j − 1)(j − 2)

1 · 2j · 3j
k3z3+

1(j − 1)(j − 2)(j − 3)

1 · 2j · 3j · 4j
k4z4+· · · .

This equation is true provided an infinitely large number is substituted for j, but then k is a

finite number depending on a, as we have just seen.

116. Since j is infinitely large, j−1
j = 1, and the larger the number we substitute for j, the

closer the value of the fraction j−1
j comes to 1. Therefore, if j is a number larger than any

assignable number, then j−1
j is equal to 1. For the same reason, j−2

j = 1, j−3
j = 1, and so

forth. It follows that j−1
2j = 1

2 ,
j−2
3j = 1

3 ,
j−3
4j = 1

4 , and so forth. When we substitute these

values we obtain

az = 1 +
kz

1
+
k2z2

1 · 2
+

k3z3

1 · 2 · 3
+

k4z4

1 · 2 · 3 · 4
+ · · · .

This expresses a relationship between the numbers a and k, since when we let z = 1, we have

a = 1 +
k

1
+

k2

1 · 2
+

k3

1 · 2 · 3
+

k4

1 · 2 · 3 · 4
+ · · · .

When a = 10, then k is necessarily approximately equal to 2.30258 as we have already seen.

117. Suppose b = an, and let a be the base for the logarithm, so that log b = n. Since

bz = anz, we have the infinite series

bz = 1 +
knz

1
+
k2n2z2

1 · 2
+
k3n3z3

1 · 2 · 3
+

k4n4z4

1 · 2 · 3 · 4
+ · · · .

Now we substitute log b for n, so that

bz = 1 +
kz

1
log b+

k2z2

1 · 2
(log b)2 +

k3z3

1 · 2 · 3
(log b)3 +

k4z4

1 · 2 · 3 · 4
(log b)4 + · · · .

Since we know the value of k from the given value of base a, the general exponential bz can

be expressed in an infinite series whose terms proceed with the powers of z. Having shown

this fact, we now go on to show how logarithms can be expressed by infinite series.

118. Since aω = 1 + kω, where ω is an infinitely small fraction, and the relation between a

and k is given by

a = 1 +
k

1
+

k2

1 · 2
+

k3

1 · 2 · 3
+ · · · ,
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if a is taken as the base of the logarithms, then ω = log(1 + kω), and jω = log(1 + kω)j . It

is clear that the larger the number chosen for j, the more (1 + kω)j will exceed 1. If we let

j be an infinite number, the value of the power (1 + kω)j becomes greater than any number

greater than 1. Now if we let (1 + kω)j = 1 + x, then log(1 + x) = jω. Since jω is a finite

number, namely the logarithm of 1 + x, it is clear that j must be an infinitely large number;

otherwise, jω could not have a finite value.

119. Since we have let (1+kω)j = 1+x, we have 1+kω = (1+x)
1
j and kω = (1+x)

1
j −1, so

that jω = j
k ((1+x)

1
j −1). Since jω = log(1+x), it follows that log(1+x) = j

k (1+x)
1
j − j

k

where j is a number infinitely large. But we have

(1 + x)
1
j = 1 +

1

jx
− 1(j − 1)

j · 2j
x2 +

1(j − 1)(2j − 1)

j · 2j · 3j
x3− 1(j − 1)(2j − 1)(3j − 1)

j · 2j · 3j · 4j
x4 + · · · .

Since j is an infinite number, j−1
2j = 1

2 ,
2j−1
3j = 2

3 ,
3j−1
4j = 3

4 , etc. now it follows that

j(1 + x)
1
j = j +

x

1
− x2

2
+
x3

3
− x4

4
+ · · · .

As a result we have

log(1 + x) =
1

k

(
x

1
− x2

2
+
x3

3
− x4

4
+ · · ·

)
,

where a is the base of the logarithm and

a = 1 +
k

1
+

k2

1 · 2
+

k3

1 · 2 · 3
+ · · · .

120. Since we have a series for the logarithm of 1 + x, we can use this to define the number

k when a is the base. If we let 1 + x = a, since log a = 1, we have

1 =
1

k

(
a− 1

1
− (a− 1)2

2
+

(a− 1)3

3
− (a− 1)4

4
+ · · ·

)
.

It follows that

k =
a− 1

1
− (a− 1)2

2
+

(a− 1)3

3
− (a− 1)4

4
+ · · · .

If we let a = 10, the value of this infinite series must be approximately equal to 2.30258. We

have

2.30258 =
9

1
− 92

2
+

93

3
− 94

4
+ · · · ,

but it is difficult to see how this can be since the terms of this series continually grow larger

and the sum of several terms does not seem to approach any limit. We will soon have an

answer to this paradox.
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121. Since

log(1 + x) =
1

k

(
x

1
− x2

2
+
x3

3
− · · ·

)
,

when we substitute −x for x, we obtain

log(1− x) = −1

k

(
x

1
+
x2

2
+
x3

3
+
x4

4
+ · · ·

)
.

If we subtract the second series from the first we obtain

log(1 + x)− log(1− x) = log

(
1 + x

1− x

)
=

2

k

(
x

1
+
x3

3
+
x5

5
+
x7

7
+ · · ·

)
.

Now if we let
1 + x

1− x
= a, so that x =

a− 1

a+ 1
, and because log a = 1, we have

k = 2

(
a− 1

a+ 1
+

(a− 1)3

3(a+ 1)3
+

(a− 1)5

5(a+ 1)5
+ · · ·

)
.

From this equation we can find the value of k when a is given. For example, if a = 10, then

k = 2( 9
11 + 93

3·113 + 95

5·115 + 97

7·117 + · · · ) and the terms of this series decrease in a reasonable

way so that soon a satisfactory approximation for k can be obtained.

122. Since we are free to choose the base a for the system of logarithms, we now choose a

in such a way that k = 1. Suppose now that k = 1; then the series found above in section

116, 1 + 1
1 + 1

1·2 + 1
1·2·3 + 1

1·2·3·4 + · · · , is equal to a. If the terms are represented as decimal

fractions and summed, we obtain the value for

a = 2.71828182845904523536028 · · · .

When this base is chosen, the logarithms are called natural or hyperbolic. The latter name

is used since the quadrature of a hyperbola can be expressed through these logarithms. For

the sake of brevity for this number 2.718281828459 · · · we will use the symbol e, which will

denote the base of the natural or hyperbolic logarithms, which corresponds to the value k = 1,

and e represents the sum of the infinite series 1 + 1
1 + 1

1·2 + 1
1·2·3 + 1

1·2·3·4 + · · · .

123. Natural logarithms have the property that the logarithm of 1 + ω is equal to ω, where

ω is an infinitely small quantity. From this it follows that k = 1, and the natural logarithms

of all numbers can be found. Let e stand for the number found above, then

ez = 1 +
z

1
+

z2

1 · 2
+

z3

1 · 2 · 3
+

z4

1 · 2 · 3 · 4
+ · · · ,

and the natural logarithms themselves can be found from these series where log(1 + x) =
1
k

(
x
1 −

x2

2 + x3

3 − · · ·
)

, and log
(
1+x
1−x

)
= 2x

1 + 2x3

3 + 2x5

5 + 2x7

7 + 2x9

9 + · · · . This last series is

strongly convergent if we substitute an extremely small fraction for x. For instance, if x = 1
5 ,

then

log
6

4
= log

3

2
=

2

1 · 5
+

2

3 · 53
+

2

5 · 55
+

2

7 · 57
+ · · · .
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If x = 1
7 , then

log
4

3
=

2

1 · 7
+

2

3 · 73
+

2

5 · 75
+

2

7 · 77
+ · · · ,

and if x = 1
9 , then

log
5

4
=

2

1 · 9
+

2

3 · 93
+

2

5 · 95
+

2

7 · 97
+ · · · .

From the logarithms of these fractions we can find the logarithms of integers. From the nature

of logarithms we have log 3
2 + log 4

3 = log 2, and log 3
2 + log 2 = log 3, and 2 log 2 = log 4.

Further we have log 5
4 + log 4 = log 5, log 2 + log 3 = log 6, 3 log 2 = log 8, 2 log 3 =

log 9, log 2 + log 5 = log 10.

EXAMPLE

We can now state the values of the natural logarithms of integers from 1 to 10.

log 1 = 0.00000 00000 00000 00000 00000 log 2 = 0.69314 71805 59945 30941 72321

log 3 = 1.09861 22886 68109 69139 52452 log 4 = 1.38629 43611 19890 61883 44642

log 5 = 1.60943 79124 34100 37460 07593 log 6 = 1.79175 94692 28055 00081 24773

log 7 = 1.94591 01490 55313 30510 54639 log 8 = 2.07944 15416 79835 92825 16964

log 9 = 2.19722 45773 36219 38279 04905 log 10 = 2.30258 50929 94045 68401 79914

All of these logarithms are computed from the above three series, with the exception of

log 7, which can be found as follows. When in the last series given above, we let x = 1
99 ,

we obtain log 100
98 = log 50

49 = 0.02020 27073 17519 44840 78230. When this is subtracted

from log 50 = 2 log 5 + log 2 = 3.91202 30054 28146 05861 87508 we obtain log 49. But

log 7 = 1
2 log 49.

124. Let the natural logarithm of 1 + x be equal to y, then

y =
x

1
− x2

2
+
x3

3
− x4

4
+ · · · .

Now let a be the base of a system of logarithms and let v be the logarithm of 1 + x in this

system. Then as we have seen,

v =
1

k

(
x− x2

2
+
x3

3
− x4

4
+ · · ·

)
=
y

k
.

It follows that k = y
v , and this is the most convenient method of calculating the value of

k corresponding to the base a; it is given by the quotient of the natural logarithm of any

number divided by the logarithms of that same number with the base a. Suppose the number

is a, then v = 1 and k is equal to the natural logarithm of a. In the system of common

logarithms, where the base is a = 10, then k is the natural logarithm of 10. It follows that

k = 2.30258 50929 94045 68401 79914, which is the value calculated not far above. If each
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natural logarithm is divided by this number k, or, which comes to the same thing, multiplied

by the decimal fraction 0.43429 44819 03251 82765 11289, then the results are the common

logarithms, with base a = 10.

125. Since

ez = 1 +
z

1
+

z2

1 · 2
+

z3

1 · 2 · 3
+ · · · ,

if we let ay = ez, then after taking natural logarithms, we have y log a = z, since log e = 1.

We now substitute this value in the series to obtain

ay = 1 +
y log a

1
+
y2(log a)2

1 · 2
+
y3(log a)3

1 · 2 · 3
+ · · · .

In this way, any exponential, with the aid of natural logarithms, can be expressed as an infinite

series. Now let j be an infinitely large number, then both exponentials and logarithms can

be expressed as powers. That is, ez =
(

1 + z
j

)j
and so ay =

(
1 + y log a

j

)j
. For natural

logarithms, we have log(1 + x) = j((1 + x)
1
j − 1). Other uses of natural logarithms are

discussed in integral calculus.
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