

Geometry vs. Analysis

"The analytical investigations of the Greek geometers are indeed models of simplicity, clearness and unrivalled elegance... some of the noblest monuments of human genius. It is a matter of deep regret, that Algebra, or the Modern Analysis, from the mechanical facility of its operations, has contributed, especially on the Continent, to vitiate the taste and destroy the proper relish for the strictness and purity so conspicuous in the ancient method of demonstration."

- John Leslie, preface to Elements of Geometry (1809) ${ }^{[9]}$

Partial Timeline of Early Fluid Mechanics

- 1738 [Apr/May] - Daniel Bernoulli's Hydrodynamica appears in print (first draft written c. 1733).
- 1738 [Oct] - Johann Bernoulli writes to Leonhard Euler, first mentioning Hydraulica.
- 1739 [Mar/Apr] - Euler receives copies of D. Bernoulli's Hydrodynamica and J. Bernoulli's Hydraulica (Part 1), nearly simultaneously.
- 1739 [May] - Euler writes to each Bernoulli about their work on fluid mechanics.
- 1743 - Hydraulica appears in print (in J. Bernoulli's Opera Omnia), backdated to 1732.
- 1751 - Euler writes "Research on the movement of rivers" [E332], pub. 1767.
- 1752 - Euler writes "Principles of the motion of fluids" [E258], pub. 1761.
- 1755 - Euler writes "General principles of the motion of fluids" [E226], pub. 1757.

D. Bernoulli's Hydrodynamica (1738)

Problema.

Fig.72. num confervandum, theo infrutum cylindrico \& horizontali ED; fitque in extremitate tubi foramen 0 aquas velocitate uniformi emaittens; quaritur preffio aque in latera tubi ED.

Solutio.

Sit altitudo fuperficiei aqueæ AB fupra orificium $0=a$; erit velocitas aqux in o effluentis, fi prima fluxus momenta excipias, uniformis cenfenda \& $=\sqrt{ } a$, quia vas confanter plenum confervari affamimus; pofitaque ratione amplitudinum tubi ejasque foraminis $=\frac{n}{2}$, erit velocitas aqux in tubo $=\frac{v a}{n}$: Si vero omne fundum FD abeffet, foret velocitas ultima aqux in eodem tubo $=\sqrt{ } a$, qux major eft quam a; Igitur aqua in tubo tendit ad majorem motum, nifus autem ejus ab appofito fundo FD impeditur: Ab hoc nifu \& renifu comprimitur aqua, quæ ipfa compreffio coêrcetur à lateribus tubi, hæcque proinde fimilemf preffionem fuftinent. Apparet fic preffionem Isternm proportionalem effe accelerationi feu incremento velocintis, quod aqua fit acceptura, fin in infanti omne obftaculum motus evanefcat, fic ut immediate in aërem ejiciatur.

Res igitur jame eo perducta eft, ut fi durante fluxu aqux per 0 , tubus ED in temporis puncto abrumpatur in cd, quaratur quantam accelerationem guttula a cbd inde fit perceptura : tantam enim prefionem fentiet particula ac in lateribus tubi famta à praterfluente aqua: Hunc in finem confiderandum eft vas ABEcd C , atque pro eo invenienda acceleratio particule aquex eflumii proxime, fi hrec habuerit velocitatem $\frac{\mathrm{Va}}{\mathrm{n}}$: Itud negotium fecimus generalifime in paragrapho tertio sect. \boldsymbol{V}. Attamen quia in hoc cafu particulari brevis eft calculus, motum in vafe decurtato ABE ©d C hic iterum calculo fabducemus.

Sit velocitas aquæ in tubo Ed, quæ nunc ut variabilis confideranda eft, $=v$: amplitudo tubi ut antea 二 n, longitudo $\mathrm{E} c=c$: indicetur longitudo ac particulx aquex infinite parvx \& effluxui proxime per $d x$: Erit guttula æqualis in E tubum ingreffura eodem temporis puncto quo altera acd $d b$ ejicitur: dum autem guttula in E , cajus maffa 二 $n d x$, tubum ingreditur acquirit velocitatem v, atque vim vivam $n v v i x$, qux vis viva tota fait de novo generata ; nullum enim, ob amplitudinem vafis A E infinitam, motum guttula in E habuit tabum nondum ingreffa: huic vi viva $n v v d x$. addendum eft incrementum vis viva, quod aqua in $\mathrm{E} b$ accipit, dum guttula $a d$ effluit, nempe $2 n c v d v$: aggregatum debetur defcenfui altuali guttu$l x n d x$ per altitudinem BEfeu a : habetur igitar $n v v d x+2 n c v d v=n a d x$ five $\frac{v d \eta}{d x}=\frac{a-v o}{2 c}$.

Bernoulli's Geometry

Let the height of the surface of the water $A B$ above the hole $o=a$; the velocity of the water flowing out at o, if the first moment of flow be excepted, is to be regarded as uniform and $=\sqrt{ }$, since we assume the vessel to be kept constantly full. Let the ratio of the width of the tube to that of the hole be $n / 1$; then the velocity of the water in the tube $=\sqrt{ } a / n \ldots$

... the problem is now changed into this: if during the flow of the water through o the tube $E D$ were broken at $c d$ at an instant, one seeks the magnitude of the acceleration the volume element $a c b d$ would thence be about to obtain...

Bernoulli's Geometry

$a=$ distance from surface $A B$ to hole o
$n=$ ratio of $F D$ to $o(F D$ is n times the width of the hole)

Aqueous particles at $a c b d$ (midway through tube) and $e E G g$ (about to enter tube).

Velocity of water in tube is \sqrt{a} / n.

Bernoulli's Geometry

$a=$ distance from surface $A B$ to hole o
$n=$ ratio of $F D$ to $o(F D$ is n times the width of the hole)

Aqueous particles at $a c b d$ (midway through tube) and $e E G g$ (about to enter tube).

Velocity of water in tube is \sqrt{a} / n.

If tube is broken at $c d$, velocity of water in tube increases to \sqrt{a}.

From Geometry to Calculus

$v=$ velocity of water in tube (viewed as a variable)
$c=E c=$ length of tube
$d x=$ width of aqueous particle, "infinitely small and about to flow out"
$n d x=$ area of particle $=$ mass of particle (density = 1).

From Geometry to Calculus

$v=$ velocity of water in tube (viewed as a variable)
$c=E c=$ length of tube
$d x=$ width of aqueous particle, "infinitely small and about to flow out"
$n d x=$ area of particle $=$ mass of particle (density = 1).
"There will be an equal volume element $[e E G g]$ at E entering
 the tube at the same instant that $a c d b$ flows out ... it acquires the velocity v and the live force [vis vivam] $n v v d x \ldots$..."

From Geometry to Calculus

"...to this ... is to be added the increment of live force [2ncv $d v$] which the water at $E b$ receives while the volume element at $a d$ flows out..."

Live forces (vis viva):
Potential ascent:

- Inflow: $(n d x) v^{2}$
- Outflow: $2 n c v d v$

Actual descent: $(n d x) a$

From Geometry to Calculus

"...to this ... is to be added the increment of live force [$2 n c v d v$] which the water at $E b$ receives while the volume element at $a d$ flows out..."

Live forces (vis viva):
Potential ascent:

- Inflow: $(n d x) v^{2}$
- Outflow: $2 n c v d v$

Actual descent: $(n d x) a$

Equate potential ascent \& actual descent:

$$
n v^{2} d x+2 n c v d v=n a d x
$$

Modernizing Bernoulli's Conclusion

$n v^{2} d x+2 n c v d v=n a d x$

This is (almost) the Bernoulli equation for fluid flow:

$$
\begin{aligned}
& n v^{2} d x+2 n c v d v=n a d x \\
& v^{2}+2 c v \frac{d v}{d x}=a \\
& {[\text { pressure } \propto] 2 c v \frac{d v}{d x}=a-v^{2}} \\
& \text { pressure } \propto a-v^{2}
\end{aligned}
$$

Modern form: pressure $=C-\frac{v^{2}}{2 g}-z$

Euler's Earliest Fluid Mechanics

A letter from Euler to Johann Bernoulli, 16 May 1739:

Sit igitur [Fig. 1] vas cujuscunque figurae $A B D C$, initio, quo aqua per foramen $C D$ effluere incipit, usque ad $A B$ aqua repletum, cujus altitudo $A C$ sit $=a$, et foraminis $C D$ amplitudo $=n$. Ponamus aquam jam usque in $P S$ subsedisse hocque tempore aquam per foramen $C D$ effluere celeritate altitudini z debita, minimo autem tempusculo subsidere superficiem $P S$ per spatiolum P_{p}; sitque $P_{p}=d p$ atque amplitudo vasis $P S=s$, denotabit $\varepsilon+d z$ altitudinem celeritati aquae effuentis debitam, cum suprema aquae superficies usque in $p s$ subsedit. Ut nune mutatio

Fig. 1. motus hoc tempusculo genita innotescat, concipiatur superficies quaecunque aquae $R Y$, ponaturque $A R=r$, et amplitudo $R Y=y$; exit celeritas hujus strati $R Y$ debita alititudini $\frac{n n z}{y y}$; et quia tempusculo infinite parvo superficies $R Y$ descendit in $r y$, erit trum ejus celeritas debita altitudini

Euler's Earliest Fluid Mechanics

Initially, surface is at PS; water flows out of hole at CD.

- $z=$ velocity head at $P S\left[=V^{2} / 2 g\right]$
- $(n n / y y) z=$ velocity head at $R Y[=h]$

Euler's Earliest Fluid Mechanics

Initially, surface is at PS; water flows out of hole at CD.

- $z=$ velocity head at $P S\left[=V^{2} / 2 g\right]$
- $(n n / y y) z=$ velocity head at $R Y[=h]$

In an infinitesimal span of time:

- $P S$ sinks to $p s$
- $R Y$ sinks to $r y$

Euler's Earliest Fluid Mechanics

Initially, surface is at PS; water flows out of hole at CD.

- $z=$ velocity head at $P S\left[=V^{2} / 2 g\right]$
- $(n n / y y) z=$ velocity head at $R Y[=h]$

In an infinitesimal span of time:

- $P S$ sinks to $p s \quad($ change $=d p)$
- $R Y$ sinks to $r y \quad($ change $=d r)$
- $z+d z=$ velocity head at $p s$
- Velocity head at $r y$

$$
=n n /(y+d y)^{2}(z+d z)[=h+d h]
$$

Change in velocity head from $R Y$ to $r y=(n n / y y) d z-2 n n z d y / y^{3}$. [$\left.=d h\right]$

Modernizing Euler's Conclusion

Fluid density is taken to $=1$; velocity head measured as square of velocity (imagine velocity units are m / s):

$d h\left(\boldsymbol{m}^{2} / \mathbf{s}^{2}\right)$
$d h / d r\left(\boldsymbol{m} / \mathbf{s}^{2}\right)$ "accelerating force"
$d h / d r \cdot y d r\left(k g \cdot m / \mathbf{s}^{2}\right)$ "moving force"
$d h / d r \cdot y d r / y=d h(\boldsymbol{N} / \boldsymbol{m})$ [pressure $d p$]

Modernizing Euler's Conclusion

Fluid density is taken to $=1$; velocity head measured as square of velocity (imagine velocity units are m / s):

$$
\begin{aligned}
& d h\left(\boldsymbol{m}^{2} / \mathbf{s}^{\mathbf{2}}\right) \\
& d h / d r\left(\boldsymbol{m} / \mathbf{s}^{2}\right) \text { "accelerating force" } \\
& d h / d r \bullet y d r\left(\mathbf{k} \cdot \boldsymbol{m} / \mathbf{s}^{\mathbf{2}}\right) \text { "moving force" } \\
& d h / d r \bullet y d r / y=d h(\boldsymbol{N} / \boldsymbol{m}) \text { [pressure } d p]
\end{aligned}
$$

Euler thus obtains pressure differential:

$$
[d p]=(n n / y y) d z-2 n n z d y / y^{3} .
$$

Then he uses $1 / y=d r /(s d p)$ to get

$$
[d p]=n n\left[d z /(s d p) \bullet d r / y-2 z d y / y^{3}\right]
$$

Modern integration yields: $p(y)-p(s)=\frac{n^{2} d z}{s d p} \int_{s}^{y} \frac{d r}{y}+\frac{n^{2}}{s^{2}} z-\frac{n^{2}}{y^{2}} z$

Euler's Fluid Mechanics Papers

E332
Written 1751
Published 1767

RECHERCHES

SUR
L. E MOUVEMENT DES RIVIERES.

E258
Written 1752
Published 1761

$$
\begin{gathered}
\text { PRINCIPIA } \\
\text { MOTVS FLVIDORVM. }
\end{gathered}
$$

E226
Written 1755
Published 1757
PRINCIPES GÉNÉRAUX DU MOUVEMENT DES FLUIDES:

Euler's Fluid Mechanics Papers

E332
Written 1751
Published 1767

```
R E CHERCHES
SUR
Le MOUVEMENT DES RIVIERES.
```

§. 5. Soit done AC le lit d'une telle fection de riviere, ou Fig. ! d'une riviere infiniment étroite, qui ait partout la même largcur infiniment petite. Que ce lit $A C$ foit une ligne courbe quelconque, qui eft fuppofêe être connue; pour cet effet je conçois une ligne horizontale EF qui ferve d'axe pour y rapporter la ligne $\Lambda \mathrm{C}$ par des coordonnées orthograles EP \& PQ. Que ABCD foir la rwiere, qui fe meut fur ce lit $A C, \& B D$ fa fuperficie fupreme; de plus je fuppofe, que la riviere fe trouve déjì dans un état permanent ou d'équilibre, de forte que fa fuperficie BD demeure continuellement la même, \& qu'aux mêmes points, comme M, les particules d'eau qui y paffent ayent toujours les mêmes viteffes, \& qu'elles forent affujetties aux mêmes preffions.

Euler's Geometry in E332

Water in the river has constant density $=1$.

Fluid particle flows downstream from left (OO'o'o) to right (MM'm'm).

Since the fluid is incompressible, the area of OO'o'o must equal the area of MM'm'm.

Euler's Geometry in E332

OO'o'o = EO'o'e' - EOoe ...

Euler's Geometry in E332

OO'o'o = EO'o'e' - EOoe ...

Euler's Geometry in E332

OO'o'o = EO'o'e' - EOoe
- eoo'e' ...

Euler's Geometry in E332

OO'o'o = EO'o'e' - EOoe
- eoo'e'.

Euler's Geometry in E332

$$
\begin{aligned}
\text { OO'o'o }= & \text { EO'o'e' } \\
& - \text { EOoe } \\
& - \text { eoo'e' }
\end{aligned}
$$

MM'm'm = PMM'P'

+ P'M'm'p'
- pmm'p' ...

Euler's Geometry in E332

$$
\begin{aligned}
\text { OO'o'o }= & \text { EO'o'e' } \\
& - \text { EOoe } \\
& - \text { eoo'e'. }
\end{aligned}
$$

MM'm'm = PMM'P'

+ P'M'm'p'
- pmm'p' ...

Euler's Geometry in E332

OO'o'o = EO'o'e'
- EOoe
- eoo'e'.
MM'm'm = PMM'P'
+ P'M'm'p'
- pmm'p'
- PMmp ...

Euler's Geometry in E332

OO'o'o = EO'o'e'
- EOoe
- eoo'e'.
MM'm'm = PMM'P'
+ P'M'm'p'
- pmm'p'
- PMmp.

Euler's Geometry in E332

OO'o'o = EO'o'e'

- EOoe
- eoo'e'.

MM'm'm = PMM'P'

+ P'M'm'p'
- pmm'p'
- PMmp.

Area of trapezoid $=$ Base \times Avg of heights

Euler's Geometry in E332

OO'o'o = $1 / 2 E e^{\prime}\left(E O^{\prime}+O^{\prime} e^{\prime}\right)$
$-1 / 2 \mathrm{Ee}(E O+o e)$

- $1 / 2$ ee'(eo+o'e').

MM'm'm = ½ PP'(PM+M'P') + 1/2 P'p'(P'M'+m'p') $-1 / 2 p p^{\prime}\left(p m+m^{\prime} p^{\prime}\right)$ $-1 / 2 P p(P M+m p)$.

Area of trapezoid $=$ Base \times Avg of heights

Euler's Geometry in E332
 OO'o'o = $1 / 2 E e^{\prime}(E O$ ' + o'e' $)-1 / 2 \mathrm{Ee}(E O+o e)-1 / 2$ ee'(eo+o'e')

Euler's Geometry in E332

$$
\begin{aligned}
\text { OO'o'o } & \left.=1 / 2 E e^{\prime}\left(E O O^{\prime}+o^{\prime} e^{\prime}\right)-1 / 2 \mathrm{Ee}(E O+o e)-1 / 2 \text { ee'(eo }+\mathrm{o}^{\prime} \mathrm{e}^{\prime}\right) \\
& \left.=1 / 2\left(E e+e^{\prime}\right)\left(E O+O O^{\prime}+o^{\prime} e^{\prime}\right)-1 / 2 \mathrm{Ee}(E O+o e)-1 / 2 \text { ee'(eo+o'e' }\right)
\end{aligned}
$$

Euler's Geometry in E332

$$
\begin{aligned}
O O^{\prime} o^{\prime} & =1 / 2 E e^{\prime}\left(E O^{\prime}+o^{\prime} e^{\prime}\right)-1 / 2 \mathrm{Ee}(E O+o e)-1 / 2 \text { ee'(eo+o'e') } \\
& =1 / 2\left(E e+e e^{\prime}\right)\left(E O+O O^{\prime}+o^{\prime} e^{\prime}\right)-1 / 2 \mathrm{Ee}(E O+o e)-1 / 2 \text { ee'(eo+o'e') } \\
& =1 / 2 E e\left(O O^{\prime}+\text { o'e' }^{\prime}-\mathrm{eo}\right)-1 / 2 \text { ee' }(E O \text { ' oe })
\end{aligned}
$$

From Geometry to Calculus

```
OO'o'o = 1/2 Ee(OO' + o'e' - eo) - 1/2 ee'(EO' - oe)
```

$m, n=$ forward \& downward velocities at O
$d \tau=$ time for O to flow to 0 .

Distance $=$ Rate x Time

From Geometry to Calculus

$$
\begin{aligned}
\text { OO'O'o } & =1 / 2 \mathrm{Ee}\left(\mathrm{OO}^{\prime}+\mathrm{o} \mathbf{' e '}^{\prime}-\mathrm{eo}\right)-1 / 2 \text { ee'(EO' - oe) } \\
& =1 / 2 m d \tau(d z+[z+d z-n d \tau]-[z-n d \tau])-1 / 2 \text { ee'(EO' }- \text { oe })
\end{aligned}
$$

$m, n=$ forward \& downward velocities at O
$d \tau=$ time for O to flow to 0 .

Distance $=$ Rate \times Time

From Geometry to Calculus

From Geometry to Calculus

From Geometry to Calculus

OO'o'o $\approx m d z d \tau$
MM'm'm $\approx P S d z d \tau-Q R d z d \tau=(P S-Q R) d z d \tau$
$m, n=$ forward \& downward velocities at O $d \tau=$ time for O to flow to 0 .

Distance $=$ Rate \times Time

P, $Q, R, S=$ partial derivatives of $x \& y$ with respect to $t \& z$

From Geometry to Calculus

OO'o'o $\approx m d z d \tau$
MM'm'm $\approx P S d z d \tau-Q R d z d \tau=(P S-Q R) d z d \tau$

Since the area of OO'o'o equals the area of MM'm'm,

$$
m=P S-Q R
$$

Or, in modern notation:

$$
\left.\frac{\partial x}{\partial t}\right|_{t=0}=\frac{\partial(x, y)}{\partial(t, z)}
$$

(Depends only on z.)

Euler’s Fluid Mechanics Papers

E332
Written 1751
Published 1767

E258
Written 1752
Published 1761

```
                        PRINCIPIA
MOTVS FLVIDORVM.
```

E226
Written 1755
Published 1757

Euler's Geometry in E258

> E258
> Written 1752 Published 1761
13. Cum igitur fit $d u=\mathrm{L} d x+l d y$ et $d y=M d x$ $+m d y$, hinc geminas celeritates cuiusque alius puncti ${ }_{p}$ quod quidem infinite parum a punctor l diftat, afignare licebit; fi enim talis puncti. a puncto l diftantia' fecundum axem AL fit $\doteq d x$, et fecundum axem $\mathrm{AB}=d y$, tum huius puncti celeritas fécundum axem $\mathbf{A L}$ erit $=u-\frac{1}{} d x+l d y ;$ celerrtas autern fecundum alterum axem $\mathrm{AB}=v+M d x+m d y$. Tempuiculo ergo infinite paruo dt hoc punctum proferetur fecundum directionem axis AL per fpatiolum $=d t(u t+\mathrm{L} d x$ - $(d y)$ et fecundum difectionem alterius axis A.B per fpatiolum $=d t(v+M d x+m d y)$.

Euler's Geometry in E258

Fluid triangle $\ell m n$ flows to fluid triangle $p q r$ in infinitesimal time $d t$.

$$
\begin{aligned}
& u=d x=\operatorname{lm} \\
& v=d y=\ln
\end{aligned}
$$

fit $\mathrm{L}+m=0$. Seu cum fit $\mathrm{L}=\frac{d u}{d x}$ et $m=\frac{d y}{d y}$, celeritates u et v, quae puncto l fecundum directiones axium $A L$ et $A B$ ineffe concipiuntur, eiusmodi funCtiones coordinatarum x et y effe debent, wit fit $\frac{d x}{d x}$ $+\frac{d v}{d y}=0$, ficque motuum pofibilium criterium in hoc confifit, wt fit $\frac{d u}{d x}+\frac{d v}{d y}=0$; nifi enim haec condi-

Euler's Geometry in E258

Fluid triangle $\ell m n$ flows to fluid triangle $p q r$ in infinitesimal time $d t$.

$$
\begin{aligned}
& u=d x=\operatorname{lm} \\
& v=d y=\ln \\
& L=d u / d x, \quad \ell=d u / d y \\
& M=d v / d x, \quad m=d v / d y \\
& d u=L d x+\ell d y, \quad d v=M d x+m d y
\end{aligned}
$$

Argument similar to E332 shows that

$$
L+m=0 .
$$

fit $\mathrm{L}+m=0$. Seu cum fit $\mathrm{L}=\frac{d y}{d x}$ et $m=\frac{d y}{d y}$, ce leritates z et v, quae puncto l fecuindom directiones axium $A L$ et $A B$ ineffe concipiutur, eiasmodi funCtiones coordinatarum x et y effe debent, wt fit $\frac{d y}{d x}$ $+\frac{d v}{d y}=0$, ficque moturm pofibilium criterium in hoc confifit, wt fit $\frac{d x}{d x}+\frac{d v}{d y}=0$, nifi enim haec condi-

Euler's Geometry in E226

E226
Written 1755
Published 1757

PRINCIPES GÉNÉRAUX
 DU MOUVEMENT DES FLUIDES:

niment peu incliné à l'axe OC. Donc, fi nous confidérons un paralielepipede rectangle ZPQRzpqr formé des trois côtés $\mathrm{ZP}=d x$, $\mathrm{ZQ}=d y, \& \mathrm{ZR}=d z$, le flaide qui occupoit cet efpace fera transporté pendant le tems $d t$ à remplir l'efpace $Z^{\prime} \mathrm{P}^{\prime} \mathrm{Q}^{\prime} \mathrm{R}^{\prime} z^{\prime} p^{\prime} q^{\prime} r^{\prime}$, infiniment peu différent d'un parallelepipede rectangle, dont les trois côtés feront :

$$
\begin{aligned}
& \mathrm{Z}^{\prime} \mathrm{P}^{\prime}=d x\left(1+d t\left(\frac{d u}{d x}\right)\right) ; \\
& \mathrm{Z}^{\prime} \mathrm{Q}^{\prime}=d y\left(1+d t\left(\frac{d v}{d y}\right)\right) ; \\
& \mathrm{Z}^{\prime} \mathrm{R}^{\prime}=d z\left(1+d t\left(\frac{d w}{d z}\right)\right)
\end{aligned}
$$

Cubical fluid particles, 3 dimensions; techniques are more algebraic.

Development of Euler's Fluid Mechanics

1738-39 - D. Bernoulli \& Euler use method of parallel sections. Bernoulli argues using actual descent \& potential ascent; Euler uses "moving forces".

Fig. 1.

Development of Euler’s Fluid Mechanics

1738-39 - D. Bernoulli \& Euler use method of parallel sections. Bernoulli argues using actual descent \& potential ascent; Euler uses "moving forces".
1751 - Euler uses quadrilateral fluid particle method, derives formulas with Euclidean geometry in 2D. Awkward notation involving initial conditions.

Development of Euler's Fluid Mechanics

1738-39 - D. Bernoulli \& Euler use method of parallel sections. Bernoulli argues using actual descent \& potential ascent; Euler uses "moving forces".
1751 - Euler uses quadrilateral fluid particle method, derives formulas with Euclidean geometry in 2D. Awkward notation involving initial conditions.
1752 - Euler uses triangular \& tetrahedral fluid particles, and same Euclidean techniques. Begins to use consistent notation for partial derivatives.

Development of Euler's Fluid Mechanics

1738-39 - D. Bernoulli \& Euler use method of parallel sections. Bernoulli argues using actual descent \& potential ascent; Euler uses "moving forces".
1751 - Euler uses quadrilateral fluid particle method, derives formulas with Euclidean geometry in 2D. Awkward notation involving initial conditions.

1752 - Euler uses triangular \& tetrahedral fluid particles, and same Euclidean techniques. Begins to use consistent notation for partial derivatives.
1755 - Euler uses cubical fluid particles.
Less geometric than previous two works.

Epilogue - Lagrange's Mécanique Analytique (i788)

Some Conclusions:

- Serious notational deficiencies; key concepts still in development
- Potential ascent \& actual descent eventually replaced by modern notion of force.
- Earlier: geometry drives the algebraic argument
- Later: algebra and analysis dominate, geometry reduced to more of an illustration
- Euler's work in 1739-1755 followed this pattern, becoming more flexible and less dependent on geometry.

Nous fuppoferons que le fluide foit homogène \& pefant, \& qu'il parte du repos, ou quil foit mis en mouvement par l'impulfion d'un pifton appliqué à fa furface; ainfi les vîtefles p, q, r, de chaque particule, devront être relles que la quantité $p d x+q d y+r d z$ foit intégrable (art. 18); par conféquent on pourra employer les formules de l'article 20.

Soit donc φ une fonction de $x, y, z \& z$, déterminée par léquation

$$
\frac{d^{2} \varphi}{d x^{2}}+\frac{d^{2} \varphi}{d y^{2}}+\frac{d^{2} \varphi}{d z^{2}}=0,
$$

on aura d'abord pour les vitteffes de chaque particule, fuivant les directions des coordonnées x, y, z, ces expreffions,

$$
p=\frac{d \varphi}{d x}, q=\frac{d \varphi}{d y}, r=\frac{d \varphi}{d z} .
$$

Enfuite on auta

$$
\lambda=V+\frac{d \phi}{d \psi}+\frac{1}{2}\left(\frac{d \phi}{d x}\right)^{2}+\frac{1}{2}\left(\frac{d \varphi}{d y}\right)^{2}+\frac{1}{2} \cdot\left(\frac{d \phi}{d z}\right)^{2},
$$

quantité qui devra être nulle à la furface extérieure libre du fluide (art. 2).

Geometry vs. Analysis

"The analytical investigations of the Greek geometers are indeed models of simplicity, clearness and unrivalled elegance... some of the noblest monuments of human genius. It is a matter of deep regret, that Algebra, or the Modern Analysis, from the mechanical facility of its operations, has contributed, especially on the Continent, to vitiate the taste and destroy the proper relish for the strictness and purity so conspicuous in the ancient method of demonstration."

- John Leslie, preface to Elements of Geometry (1809) ${ }^{[9]}$

Geometry vs. Analysis

"... the basic physico-mathematical tools of the modern derivation of Euler's equations were not originally available. In the early eighteenth century there was no concept of a dimensional quantity, no practice of writing vector equations (even in the so-called Cartesian form), no concept of a velocity field, and no calculus of partial differential equations. The idea of founding a domain of physics on a system of general equations rather than on a system of general principles expressed in words did not exist."

- Oliver Darrigol, introduction to Worlds of Flow (2005) ${ }^{[2]}$

References

[1] Bernoulli, Daniel. Hydrodynamica. Basel: Dulsecker, 1738. (English Translation by T. Carmody and H. Kobus, Dover, 1968.)
[2] Darrigol, Oliver. Worlds of Flow: A History of Hydrodynamics From the Bernoullis to Prandtl. New York: Oxford University Press, 2005.
[3] Euler, Leonhard. "Recherches sur le mouvement des rivières". Mémoires de l'académie des sciences de Berlin 16 (1767), pp. 101-118. Numbered E332 in Eneström's index. Available at eulerarchive.maa.org.
[4] -_. "Principia motus fluidorum". Novi commentarii academiae scientiarum Petropolitanae, 6 (1756/7) 1761, pp. 24-26, 271-311. Numbered E258 in Eneström's index. Available at http://eulerarchive.maa.org.
[5] -_. "Principes generaux du mouvement des fluides". Mémoires de l'académie des sciences de Berlin $\mathbf{1 1}$ (1755), 1757, pp. 274-315. Numbered E226 in Eneström's index. Available at http://eulerarchive.maa.org.
[6] - . Letter to Johann Bernoulli, 16 May 1739. Published in Bibl. Math 63 (1905), pp. 24-33. Numbered E863 in Eneström's index. Available at http://eulerarchive.maa.org.
[7] Lagrange, Joseph Louis. Traité de méchanique analytique. Paris: Desaint, 1788.
[8] Mikhailov, Gleb. Introduction to Die Werke von Daniel Bernoulli, Vol. 5. Basel: Birkhäuser, 2002.
[9] Timmons, Todd. Mathematics in Nineteenth Century America: The Bowditch Generation. Chestnut Hill, MA: Docent Press, 2013.
[10] Truesdell, Clifford. "Rational Fluid Mechanics, 1657-1765." In Euleri Opera Omnia, Ser. 2, Vol. 12. Lausanne: Orell Füssli Turici, 1964. pp. IX-CXXV.

