
Asymptotic Counting Theorems for Primitive

Juggling Patterns

Erik R. Tou∗

January 11, 2018

1 Introduction

Juggling patterns are typically described using siteswap notation, which is based

on the regular rhythm of the balls being thrown. Each throw is assigned a

height which measures the number of beats, or units of juggling time, that the

ball is in the air. For example, the sequence (4, 2) indicates that the first ball

should be thrown to height 4, and the second to height 2, at which point the

pattern repeats. Mathematically, a juggling sequence or siteswap is a sequence

T = (t1, t2, . . . , tn) of length n for which the values i+ti (mod n) are all distinct.

For jugglers, this condition is equivalent to the requirement that no two balls

land in the same hand at the same time. We write ti = 0 to indicate that no

ball is thrown at time i. The progression of throws can be represented with an

arc diagram, as shown in Figure 1 below. Readers are encouraged to consult

Polster [6] on the use of siteswap notation in analyzing juggling patterns.

In addition to siteswaps, juggling patterns may be viewed as a sequence of
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Figure 1: An arc diagram for the siteswap (1, 5, 3).

juggling states or landing schedules. A juggling state σ is a vector of zeroes and

ones, with a 1 in position i indicating that a ball is scheduled to land after i

beats. The easiest way to think of a juggling state is to imagine that the juggler

ceases juggling at a particular moment in time; the timing of “thuds” as the balls

hit the ground will indicate the positions of the 1’s in σ. Of course, the state

will change after each throw, so that the full pattern is described by a sequence

of n juggling states σ(1), σ(2), . . ., σ(n), with σ(m+n) = σ(m). The height of a

juggling state is its length.1 A juggling sequence with initial state σ is referred

to as a σ-juggling sequence. The state σ = 〈1, 1, . . . , 1〉 with all 1’s is called

the ground state, and juggling sequences beginning with this state are referred

to as ground state sequences. For clarity, we will always use angle brackets for

juggling states and conventional parentheses for siteswaps. For example, the

juggling sequence (1, 5, 3) has initial state σ = σ(1) = 〈1, 0, 1, 1〉 and the throws

1, 5, and 3 produce the subsequent states σ(2) = 〈1, 1, 1〉, σ(3) = 〈1, 1, 0, 0, 1〉,

σ(4) = σ(1) = 〈1, 0, 1, 1〉. The arc diagram in Figure 1 ends at state σ(2) =

〈1, 1, 1〉 and it can be seen that, if the juggler were to stop, the balls would fall

on each of the next three beats.

Given a fixed initial state σ, it is natural to consider the structure of the set

of σ-juggling sequences. It is not too hard to see that a juggler can combine any

two σ-juggling sequences by alternating between them. Mathematically, this

1Technically, we view σ as having infinite length, so that all but finitely many entries are
0’s. I.e., if σ has height h, then σ(h) is its last nonzero entry.
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presents as concatenation; i.e., we can combine (or inversely, decompose) σ-

juggling sequences, in analogy with multiplication and factorization of positive

integers. Following in this vein, we define a σ-juggling sequence as primitive if

it cannot be decomposed into shorter sequences. For example, the ground state

sequence (4, 2, 4, 4, 1, 3) can be decomposed into the primitive sequences (4, 2),

(4, 4, 1), and (3).

The main goal of this paper is to prove an analogy of the prime number

theorem for σ-juggling sequences. More specifically, we wish to answer the

following question: given a b-ball juggling state σ and a positive integer n, how

many primitive σ-juggling sequences are there with length ≤ n? Ultimately,

we will answer this question by applying analytic techniques to the generating

functions described by Chung and Graham [2], to which we now turn.

2 Generating Functions

Suppose σ is a b-ball juggling state of height h and let Jσ(n) denote the number

of juggling sequences with initial state σ and length n. The juggling sequence

generating function is the formal series

fσ(x) =

∞∑
k=0

Jσ(k)xk,

where we define Jσ(0) = 1.2 In the special case of a ground state σ = 〈1, 1, . . . , 1〉,

we write Jb(n) instead. If n < h, it is possible that Jσ(n) is zero. In fact, Chung

and Graham [2] give a way to determine if Jσ(n) is zero, and if not, count the

number of σ-juggling sequences of that length. We improve on the first of these

results by decomposing a juggling state into a set of smaller states.

Definition 1. Given a juggling state σ = 〈σ(1), σ(2), σ(3), . . .〉 and a positive

2When generating functions are treated as formal objects, the variable x will be used.
When they are treated as analytic objects, the variable z will be used instead.
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integer n, define the ith thread by σi = 〈σ(i), σ(i + n), σ(i + 2n), . . .〉. Each

thread itself is a juggling state, though typically with fewer balls than σ itself.

With this definition in hand, we may now give a necessary and sufficient

condition for Jσ(n) to be nonzero.

Proposition 1. Let σ be a b-ball juggling state of height h. For n < h, Jσ(n) 6=

0 if and only if each σi (1 ≤ i ≤ n) is a ground state.

Proof. The necessary condition for Jσ(n) 6= 0 is Lemma 1 from [2], so here we

need only prove that if σi is a ground state for all i, then Jσ(n) 6= 0. Given this

condition, there are two cases for σ1: either σ(1) = 0 or σ(1) = 1. In the first

case, the thread σ1 must consist of all zeroes, in which case the juggler must do

nothing. In the second case, σ1 consists of some nonzero number of 1’s, say m

many of them. Thus, the juggler may execute a throw of height mn, so that

the ball’s landing time places it at the end of σ1. In either case, the result is a

cyclic permutation of the threads: σ1 moves to σn−1, while σi moves to σi−1 for

i ≥ 2. This procedure can be repeated n times, at which point the threads will

return to their original positions, and the overall juggling state will again be σ.

Thus, we have constructed a σ-juggling sequence of length n, so Jσ(n) 6= 0.

Note further that if n ≥ h, then each σi is necessarily a ground state (σi

is either 〈0〉 or 〈1〉 depending on whether σ(i) = 0 or 1), so Jσ(n) 6= 0 for all

n ≥ h, as expected.

As an example, consider σ = 〈1, 0, 1, 1, 0, 1, 0, 0, 1〉 with n = 3. The corre-

sponding threads are σ1 = 〈1, 1〉, σ2 = 〈0〉, and σ3 = 〈1, 1, 1〉. To construct

a juggling sequence of length 3, we begin with a throw of height 2 · 3 = 6 so

that σ = σ(1) becomes σ(2) = 〈0, 1, 1, 0, 1, 1, 0, 1〉, with threads σ
(2)
1 = 〈0〉, σ(2)

2 =

〈1, 1, 1〉, and σ
(2)
3 = 〈1, 1〉. Throws of height 0 and 9 give σ(3) = 〈1, 1, 0, 1, 1, 0, 1〉

and σ(4) = 〈1, 0, 1, 1, 0, 1, 0, 0, 1〉 = σ, respectively. Thus, (6, 0, 9) is a σ-juggling

sequence of length 3.
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Now that we know the values of n for which Jσ(n) is nonzero, we turn to the

combinatorial problem of finding the number of σ-juggling sequences of length

n.

Definition 2. Given a juggling state σ, define the cumulative juggling function

τ : Z≥0 → Z≥0 by τ(j) =
∑j
i=0 σ(i). In the case of j = 0, take σ(0) = 0 so that

τ(0) = 0.

When Jσ(n) is nonzero, its value may be expressed in terms of a matrix

permanent [2], though we see here that it can be given as a generalized factorial

involving τ .

Proposition 2. Let σ be a juggling state. If Jσ(n) 6= 0, then Jσ(n) = [n]σ!,

where

[n]σ! =

n−1∏
i=0

(τ(i) + 1). (1)

Proof. From [2], we know that if Jσ(n) 6= 0, then

Jσ(n) =

n∏
j=1

(vj − j + 1), (2)

where the vj are a sequence of non-decreasing integers between 1 and n, inclu-

sive. To properly define the vj sequence we define a related integer sequence,

denoted here as wi, by taking

wi =


i if σ(i) = 0

n if σ(i) = 1.

The vj are the same as the wj , only rearranged to be non-decreasing.

Now suppose that the juggling state σ has k 0’s in it. It follows that for
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1 ≤ j ≤ k, each vj equals the index ij of the jth 0 in σ. Also, for j > k, we

have vj = n. In other words, the vj can be written in order as i1 ≤ i2 ≤ · · · ≤

ik ≤ n = n = · · · = n.

For the first k terms it is easy to see that ij = τ(ij−1) + (j−1) + 1, i.e., the

number of 1’s up to position ij plus the number of 0’s up to (but not including)

position ij equals ij − 1. Thus, vj − j = ij − j = τ(ij − 1) for the first k terms.

The remaining n− k terms may be written as a factorial:

n∏
j=k+1

(n− j + 1) =

n−k∏
j=1

j = (n− k)!.

Now let Ij denote the index of the jth 1 in σ. Since the cumulative function

satisfies τ(0) = 0 and only increases when there is a 1 in σ, we must have

τ(Ij − 1) = j − 1 for the last n− k terms.

With all of this in mind, we may rearrange the terms in product (2) to

correspond to their respective indices in σ:

Jσ(n) =

n∏
i=1

(τ(i− 1) + 1).

In other words, we have a non-decreasing product which begins with a factor

of 1, and increases only when σ(i) = 1. A simple reindexing gives the product

formula we set out to show.

Returning to our previous example, let σ = 〈1, 0, 1, 1, 0, 1, 0, 0, 1〉 and take

n = 3. We already know that Jσ(3) is nonzero, so we may apply the formula

from Proposition 2 to get

Jσ(3) = [3]σ! =

2∏
i=0

(τ(i) + 1) = 1 · 2 · 2 = 4.

This tells us that there are three additional juggling sequences of length 3, other
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than (6, 0, 9). Inspection shows that they are (1, 5, 9), (1, 10, 4), and (11, 0, 4).

Also, for n ≥ h, notice that since τ(h) = b and τ(i) is constant for all i ≥ h,

we must have Jσ(n) = Jσ(h) · (b + 1)n−h. We now give two simple corollaries

that will be key to proving the main result of this paper.

Corollary 1. For any b-ball juggling state σ with height h, Jσ(n) is nonzero

for at most b values of n = 0, 1, 2, . . . , h− 1.

Proof. Let k be the number of zeroes in σ, and let i1, i2, . . ., ik denote the

indices of these zeroes. Then for each j = 1, 2, . . . , k, we may take n = h− ij to

get σij (1) = σ(ij) = 0 and σij (2) = σ(ij + h− ij) = σ(h) = 1. In other words,

the thread σij fails to be a ground state for n = h− ij and so by Proposition 1,

Jσ(h− ij) = 0 for all j = 1, 2, . . . , k. Since h− k = b, there are no more than b

nonzero values of Jσ(n) for n = 0, 1, 2, . . . , h− 1.

Corollary 2. For any b-ball juggling state σ, Jσ(n) ≤ Jb(n). Specifically, [n]σ!

is bounded above by n! when n < b and b! · (b+ 1)n−b when n ≥ b.

Proof. Since σ is a b-ball state, it is obvious that τ(i) ≤ i whenever i < b and,

more generally, τ(i) ≤ b for all i ≥ 0. Applying this observation to equation (1)

from Proposition 2 gives the result.

Notice also that when σ is the ground state, h = b and τ(i) = i whenever

i ≤ b. This means that Jb(n) = n! for n ≤ b and b! · (b+ 1)n−b for n > b.3

With all of this in mind, we refine our analysis of juggling sequences by

considering their factorability. Recall that a primitive juggling sequence is one

that cannot be decomposed into shorter sequences, and let Pσ(n) denote the

number of primitive juggling sequences of length n with initial state σ.

For example, the state σ = 〈1, 1, 0, 1, 0, 1〉 has Jσ(4) = 18 juggling sequences

of length 4. If a sequence of length 4 is not primitive, it must be decomposable

3In fact, this is Theorem 1 from [2].
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into two sequences of length 2, two sequences of length 1 and 3, or four sequences

of length 1. However, Jσ(1) = 0 since σ is not the ground state, so the second

and third cases are impossible. We also know that Jσ(2) = 2, and inspection

reveals these sequences to be (2, 6) and (7, 1). Thus, the non-primitive σ-juggling

sequences of length 4 are (2, 6, 2, 6), (2, 6, 7, 1), (7, 1, 2, 6), and (7, 1, 7, 1). This

means that the remaining 14 sequences of length 4 must be primitive, so Pσ(4) =

14.

As with the rational integers, the task of counting primitive juggling se-

quences of a given size requires analytic techniques, though we begin with a

combinatorial approach here. The generating function for primitive juggling

sequences is

gσ(x) =

∞∑
k=0

Pσ(k)xk.

In [2], we see that the generating functions fσ and gσ satisfy

fσ(x) =
rσ(x)(1− (b+ 1)x) + Jσ(h)xh

1− (b+ 1)x
=

sσ(x)

1− (b+ 1)x

gσ(x) = 1− 1

fσ(x)
=

fσ(x)− 1

fσ(x)
,

where rσ(x) =
∑h−1
k=0 Jσ(k)xk and sσ(x) = rσ(x)(1 − (b + 1)x) + Jσ(h)xh.

For convenience, we will instead examine the natural pairs r̄σ(x) and s̄σ(x)

of these polynomials, defined as r̄σ(x) = xh−1 · rσ(x−1) =
∑h−1
k=0 Jσ(k)xh−1−k

and s̄σ(x) = xh · sσ(x−1) = Jσ(h) + (x− (b+ 1)) · r̄σ(x). As with the counting

function Jb(n), we let rb(x) and sb(x) (and their pairs r̄b(x), s̄b(x)) indicate the

ground state case.
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3 Primitive Ground State Sequences

First, we restrict to ground states σ = 〈1, 1, . . . , 1〉, so that h = b and Jb(n) = n!

for all positive n < b. Viewing the polynomials r̄b and s̄b as analytic objects,

we have

r̄b(z) =

b−1∑
k=0

k! · zb−1−k,

s̄b(z) = b! + (z − (b+ 1))

b−1∑
k=0

k! · zb−1−k.

In this section, we decompose s̄b(z) as the sum of two functions of a complex

variable:

u(z) = (z − (b+ 1))(zb−1 − (b− 1)!), v(z) = b! + (z − (b+ 1))

b−2∑
k=1

k!zb−1−k.

Our goal is to show that, given certain conditions on |z|, we necessarily have

|u(z)| < |v(z)|. Then, Rouché’s theorem may be used to determine bounds for

the roots of s̄b(z). This technique is a variation on the one used by Klyve,

Elsner, and the author in [3], albeit with a different objective in mind.

Lemma 1. For b ≥ 4 and |z| ≥ b,

∣∣∣∣∣
b−2∑
k=1

k!zb−1−k

∣∣∣∣∣ ≤ 1

2
· (|z|b−1 − (b− 1)!).

Proof. Since k
√

(k + 1)! is an increasing function of k, it follows that (k + 1)! ≤

( b−3
√

(b− 2)! )k for all k ≤ b− 3. (Note also that this inequality is strict for all
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k < b− 3.) Letting µb = b−3
√

(b− 2)!, it then follows that for b ≥ 4,

∣∣∣∣∣
b−2∑
k=1

k!zb−1−k

∣∣∣∣∣ ≤
b−2∑
k=1

k!|z|b−1−k

< |z|
b−3∑
k=0

µ kb |z|b−3−k

= |z| ·
|z|b−2 − µ b−2b

|z| − µb

≤
|z|b−1 − |z|µ b−2b

|z| − µb
.

We know |z| ≥ b > µb >
b−1
√

(b− 1)!, so |z|b−1 − |z|µ b−2b ≤ |z|b−1 − (b − 1)!.

Moreover, since |z| ≥ b and µb ≤ 1
2b for all b ≥ 4, 1

|z|−µb ≤
1

b−b/2 = 2
b ≤

1
2 .

These two observations complete the proof.

We can now use this inequality to compare the functions u(z) and v(z).

Theorem 1. Given any b ≥ 4, let z be any complex number satisfying b ≤ |z| ≤

b+ 1− c · b
3/2

eb
, where c = 2e4

e3−2 ≈ 6.0378. Then |v(z)| < |u(z)|.

Proof. First, note that since |z|b−1 ≥ bb−1 > (b− 1)!, we have |u(z)| ≥ (b+ 1−

|z|) · (|z|b−1− (b−1)!). Also, from Lemma 1 we know that for b ≥ 4 and |z| ≥ b,

|v(z)| < b! + 1
2 · (b+ 1−|z|) · (|z|b−1− (b− 1)!). Accordingly, if we can show that

b! ≤ 1

2
· (b+ 1− |z|) · (|z|b−1 − (b− 1)!),

then we will have proven the theorem. Taking the bounds on |z| into account,

we see that it suffices to show that

b! ≤ c

2
· b

3/2

eb
· (bb−1 − (b− 1)!),
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which easily simplifies to

2

c
≤
√
b

eb
·
(
bb

b!
− 1

)
.

After using the definition of c and Stirling’s inequality b! ≤ e
√
b ·
(
b
e

)b
, we need

only show

1

e
− 2

e4
≤
√
b

eb
·
(
eb−1√
b
− 1

)
=

1

e
−
√
b

eb
. (3)

It is easy to see that the right hand side of (3) is an increasing function of b,

and has a value of 1
e −

2
e4 when b = 4. This concludes the proof.

As a consequence, Rouché’s theorem implies that, if a real number R satisfies

b ≤ R ≤ b + 1 − c · b
3/2

eb
, s̄b(z) has the same number of roots within a circle of

radius R as u(z) = (z − (b+ 1))(zb−1 − (b− 1)!). Since the first root of u(z) is

b+ 1 itself, and the other roots all lie on a circle of radius b−1
√

(b− 1)! < b, we

then know that s̄b(z) has a single root (of multiplicity 1) with modulus greater

than b + 1 − c · b
3/2

eb
and b − 1 roots of modulus less than b. Moreover, when

b < 4, a computer can easily determine the roots of s̄b(z) as z = 1 ±
√

2 when

b = 2 and z ≈ 3.6891, 0.34455 ± 0.65071i when b = 3. In both cases, s̄b(z) has

a real root of multiplicity 1 between b and b + 1, with the other root(s) lying

within a circle of radius b−1
√

(b− 1)!.

Having determined the approximate locations of the roots of s̄b(z), we now

refine this result and establish the asymptotic growth of Pb(n). The primary

analytic technique comes from Flajolet and Sedgewick [4], which allows us to

determine the asymptotic growth of Pb(n) from the roots of its generating func-

tion.

Theorem 2. Suppose b ≥ 4, let Pb(n) denote the number of primitive, ground

state juggling patterns of length n, and let ρ be the largest root (by modulus) of

11



s̄b(z). Then, ρ is a real number satisfying b + 1 − c · b
3/2

eb
≤ ρ < b + 1, where c

is the same constant defined in Theorem 1. Moreover,

Pb(n) =
b+ 1− ρ
|s′b(1/ρ)|

·
(
ρn +O

(
ρn

n

))
.

Proof. Theorem 1 ensures that ρ has multiplicity 1. To show that it is real,

note that s̄b(b+ 1) = b! > 0 and, for b ≥ 3,

s̄b(b) = b!−
b−1∑
k=0

k! · bb−1−k ≤ b!− bb−1 < 0.

Since ρ is the largest root (by modulus) of s̄b(z), it follows that ρ−1 is the

smallest root (by modulus) of sb(z). Since the generating function gb(z) =

sb(z)−(1−(b+1)z)
sb(z)

is a rational function in z that is analytic at 0, we know from

[4, p. 256] that

Pb(n) = |C|(ρ−1)−n−1
(

1 +O

(
1

n

))
,

where C = lim
z→ρ−1

(z−ρ−1)gb(z). Using the definition of gb(z) given above, along

with the fact that sb(ρ
−1) = 0, we compute C as

lim
z→ρ−1

(z − ρ−1)gb(z) = lim
z→ρ−1

(z − ρ−1) · sb(z)− (1− (b+ 1)z)

sb(z)

= ((b+ 1)ρ−1 − 1) lim
z→ρ−1

z − ρ−1

sb(z)

=

(
b+ 1

ρ
− 1

)
lim

z→ρ−1

z − ρ−1

sb(z)− sb(ρ−1)
=

b+ 1− ρ
ρ · s′b(1/ρ)

.

Putting it all together, we find that

Pb(n) =
b+ 1− ρ
|s′b(1/ρ)|

· ρn
(

1 +O

(
1

n

))
=

b+ 1− ρ
|s′b(1/ρ)|

·
(
ρn +O

(
ρn

n

))
,

which is what we set out to prove.
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For an example, take b = 5, so that r̄5(z) = z4 + z3 + 2z2 + 6z + 24 and

s̄5(z) = x5−5x4−4x3−6x2−12x−24. Then ρ ≈ 5.9235 and |s′b(1/ρ)| ≈ 7.1920,

so Pσ(n) ∼ 0.010636 · 5.9235n. As implied by the error term in Theorem 2,

this estimate is extremely accurate. For example, the actual value of P5(12) is

19,848,757 while Theorem 2 gives a first-order estimate of 19,848,735.021, with

a relative error of about −0.00011073%.

More generally, while the results in this section provide only a lower bound

on ρ, it would be not too difficult to provide an effective upper bound by us-

ing techniques from elementary Calculus. If s̄b(z) is convex (as a real-valued

function) on [ρ, b+ 1], as seems likely, then Newton’s method could be applied

beginning at z = b + 1 to obtain ever-tighter upper bounds on ρ. At any rate,

computational evidence suggests that this lower bound is probably sharp—e.g.,

for b ≥ 6, b + 1 − ρ appears to be bounded below by b1.45

eb
. It is reasonable to

expect that bλ

eb
is o(b+ 1− ρ) for all positive λ < 3

2 .

4 Primitive σ-Juggling Sequences

It is not difficult to extend this result to general primitive juggling patterns.

Theorem 3. Let σ be a b-ball juggling state with b ≥ 4, let Pσ(n) denote the

number of primitive, σ-juggling sequences of length n, and let ρ be the largest

root (by modulus) of the polynomial s̄σ(z). Then, ρ is a real number satisfying

b+ 1− c · b
3/2

eb
≤ ρ < b+ 1, where c is the same constant defined in Theorem 1.

Moreover,

Pσ(n) =
b+ 1− ρ
|s′σ(1/ρ)|

(
ρn +O

(
ρn

n

))
.

Proof. Our strategy is to decompose s̄σ(z) into two function u(z) and v(z), and
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then reduce the problem to the ground state case. First, recall that

s̄σ(z) = Jσ(h) + (z − (b+ 1)) ·
h−1∑
k=0

Jσ(k)zh−1−k.

We know from Corollary 1 that there are no more than b nonzero terms in the

sum. Also, we know that Jσ(0) = 1 for all σ. Moreover, since |z| ≥ b and each

factor appearing in Jσ(k) is ≤ b, the largest terms in the sum are those with

small index k. So, letting ` be the largest index for which Jσ(`) is nonzero, we

have

h−1∑
k=0

Jσ(k)|z|h−1−k ≤ |z|h−1 + Jσ(`)|z|h−1−` +

b−2∑
k=1

Jσ(k)|z|h−1−k

Additionally, if u(z) = (z−(b+1))·(zh−1+Jσ(`)zh−1−`), then since Jσ(`)|z|h−1−` ≤

Jσ(b− 1)|z|h−b, we know from the triangle inequality that

|u(z)| ≥ |z − (b+ 1)| · |z|h−b(|z|b−1 − Jσ(b− 1))

≥ |z − (b+ 1)| · |z|h−b(|z|b−1 − (b− 1)!),

with the final inequality following from Corollary 2. Finally, since Corollary 2

also implies Jσ(h) = [h]σ! ≤ b! · bh−b, it suffices to show that

b!·|z|h−b+|z−(b+1)|·|z|h−b·
b−2∑
k=1

Jσ(k)|z|b−1−k < |z−(b+1)|·|z|h−b(|z|b−1−(b−1)!).

However, we can see that canceling the common factor |z|h−b from all terms

reduces it the ground state case, and the proof follows Theorem 2 identically

from this point onward.

Crucially, one must note that the ground state polynomial sb(z) provides a

bound on the size of ρ, even though 1/ρ is a root of the σ state’s polynomial

14



sσ(z). As an illustration, consider the case where b = 5 and h = 7, for which

there are 15 possible juggling states. For each possible σ, Theorem 3 dictates

that the largest root ρσ of s̄σ satisfies 5.5451 ≤ ρ5 ≤ ρσ < 6, where ρ5 is the

largest root of s̄5. A graph of all the s̄σ(z) functions alongside s̄5(z) is shown

in Figure 2.

Figure 2: The graphs of s̄σ(z) for each of the 5-ball juggling states of height 7,
alongside the graph of the ground state polynomial s̄5(z).

Finally, suppose we wish to estimate the number of primitive, b-ball juggling

sequences of length up to n. This involves the cumulative counting function

Πσ(n) =
∑n
k=1 Pσ(n), and a simple estimate of its growth can be determined

from Theorem 3.

Corollary 3. Suppose b ≥ 4, let Πσ(n) denote the number of primitive, σ-

juggling sequences of length ≤ n, and let ρ be the largest root (by modulus) of

s̄σ(z). Then, ρ is a real number satisfying b+ 1− c · b
3/2

eb
≤ ρ < b+ 1, where c
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is the same constant defined in Theorem 1. Moreover,

Πσ(n) ∼ ρ(b+ 1− ρ)

(ρ− 1)|s′σ(1/ρ)|
· ρn.

Proof. By the Stolz-Cesàro theorem (cf. [5, p. 85]), Πσ(n) is asymptotic to∑n
k=1

b+1−ρ
|s′σ(1/ρ)|

· ρk. Since this is a geometric sum, we easily see that

Πσ(n) ∼ b+ 1− ρ
|s′σ(1/ρ)|

·
n∑
k=1

ρk =
b+ 1− ρ
|s′σ(1/ρ)|

· ρ(ρn − 1)

ρ− 1

and so

Πσ(n) ∼ ρ(b+ 1− ρ)

(ρ− 1)|s′σ(1/ρ)|
· ρn,

as desired.

5 Conclusion

In the end, a straightforward application of analytic techniques to the generating

functions from [2] was sufficient to determine the asymptotic growth of Pσ(n)

and its cumulative cousin Πσ(n), though the process is laborious at points.

However, it should not be understated that we now have an analogue to the

prime number theorem for juggling patterns. This analysis comes by viewing

each state in isolation, and viewing its juggling sequences as a set (technically,

a non-commutative semigroup) that shares some properties with the positive

integers.

Alternatively, one could view a juggling sequence more holistically as a col-

lection of juggling states. This requires the construction of a directed graph,

called a state diagram, in which each b-ball juggling state is a node and a throw

corresponds to a directed edge connecting two states. In this context, a σ-

juggling sequence is a path in the state diagram that begins and ends at σ.
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Figure 3: The 3-ball state diagram, restricted to a maximum height of 5.

Since such a path is necessarily a cycle, we may untether the juggling se-

quence from the chosen state σ, which leads to a new analogue for primality.

Specifically, we may define a prime juggling sequence to be one that corresponds

to a simple cycle in the state diagram (i.e., there are no repeated states). Follow-

ing the 3-ball state diagram restricted to height 5 as shown in Figure 5, we see

that the 〈1, 1, 0, 1〉-juggling sequence (5, 5, 0, 5, 0) is prime, while the 〈1, 1, 0, 1〉-

juggling sequence (2, 4, 4, 5, 0) is not. Prime juggling sequences are necessarily

primitive for each juggling state through which they pass. (Note that the con-

verse is false, since a non-simple cycle may be viewed as primitive if one chooses

a state σ that it passes through only once.) Some interesting combinatorial

work has been done in this area, notably by [1] in the case b = 2. In this venue,

it is more appropriate to examine prime juggling sequences instead of primitive

juggling sequences. An Ihara-type zeta function could serve as a foundation for
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an analytic approach.
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