A Tour of Joseph-Louis Lagrange's Recherches d'Arithmetique

Erik R. Tou

School of Interdisciplinary Arts & Sciences University of Washington, Tacoma

Binary Quadratic Forms

Definition

A binary quadratic form is a homogeneous polynomial with two variables:

$$ax^2 + bxy + cy^2$$
,

where a, b, c are integers. Its discriminant is defined as $\Delta = b^2 - 4ac$.

Binary Quadratic Forms

Definition

A binary quadratic form is a homogeneous polynomial with two variables:

$$ax^2 + bxy + cy^2$$
,

where a, b, c are integers. Its discriminant is defined as $\Delta = b^2 - 4ac$.

Definition

A form *represents* an integer τ if there are integer values of x, y for which $\tau = ax^2 + bxy + cy^2$. The representation is *primitive* if $\gcd(x,y) = 1$. We then say τ is *representable* (or, *primitively representable*) by the form.

Classic Questions: What integers can be represented by a given form? What forms can represent a given integer?

Fermat and Euler

Pierre de Fermat (1607-1665) conjectured that every prime p of the form 4n+1 can be represented uniquely as the sum of two squares. Leonhard Euler (1707-1783) proved this result in 1749.

- 2. Sur le sujet des triangles rectangles ('), voici mes fondements:
- 1° Tout nombre premier, qui surpasse de l'unité un multiple du quaternaire, est une seule fois la somme de deux quarrés, et une seule fois l'hypoténuse d'un triangle rectangle.
- 2º Le même nombre et son quarré sont chacun une fois la somme de deux quarrés;

Figure: A letter from Fermat to Marin Mersenne, 25 December 1640.

Joseph-Louis Lagrange

A frequent correspondent of Euler's, Joseph-Louis Lagrange (1736-1813) took up Euler's vacant chair in Berlin when Euler left the Berlin Academy to return to Russia.

While in Berlin, Lagrange built upon Euler's earlier contributions to the study of Diophantine equations.

From the *Nouveaux Mémoires* of the Berlin Academy, 1775:

RECHERCHES D'ARITHMÉTIQUE. PAR M. DE LA GRANGE.

es recherches ont pour objet les nombres qui peuvent être représentés par la formule $Bt^2 + Ctu + Du^2$, où B, C, D font supposes des nombres entiers donnés, & t, u des nombres aussi indéterminés. Je donnerai d'abord la maniere de trouver toutes les diffé-

"This research has for its object the numbers which may be represented by the formula $Bt^2 + Ctu + Du^2$, where B, C, D are assumed to be given whole numbers, and t, u are also whole (though variable) numbers."

Lagrange's plan of attack:

 "First, I will give the manner by which to find all the different forms whose divisors are the kind of numbers that are susceptible [to this representation].

Lagrange's plan of attack:

- "First, I will give the manner by which to find all the different forms whose divisors are the kind of numbers that are susceptible [to this representation].
- Next, I will give a method for reducing these forms to the smallest number possible...

Lagrange's plan of attack:

- "First, I will give the manner by which to find all the different forms whose divisors are the kind of numbers that are susceptible [to this representation].
- Next, I will give a method for reducing these forms to the smallest number possible...
- Finally, I will prove several Theorems on **prime numbers** of the same form $Bt^2 + Ctu + Du^2$, of which some are already known, but have not yet been proven, and of which others are entirely new."

Theorem (I)

If the number A is a divisor of a number primitively represented by $Bt^2 + Ctu + Du^2$, then A is primitively representable by some form $Ls^2 + Msx + Nx^2$, where $4LN - M^2 = 4BD - C^2 = -\Delta$.

Theorem (I)

If the number A is a divisor of a number primitively represented by $Bt^2 + Ctu + Du^2$, then A is primitively representable by some form $Ls^2 + Msx + Nx^2$, where $4LN - M^2 = 4BD - C^2 = -\Delta$.

Theorem (II)

Every quadratic form $Ls^2 + Msx + Nx^2$ for which |M| > |L| or |N| may be transformed into a form $L's'^2 + M's'x' + N'x'^2$ with the same discriminant Δ , where |M'| < |M|.

Theorem (I)

If the number A is a divisor of a number primitively represented by $Bt^2 + Ctu + Du^2$, then A is primitively representable by some form $Ls^2 + Msx + Nx^2$, where $4LN - M^2 = 4BD - C^2 = -\Delta$.

Theorem (II)

Every quadratic form $Ls^2 + Msx + Nx^2$ for which |M| > |L| or |N| may be transformed into a form $L's'^2 + M's'x' + N'x'^2$ with the same discriminant Δ , where |M'| < |M|.

Example. Given that 425 is primitively representable by $t^2 + 2tu + 2u^2$, determine the forms that its divisor 85 can have.

Quadratic Form:
$$425 = t^2 + 2tu + 2u^2 = 11^2 + 2(11)(-19) + 2(-19)^2$$

Quadratic Form:
$$425 = t^2 + 2tu + 2u^2 = 11^2 + 2(11)(-19) + 2(-19)^2$$

Number	=	t² term	+	<i>tu</i> term	+	u ² term
425	=	1 <i>t</i> ²	+	2tu	+	2 u ²

Quadratic Form:
$$425 = t^2 + 2tu + 2u^2 = 11^2 + 2(11)(-19) + 2(-19)^2$$

Number	=	t ² term	+	<i>tu</i> term	+	u ² term
425	=	1 <i>t</i> ²	+	2tu	+	2 <mark>u²</mark>
425	=	$1t^2$ $1(1u + 5x)^2$	+	$2(1\mathbf{u}+5\mathbf{x})\mathbf{u}$	+	2 <mark>u²</mark>
			'	'	'	·

Quadratic Form:
$$425 = t^2 + 2tu + 2u^2 = 11^2 + 2(11)(-19) + 2(-19)^2$$

Number	=	t ² term	+	<i>tu</i> term	+	u ² term
425	=	1 <i>t</i> ²	+	2tu	+	2 <mark>u²</mark>
425	=	$1(1u + 5x)^2 (1 + 2 + 2)u^2$	+	2(1u + 5x)u $(10 + 10)ux$	+	2 <i>u</i> ²
425	=	$(1+2+2)u^2$	+	(10+10)ux	+	$25x^{2}$

Quadratic Form:
$$425 = t^2 + 2tu + 2u^2 = 11^2 + 2(11)(-19) + 2(-19)^2$$

Number	=	t ² term	+	<i>tu</i> term	+	u ² term
425	=	$1t^{2}$	+	2tu	+	2 <mark>u²</mark>
425	=	$1(1\mathbf{u}+5\mathbf{x})^2$	+	$2(1\mathbf{u}+5\mathbf{x})\mathbf{u}$	+	2 <mark>u²</mark>
425	=	$(1+2+2)u^2$	+	(10+10)ux	+	25 <mark>x²</mark>
Number	=	s² term	+	sx term	+	x ² term
425	=	5 <i>s</i> ²	+	20 <i>sx</i>	+	25x ²
		'		'		·

Quadratic Form:
$$425 = t^2 + 2tu + 2u^2 = 11^2 + 2(11)(-19) + 2(-19)^2$$

Number	=	t ² term	+	<i>tu</i> term	+	u ² term
425	=	1 <i>t</i> ²	+	2tu	+	2 <mark>u²</mark>
425	=	$1(1\mathbf{u}+5\mathbf{x})^2$	+	$2(1\mathbf{u}+5\mathbf{x})\mathbf{u}$	+	2 <mark>u</mark> 2
425	=	$(1+2+2)u^2$	+	(10+10)ux	+	25x ²
Number	=	s² term	+	sx term	+	x ² term
425	=	5 <i>s</i> ²	+	20 <i>sx</i>	+	25x ²
85	=	1 <i>s</i> ²	+	4 <i>sx</i>	+	5 <i>x</i> ²

Quadratic Form:
$$425 = t^2 + 2tu + 2u^2 = 11^2 + 2(11)(-19) + 2(-19)^2$$

Number	=	t ² term	+	<i>tu</i> term	+	u ² term
425	=	1 <i>t</i> ²	+	2tu	+	2 <i>u</i> ²
425	=	$1(1\mathbf{u}+5\mathbf{x})^2$	+	$2(1\mathbf{u} + 5\mathbf{x})\mathbf{u}$	+	2 u ²
425	=	$(1+2+2)u^2$	+	(10+10)ux	+	25x ²
Number	=	s² term	+	sx term	+	x ² term
425	=	5 <i>s</i> ²	+	20 <i>sx</i>	+	25x ²
85	=	1s ²	+	4 <i>s</i> x	+	5 <i>x</i> ²

Conclusion:
$$85 = s^2 + 4sx + 5x^2 = (-8)^2 + 4(-8)(7) + 5(7)^2$$
.

Quadratic Form:
$$85 = s^2 + 4sx + 5x^2 = (-8)^2 + 4(-8)(7) + 5(7)^2$$

Linear Form: $s = -2x + s' = -2(7) + 6 = -8$

Quadratic Form:
$$85 = s^2 + 4sx + 5x^2 = (-8)^2 + 4(-8)(7) + 5(7)^2$$

Linear Form: $s = -2x + s' = -2(7) + 6 = -8$

Number	=	s² term	+	<i>sx</i> term	+	x ² term
85	=	1 <mark>s</mark> 2	+	4 <i>sx</i>	+	5x ²
				•		

Quadratic Form:
$$85 = s^2 + 4sx + 5x^2 = (-8)^2 + 4(-8)(7) + 5(7)^2$$

Linear Form: $s = -2x + s' = -2(7) + 6 = -8$

Number	=	s ² term	+	<i>sx</i> term	+	x ² term		
85	=	1 <i>s</i> ²	+	4sx 4(-2x + s')x	+	$5x^2$ $5x^2$		
85	=	$1(-2x + s')^2$	+	4(-2x+s')x	+	5x ²		

Quadratic Form:
$$85 = s^2 + 4sx + 5x^2 = (-8)^2 + 4(-8)(7) + 5(7)^2$$

Linear Form: $s = -2x + s' = -2(7) + 6 = -8$

Number	=	s ² term	+	<i>sx</i> term	+	x ² term
85	=	1 <i>s</i> ²	+	4 <i>sx</i>	+	5x ²
85	=	$1(-2x + s')^2$	+	4(-2x+s')x	+	5x ²
85	=	1 <i>s</i> ′ ²	+	(-4+4)s'x	+	$(4-8+5)x^2$

Quadratic Form:
$$85 = s^2 + 4sx + 5x^2 = (-8)^2 + 4(-8)(7) + 5(7)^2$$

Linear Form: $s = -2x + s' = -2(7) + 6 = -8$

Number	=	s² term	+	<i>sx</i> term	+	x ² term
85	=	1 <mark>s²</mark>	+	4 <i>sx</i>	+	5x ²
85	=	$1(-2x + s')^2$	+	4(-2x+s')x	+	5x ²
85	=	1 <i>s</i> ′ ²	+	(-4+4)s'x	+	$(4-8+5)x^2$
Number	=	s' ² term	+	<i>s'x'</i> term	+	x' ² term

Quadratic Form:
$$85 = s^2 + 4sx + 5x^2 = (-8)^2 + 4(-8)(7) + 5(7)^2$$

Linear Form: $s = -2x + s' = -2(7) + 6 = -8$

Number	=	s² term	+	<i>sx</i> term	+	x ² term
85	=	1 <i>s</i> ²	+	4 <i>sx</i>	+	$5x^2$
85	=	$1(-2x+s')^2$	+	4(-2x+s')x	+	5x ²
85	=	1 <i>s</i> ′ ²	+	(-4+4)s'x	+	$(4-8+5)x^2$
Number	=	s'² term	+	s'x' term	+	x' ² term
85		1s' ²	+	0 <i>s</i> ′ <i>x</i> ′	+	1x' ²

Quadratic Form:
$$85 = s^2 + 4sx + 5x^2 = (-8)^2 + 4(-8)(7) + 5(7)^2$$

Linear Form: $s = -2x + s' = -2(7) + 6 = -8$

Number	=	s ² term	+	<i>sx</i> term	+	x ² term
85	=	1 <i>s</i> ²	+	4 <i>sx</i>	+	5x ²
85	=	$1(-2x + s')^2$	+	4(-2x+s')x	+	5x ²
85	=	1 <i>s</i> ′ ²	+	(-4+4)s'x	+	$(4-8+5)x^2$
Number	=	s'² term	+	<i>s'x'</i> term	+	x' ² term
85	=	1s' ²	+	0 <i>s</i> ′ <i>x</i> ′	+	1x' ²

Conclusion: $85 = \frac{s'^2}{2} + \frac{x'^2}{2} = 6^2 + 7^2$.

Theorem (III)

If A divides a number of the form $Bt^2 + Ctu + Du^2$, it must have the form $Py^2 + Qyz + Rz^2$, where $4PR - Q^2 = 4BD - C^2$ and $|Q| \le |P|$, |R|.

Corollary (I)

If $4BD - C^2$ is positive, then $Q \le \sqrt{\frac{4BD - C^2}{3}}$.

Theorem (III)

If A divides a number of the form $Bt^2 + Ctu + Du^2$, it must have the form $Py^2 + Qyz + Rz^2$, where $4PR - Q^2 = 4BD - C^2$ and $|Q| \le |P|$, |R|.

Corollary (I)

If
$$4BD - C^2$$
 is positive, then $Q \le \sqrt{\frac{4BD - C^2}{3}}$.

So, "... divisors of the numbers of the form $t^2 + u^2$ are necessarily contained in the formula $y^2 + z^2$, which is to say that every divisor of a number equal to the sum of two squares is also the sum of two squares."

- "... divisors of the numbers of the form $t^2 + u^2$ are necessarily contained in the formula $y^2 + z^2$, which is to say that every divisor of a number equal to the sum of two squares is also the sum of two squares."
- \circ "... divisors of the numbers of the form $t^2 + 2u^2$ are contained in the formula $y^2 + 2z^2$."

- "... divisors of the numbers of the form $t^2 + u^2$ are necessarily contained in the formula $y^2 + z^2$, which is to say that every divisor of a number equal to the sum of two squares is also the sum of two squares."
- ② "... divisors of the numbers of the form $t^2 + 2u^2$ are contained in the formula $y^2 + 2z^2$."
- ① "... divisors of the numbers of the form $t^2 + 3u^2$ will be contained in the two formulas $y^2 + 3z^2$ and $2y^2 \pm 2yz + 2z^2$."
- 4 ...

- "... divisors of the numbers of the form $t^2 + u^2$ are necessarily contained in the formula $y^2 + z^2$, which is to say that every divisor of a number equal to the sum of two squares is also the sum of two squares."
- ② "... divisors of the numbers of the form $t^2 + 2u^2$ are contained in the formula $y^2 + 2z^2$."
- ① "... divisors of the numbers of the form $t^2 + 3u^2$ will be contained in the two formulas $y^2 + 3z^2$ and $2y^2 \pm 2yz + 2z^2$."
- 4 ...
- "... odd divisors of the numbers of the form $t^2 + 12u^2$ will be of one or the other of the forms $y^2 + 12z^2$ or $3y^2 + 4z^2$."

TABLE I.

Formule des nombres proposés

$$t^2 + au^2$$
.

Formule de leurs diviseurs impairs

$$py^2 \pm 2qyz + rz^2$$
, où $pr - q^2 = a$.

Valeurs	Valeurs correspondantes de				
de a	P	9	; r		
1	I	10	1	•	
2	1	•	2		
3	I	0	3		
5	I, %	0, 1	5,3		
6	I, 2	0,0	6, 3		
7	1	0	7		
10	1, 2	0,0	10,5		
11	1, 3	0, 1	11,4	1	

Valeurs	Valeurs correspondantes de			
de a	P	q	; r	_
1	I	0	1 .	
2	1	•	2	
3	1	0	3	-
3 5 6 7	I, &	0, 1	5, 3	
6	1, 2	0,0	6, 3	
7	1	0	7	
10	1, 2	0,0	10,5	
11	1,3	0, 1	11,4	1
13	1, 2	0, 1	13, 7	1
14	1, 2, 3	0, 0, 1	14, 7, 5	-
15	1, 3	0,0	15,5	
17	1, 2, 3	0, 1, 1	17, 9, 6	j
19	1, 4	0, 1	19,5	-
21	1, 3, 2, 5	0, 0, 1, 2	21, 7, 11, 5	-
22	I, 2	0,0	22, 11	-
23	1, 3	0, 1	23,8	i
26	1, 2, 3, 5	0, 0, 1, 2	26, 13, 9, 6	ı
29	1, 3, 5	0, 1, 1	29, 10, 6	ı
30	1, 3, 5, 2	0, 0, 0, 1	30, 10, 6, 17	ļ
31	1,5	0, 2	31,7	1

Coda: Squares in the Year $1801 = 24^2 + 35^2$

Theorem

A number $\tau>1$ is representable as a sum of two squares, if, and only if, its prime decomposition contains no primes of the form 4n+3 raised to an odd power.

Examples:

- **1** $\tau = 1801 = 24^2 + 35^2$, (primitively) representable.
- ② $\tau = 16209 = 1801 \cdot 3^2 = (24^2 + 35^2) \cdot 3^2 = 72^2 + 105^2$, representable.
- \bullet $\tau = 48627 = 1801 \cdot 3^3 = (1801 \cdot 3^2) \cdot 3$, not representable.

Coda: Squares in the Year $1801 = 24^2 + 35^2$

Theorem

A number $\tau>1$ is representable as a sum of two squares, if, and only if, its prime decomposition contains no primes of the form 4n+3 raised to an odd power.

Examples:

- **1** $\tau = 1801 = 24^2 + 35^2$, (primitively) representable.
- ② $\tau = 16209 = 1801 \cdot 3^2 = (24^2 + 35^2) \cdot 3^2 = 72^2 + 105^2$, representable.
- **3** $\tau = 48627 = 1801 \cdot 3^3 = (1801 \cdot 3^2) \cdot 3$, not representable.

Theorem (Gauss, 1801)

A number $\tau > 1$ is primitively representable by the form $t^2 + u^2$, if, and only if, -1 is a quadratic residue modulo τ .

Thank You!

Fermat, Pierre. Letter to Marin Mersenne, 25 December 1640. Appears in: Henry, Charles, *Oeuvres de Fermat: Correspondance*, vol. 2, Gauthier-Villars et fils, 1894.

Gauss, Carl. *Disquisitiones Arithmeticae*. Leipzig: Fleischer, 1801.

Lagrange, Joseph-Louis. "Recherches d'Arithmétique," Nouveaux Mémoires de l'académie des sciences de Berlin **5** 1773 (1775), 265-312.

Slides of this presentation available via: https://tinyurl.com/TouLagrange2022

English translation of Recherches d'Arithmétique at: https://tinyurl.com/RecherchesdArithmetique