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The Euler Lecture 
Robert E. Bradley, Adelphi University 
Evolutes and Involutes from Huygens to Euler 
Analyse des infiniment petits, the first differential calculus textbook, was written by the 
Marquis de lʼHospital and published in 1696. A century later, Joseph Louis Lagrange 
published Théorie des fonctions analytiques (1797). In the intervening period, the 
conception of the differential calculus had changed from a geometric study of curves 
with the aid of differentials to a symbolic manipulation of functions, founded on a set of 
algebraic rules. The pivotal figure in this transition from the geometric to the algebraic 
was Leonhard Euler. 

We examine this evolution of the calculus by considering one particular class of 
problems, that of finding evolutes and involutes. This subject was pioneered by 
Christiaan Huygens in his Pendulum Clock (1673). Johann Bernoulli elaborated on 
Huygensʼ work, applying differential methods; essentially, Bernoulliʼs contributions to the 
subject make up the contents of Chapter 5 of de lʼHospitalʼs Analyse.  

In E129, one of his final papers form the first Petersburg period, Euler answered a 
question on evolutes posed by G. W. Krafft by extending Bernoulliʼs methods to an 
arbitrary degree of generality. By bringing his new methods of differential equations to 
bear on this subject, Euler essentially tamed it for all time. However, there was one 
more question to be resolved in E169, where Euler used series expansion to resolve a 
paradox in the theory of involutes that arose from the conflict between the geometric 
and algebraic description of curves with a certain kind of singular point. 

 
Sandro Caparrini, Institute for the History and Philosophy of Science and Tech-
nology, University of Toronto 
A Few Words About Clifford Ambrose Truesdell (1919-2000) 
The name of Clifford Truesdell does not need any introduction to Euler scholars. Yet 
there is schizophrenic attitude toward his work. While he is widely considered the 
greatest historian of eighteenth-century mathematical physics, his methods and results 
have often been severely criticized. Thus, for example, he is hardly cited in “Writing the 
History of Mathematics” (Birkhäuser, 2002), a general history of the history of 
mathematics. Eleven years after Truesdellʼs death and about half a century after the 
publication of his main historical works, it is now high time that an examination of what 
Truesdell really achieved is undertaken. 



 
Lawrence D'Antonio, Ramapo College 
The Mind is Confusedly Omniscient: Euler and the Causality Debates of the 
Enlightenment 
The nature of causality in general, and that of force in particular, formed a central theme 
in the debates on metaphysics in the Enlightenment. In this era, one finds the conflicting 
theories of Pre-established Harmony put forth by Leibniz and Wolff, the Occasionalism 
of Malebranche, Physical Influx found in the work of Kant, and causality as a habit of the 
mind as articulated by Hume. In this talk we will give the background for these debates 
and discuss Eulerʼs role in them. 

 
James Harper, Central Washington University 
Understanding Eulerʼs Formula for the Sum of Three Cubes 
The year following Eulerʼs claim that he had proved Fermatʼs Last Theorem for the case 
n = 3, Euler derived a formula for all rational solutions to the homogeneous Diophantine 
equation A3 + B3 + C3 = D3. His derivation is an enigma: At one point he has ten 
parameters to describe the four variables A, B, C and D. Two of these parameters 
mysteriously disappear as he solves for four of the initial parameters and then he 
introduces another parameter in the final solution. (All told he uses up nearly half the 
alphabet to solve this equation.) The end result is five parameters for the original four 
variables. I will present Eulerʼs derivation for this equation (which is not difficult) and 
then I will parallel that derivation with the simplest solution, namely, 33 + 43 + 53 = 63. 

 
Dominic Klyve, Central Washington University 
Eulerʼs Letters to a German Princess: Translation and Betrayal 
Euler's book "Letters to a German Princess" is well known within the Euler community, 
and even enjoys some fame outside of it. Most descriptions of the work include the fact 
that it was rapidly translated into many of the languages of Europe, and that it stayed in 
print for over a century. What is not mentioned is that with each edition and translation, 
the text changed. Editors and translators often had their way with Euler's words, and as 
often as not, they made no mention of these changes, leaving readers ignorant of the 
fact that they were not actually reading Euler's sentiments. This talk will examine the 
people involved in preparing various editions of this work, together with their work and 
motivation. 

 
Stacy Langton, University of San Diego 
What did Johann Bernoulli mean by the "eddy"? 
Clifford Truesdell has suggested that Euler got the idea which became, eventually, the 
foundation of his work in fluid mechanics from reading Johann Bernoulli's Hydraulica. In 



that book, Bernoulli claims to have discovered a new concept, which had been 
overlooked by all previous writers on fluid mechanics—including his son, Daniel. Johann 
Bernoulli designates this concept by the Latin word "gurges", which Truesdell translates 
as "eddy", using one of its classical meanings. But Truesdell finds Bernoulli's 
explanation of the "gurges" to be obscure. 
Recently, Olivier Darrigol ("Worlds of Flow", Oxford, 2005, p. 10) has proposed that 
Johann Bernoulli's "gurges" is, in modern terms, the "convective component of the 
material derivative". In my talk, I will explain what this means, and give my own 
interpretation of what Bernoulli meant by the "gurges". Part of the talk will be based on 
an important letter that Euler wrote to Johann Bernoulli in May 1739. 

 
Chukwugozie Maduka, University of Benin (Nigeria) 
Comparability of Use of Euler and Venn Diagrams for Proof of Validity in 
Classical Logic 
One of the celebrated methods for verifying the validity or otherwise of an argument in 
classical (Aristotelian) logic is the use of diagrams. The more common diagrammatic 
approaches derive from the works of Euler and Venn. Since propositions and arguments 
in classical logic are built essentially on class membership of subject and predicate 
terms, the foundation, then, of the formulations of Euler and Venn in this regard must be 
the algebra of classes. 
At the present moment, the use of Venn diagrams has met with so much considerable 
success that almost all classical logic textbooks present it as if it were the sole available 
diagrammatic approach. Little or no attention is paid to Eulerian diagrams, yet all of the 
four typical Aristotelian logic categorical propositions (A, E, I, O) can be succinctly 
represented in the Euler model. The actual problem seems to lie in the use of Eulerian 
diagrams to represent arguments wherein, as usual, we are confronted with major, 
minor and middle terms. Validity or invalidity cannot be meaningfully established in this 
approach unless adequate yet distinctive diagrammatic representations can be 
procured. 
This study is an attempt to pinpoint where exactly the problem lies in the use of Eulerʼs 
diagrams and thereafter to propose a solution. 
In order to achieve this end, there will be need to go back to the original formulations of 
Euler in order to ensure that all suggestions being proposed are in line with his thinking. 
The comparison with the Venn diagram approach, on the other hand, will not only throw 
more light on the strengths and weaknesses of either method but will in addition provide 
a basis for deciding on which method to engage and for which type of problems. It may 
well be the case that while one approach may be preferable when dealing with 
affirmative and particular propositions, another method will provide better facility in 
cases involving universal and negative propositions. Such situations abound, for 
instance, in sentence and predicate logic with respect to the use of truth trees and truth 
tables. Of course, it is common knowledge that such features as simplicity of present-



ation, rigour, scope of application, ease of application, amenability to semantic render-
ing usually play a role in the decision on which approach to use and for what. Some of 
these entailments will be considered in this study.  

 
Joseph McAlhany, Carthage College 
Mind Over Matter: Eulerʼs Enodatio 
Eulerʼs brief work, "Enodatio questionis utrum materiae facultas cogitandi tribui possit 
necne" (1746) purports to offer incontrovertible proof, based on principles from the field 
of mechanics, that material bodies cannot possess the capacity for thought. While Euler 
does reduce the question to a clear and logical syllogism, his ultimate goal is a proof of 
the non-corporeality of the mind—an early salvo in the philosophical dispute over the 
nature of the mind, with important theological ramifications. This paper will give a brief 
overview of the work, which has been fully translated, and situate Eulerʼs argument in 
the broader context of contemporary philosophical and theological concerns. 

 
Michael Saclolo, St. Edward's University 
Equilibrium According to Euler 
In his "Essay concerning a metaphysical experiment on the general principle of 
equilibrium" (E200), Euler discusses how forces act on a body in equilibrium. He begins 
by defining the notions of magnitude and direction of a force. He then describes the 
action of a force as consisting of the contraction of “fibers” that make up the force. 
Finally he conceives of a body in equilibrium as a moment where all opposing forces 
acting on the body are at their greatest effects, translating to the greatest contraction of 
the corresponding fibers, rendering a minimum of their lengths.  

 
Emil Sargsyan, Indiana University 
Proofs & Priorities in Eulerʼs Manifold Demonstrations of the Basel Problem 
Eulerʼs numerous solutions to the Basel problem have come under scrutiny both in his 
time as well as in the twentieth-century. Mathematicians have praised and criticized 
Eulerʼs bold handling of the sum of the powers of reciprocals of natural numbers; 
historians of mathematics have offered modern reconstructions, exposing and proving 
hidden lemmas; while philosophers have cited one of his earliest solutions as an 
instance of empirical methods employed in mathematics. Paul Stäckelʼs early 
pioneering study of Eulerʼs multiple publications and letters revealed a third forgotten 
French addition to his proofs and that these endeavors were fruitful in producing 
mathematics far beyond the narrowly construed question first posed by Jacob Bernoulli. 
But what drove Euler to produce what some people have counted as at least five 
different demonstrations, not counting the earliest discovery, which was based on a 
numerical approximation? I believe a careful study of Eulerʼs multiple derivations and 
comments he received from Johann, Daniel, and Nicolaus Bernoulli could reveal con-



temporary priorities concerning what is an acceptable mathematical proof. As many 
historians of mathematics have pointed out, proof-standards have dramatically changed 
since the eighteenth-century. My paper tries to highlight shifts in these standards and 
priorities by reconstructing the motivating factors behind Eulerʼs manifold demon-
strations of the Basel problem.  

 
Justin Z. Schroeder, Vanderbilt University  
Eulerʼs Orthogonal Latin Square Conjecture  
In 1782, Euler famously conjectured that no pair of orthogonal Latin squares of order n = 
4t + 2 exist for any integer t. In 1960, Bose, Shrikhande, and Parker proved the 
conjecture false for all t ≥ 2. This talk begins with a brief history of the mistaken 
conjecture and some of the methods used to refute it. 
A Hamiltonian embedding of a graph G is a drawing of G on a surface such that no 
edges cross and every vertex appears exactly once on the boundary of each face. In 
the second part of this talk, we develop a connection between orthogonal Latin squares 
and Hamiltonian embeddings of the complete tripartite graph Kn,n,n. In particular, we 
show how Euler's m-step construction can be modified to yield orthogonal Latin squares 
with some desired properties. This gives a potential new approach to constructing pairs 
of orthogonal Latin squares of order 4t + 2. This is joint work with Mark Ellingham. 
 
Brian Schwartz, Carthage College 
A precision test of the inverse square law of gravity: Eulerʼs Lunar calculations 
(and mis-calculations) for the eclipses of 1748 
Observations of lunar and, even more so, solar eclipses offer a rigorous test of the 
quality of astronomical tables and observations as well as the computational skills of the 
astronomer. In this talk we will demonstrate Eulerʼs process for calculating the details of 
the 1748 solar eclipse visible in Berlin. We also discuss the relevance of the accuracy of 
these predictions with respect to precision tests of the inverse square law of gravity. In 
addition, we will show how planetarium software can be used in a classroom or some 
other setting to reproduce measurements made by Euler and his contemporaries. This 
allows us today to—almost literally—see the universe as Euler saw it. 

 
Mark Snavely, Carthage College 
Proof of Fermat's Theorem That Every Prime Number of the Form 4n+1 is the 
Sum of Two Squares 
We will examine Euler's paper, "Proof of Fermat's Theorem That Every Prime Number 
of the Form 4n+1 is the Sum of Two Squares" [E241]. We will describe Euler's proof in 
detail, and include recent proofs of some parts of the work. 



 
Emma Sorrell, Carthage College 
Fluid mechanics in Eulerʼs “Recherches sur le mouvement des rivieres” 
While Euler is well-known for his two three-part series on fluid mechanics—
E225/226/227 and E258/396/409—they were not his only writings on the subject. In 
addition to these series, Euler wrote the present paper [E332], which predates his other 
works on the subject. 
He begins this paper with the bold statement that all the research done in fluid 
mechanics up to this point, while helpful to very specific applications, is incomplete 
because it cannot be applied generally. To find this general rule, Euler constructs a 
model which he says “will serve as a basis for all others.” We will examine this model, 
placing it in historical context, and contrasting it with the work of Bernoulli and 
dʼAlembert. 
 


