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Geometry vs. Analysis 

“The analytical investigations of the Greek geometers are 
indeed models of simplicity, clearness and unrivalled 
elegance... some of the noblest monuments of human 
genius. It is a matter of deep regret, that Algebra, or the 
Modern Analysis, from the mechanical facility of its 
operations, has contributed, especially on the Continent, 
to vitiate the taste and destroy the proper relish for the 
strictness and purity so conspicuous in the ancient method 
of demonstration.” 

— John Leslie, preface to Elements of Geometry (1809)[9] 



Partial Timeline of Early Fluid Mechanics 
!  1738 [Apr/May] – Daniel Bernoulli’s Hydrodynamica appears in print (first 

draft written c. 1733). 

!  1738 [Oct] – Johann Bernoulli writes to Leonhard Euler, first mentioning 
Hydraulica. 

!  1739 [Mar/Apr] – Euler receives copies of D. Bernoulli’s Hydrodynamica and 
J. Bernoulli’s Hydraulica (Part 1), nearly simultaneously. 

!  1739 [May] – Euler writes to each Bernoulli about their work on fluid 
mechanics. 

!  1743 – Hydraulica appears in print (in J. Bernoulli’s Opera Omnia), backdated 
to 1732. 

!  1751 – Euler writes “Research on the movement of rivers” [E332], pub. 1767. 

!  1752 – Euler writes “Principles of the motion of fluids” [E258], pub. 1761. 

!  1755 – Euler writes “General principles of the motion of fluids” [E226],       
pub. 1757. 



D. Bernoulli’s Hydrodynamica  (1738) 



Bernoulli’s Geometry 

Let the height of the surface of the water 
AB above the hole o = a; the velocity of 
the water flowing out at o, if the first mo-
ment of flow be excepted, is to be re-
garded as uniform and = √a, since we 
assume the vessel to be kept constantly 
full. Let the ratio of the width of the tube 
to that of the hole be n/1; then the vel-
ocity of the water in the tube = √a/n …  

… the problem is now changed into this: if during the flow of the water 
through o the tube ED were broken at cd at an instant, one seeks the 
magnitude of the acceleration the volume element acbd would thence 
be about to obtain… 
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Bernoulli’s Geometry 

If tube is broken at cd, velocity of water in tube increases to 
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From Geometry to Calculus 
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v = velocity of water in tube 
(viewed as a variable) 

c = Ec = length of tube 

dx = width of aqueous particle, 
“infinitely small and about to 
flow out” 

n dx = area of particle = mass 
of particle (density = 1). 

“There will be an equal volume 
element [eEGg] at E entering 
the tube at the same instant 
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From Geometry to Calculus 

that acdb flows out … it acquires  
the velocity v and the live force [vis vivam] nvv dx…” 

v = velocity of water in tube 
(viewed as a variable) 

c = Ec = length of tube 

dx = width of aqueous particle, 
“infinitely small and about to 
flow out” 

n dx = area of particle = mass 
of particle (density = 1). 

“There will be an equal volume 
element [eEGg] at E entering 
the tube at the same instant 
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From Geometry to Calculus 
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“…to this … is to be added the 
increment of live force [2ncv dv] 
which the water at Eb receives 
while the volume element at ad 
flows out…” 

Live forces (vis viva):  

Potential ascent: 
!   Inflow:  (n dx)v2 
!   Outflow:  2ncv dv 

Actual descent: (n dx)a 



From Geometry to Calculus 
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Equate potential ascent & actual descent: 
 nv2 dx + 2ncv dv = na dx 

“…to this … is to be added the 
increment of live force [2ncv dv] 
which the water at Eb receives 
while the volume element at ad 
flows out…” 

Live forces (vis viva):  

Potential ascent: 
!   Inflow:  (n dx)v2 
!   Outflow:  2ncv dv 

Actual descent: (n dx)a 



nv2 dx + 2ncv dv = na dx 

This is (almost) the Bernoulli equation for fluid flow: 

 nv2 dx + 2ncv dv = na dx 

Modern form:  

Modernizing Bernoulli’s Conclusion 
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Euler’s Earliest Fluid Mechanics 

A letter from Euler to Johann Bernoulli, 16 May 1739: 



Euler’s Earliest Fluid Mechanics 
Initially, surface is at PS; water flows out of hole at CD. 

•   z = velocity head at PS  [ = V2/2g ] 
•   (nn/yy)z = velocity head at RY  [ = h ] 
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Euler’s Earliest Fluid Mechanics 
Initially, surface is at PS; water flows out of hole at CD. 

•   z = velocity head at PS  [ = V2/2g ] 
•   (nn/yy)z = velocity head at RY  [ = h ] 

In an infinitesimal span of time:  
•   PS sinks to ps  (change = dp) 
•   RY sinks to ry  (change = dr) 
•   z + dz = velocity head at ps 
•   Velocity head at ry  

 = nn/(y+dy)2 (z+dz)  [ = h + dh ] 

Change in velocity head from RY to ry = (nn/yy) dz – 2nnz dy/y3.  [ = dh ] 



Modernizing Euler’s Conclusion 
Fluid density is taken to = 1; velocity head measured as square of 
velocity (imagine velocity units are m/s): 

 dh  (m2/s2)   
 dh/dr  (m/s2)  “accelerating force” 
 dh/dr • y dr  (kg•m/s2)  “moving force” 
 dh/dr • y dr/y = dh  (N/m)  [ pressure dp ] 



Modernizing Euler’s Conclusion 
Fluid density is taken to = 1; velocity head measured as square of 
velocity (imagine velocity units are m/s): 

 dh  (m2/s2)   
 dh/dr  (m/s2)  “accelerating force” 
 dh/dr • y dr  (kg•m/s2)  “moving force” 
 dh/dr • y dr/y = dh  (N/m)  [ pressure dp ] 

Euler thus obtains pressure differential: 
 [ dp ] = (nn/yy)dz – 2nnz dy/y3. 

Then he uses 1/y = dr/(s dp) to get  

 [ dp ] = nn[dz/(s dp)•dr/y – 2z dy/y3]. 

Modern integration yields: 
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Euler’s Fluid Mechanics Papers 

E332 
Written 1751 

Published 1767  

E226 
Written 1755 

Published 1757  

E258 
Written 1752 

Published 1761  



Euler’s Fluid Mechanics Papers 

E332 
Written 1751 

Published 1767  



Water in the river has 
constant density = 1. 

Fluid particle flows 
downstream from left 
(OO’o’o) to right 
(MM’m’m). 

Since the fluid is 
incompressible, the 
area of OO’o’o must 
equal the area of 
MM’m’m. 

Euler’s Geometry in E332 
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Euler’s Geometry in E332 

OO’o’o = EO’o’e’ 
    – EOoe 

   – eoo’e’. 

MM’m’m = PMM’P’ 
     + P’M’m’p’ 
     – pmm’p’  
     – PMmp. 

Area of trapezoid =  
Base x Avg of heights 



Euler’s Geometry in E332 

OO’o’o = ½ Ee’(EO’+o’e’) 
    – ½ Ee(EO+oe) 

   – ½ ee’(eo+o’e’). 

MM’m’m = ½ PP’(PM+M’P’) 
     + ½ P’p’(P’M’+m’p’) 
     – ½ pp’(pm+m’p’)  
     – ½ Pp(PM+mp). 

Area of trapezoid =  
Base x Avg of heights 
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From Geometry to Calculus 
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From Geometry to Calculus 
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                    Time 
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From Geometry to Calculus 
OO’o’o  ≈  m dz dτ 

MM’m’m ≈ PS dz dτ – QR dz dτ = (PS – QR) dz dτ 
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m, n = forward & down-
ward velocities at O 

dτ = time for O to flow 
to o. 

Distance = Rate x    
                    Time 

P, Q, R, S = partial 
derivatives of x & y with 
respect to t & z 
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From Geometry to Calculus 

Since the area of OO’o’o 
equals the area of 
MM’m’m, 

m = PS – QR 
Or, in modern notation:  

(Depends only on z.) 
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Euler’s Fluid Mechanics Papers 
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Published 1767  
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Euler’s Geometry in E258 

E258 
Written 1752 

Published 1761  



Euler’s Geometry in E258 

Fluid triangle l mn  
flows to fluid triangle  
pqr in infinitesimal  
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Euler’s Geometry in E258 

Fluid triangle l mn  
flows to fluid triangle  
pqr in infinitesimal  
time dt. 

u = dx = lm 

v = dy = ln 

L = du/dx,   l = du/dy  
M = dv/dx,   m = dv/dy  

du = L dx + l dy,   dv = M dx + m dy 

Argument similar to E332 shows that  
 L + m = 0. 

dx 

dy 



Euler’s Geometry in E226 

E226 
Written 1755 

Published 1757  

Cubical fluid particles, 3 dimensions; techniques are more algebraic. 
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Development of Euler’s Fluid Mechanics 

1738-39 – D. Bernoulli & Euler use 
method of parallel sections. Bernoulli 
argues using actual descent & potential 
ascent; Euler uses “moving forces”. 

1751 – Euler uses quadrilateral fluid 
particle method, derives formulas with 
Euclidean geometry in 2D. Awkward 
notation involving initial conditions. 

1752 – Euler uses triangular & tetrahedral 
fluid particles, and same Euclidean tech-
niques. Begins to use consistent notation 
for partial derivatives. 

1755 – Euler uses cubical fluid particles. 
Less geometric than previous two works. 



Epilogue – Lagrange’s Mécanique Analytique (1788) 
Some Conclusions: 
!  Serious notational deficien-

cies; key concepts still in 
development 

!  Potential ascent & actual 
descent eventually replaced 
by modern notion of force. 

!  Earlier: geometry drives the 
algebraic argument 

!  Later: algebra and analysis 
dominate, geometry reduced 
to more of an illustration 

!  Euler’s work in 1739-1755 
followed this pattern, becom-
ing more flexible and less 
dependent on geometry. 



Geometry vs. Analysis 

“The analytical investigations of the Greek geometers are 
indeed models of simplicity, clearness and unrivalled 
elegance... some of the noblest monuments of human 
genius. It is a matter of deep regret, that Algebra, or the 
Modern Analysis, from the mechanical facility of its 
operations, has contributed, especially on the Continent, 
to vitiate the taste and destroy the proper relish for the 
strictness and purity so conspicuous in the ancient method 
of demonstration.” 

— John Leslie, preface to Elements of Geometry (1809)[9] 



Geometry vs. Analysis 

"… the basic physico-mathematical tools of the modern 
derivation of Euler's equations were not originally avail-
able. In the early eighteenth century there was no concept 
of a dimensional quantity, no practice of writing vector 
equations (even in the so-called Cartesian form), no 
concept of a velocity field, and no calculus of partial 
differential equations. The idea of founding a domain of 
physics on a system of general equations rather than on a 
system of general principles expressed in words did not 
exist.” 

— Oliver Darrigol, introduction to Worlds of Flow (2005)[2] 
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