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Abstract. One commonly used PVA (population viability analysis) approach applies
a diffusion approximation (DA) of population growth to time series of abundance data to
estimate population parameters and various metrics of extinction risk. The simplest versions
of this PVA assume density-independent population growth, an assumption that is com-
monly called into question for populations experiencing self-limitation. Using time series
data generated from simulations of populations limited by three commonly used forms of
density dependence (ceiling, Beverton-Holt, and Ricker) we asked the question: ‘‘When
do simple density-independent PVA models provide useful guidelines for prioritizing ex-
tinction risk despite density-dependence inherent in the underlying real populations?’’

Simple DA methods severely underestimated maximum growth rates (�max) used to
generate time series data for all three forms of density dependence. These methods also
underestimated the intrinsic environmental variability in growth rates, or process error (�2),
for the ceiling model, but overestimated this parameter for the Beverton-Holt and Ricker
models. Despite misestimation of the intrinsic parameters, the estimated probabilities of
50% and 75% declines were highly correlated with the observed probabilities for popu-
lations growing with a ceiling (coefficients of correlation, or R2 � 0.87–0.93). DA methods
were less accurate for populations exhibiting more complex forms of density dependence
(R2 � 0.61–0.79). Although correlations between observed and estimated risks were high,
bias (e.g., over- and underestimation) was extensive. Estimated probabilities of 50% declines
were typically much lower (overly optimistic) than observed probabilities of the same
decline. By contrast, accuracy increased substantially for predictions of 75% decline, and
the ‘‘optimistic’’ bias was replaced by conservative bias (overestimates of risk).

Regardless of the form of density dependence, estimates of risk were least accurate
when populations were recovering rapidly but were much more accurate when most needed
by conservation practitioners: when the population fluctuated near its carrying capacity,
recovered slowly to this abundance level, or declined toward extinction. Finally, when we
classified risk in broad categories (e.g., extremely low, low, moderate, high, and extremely
high), DA methods correctly or conservatively estimated the risk of a 75% decline for
�85% of the parameter combinations, regardless of the form of density dependence followed
by the real population.
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analysis; time series.

INTRODUCTION

The limitations and challenges of population viabil-
ity analysis (PVA) are widely appreciated (Boyce 1992,
Reed et al. 2002). Among the challenges most exten-
sively discussed in the literature are the difficulty of
estimating parameters when data are sparse (Dennis
and Taper 1994, Taylor 1995), the bias introduced by
sampling error on estimates of process error (Meir and
Fagan 1999, Holmes 2001, De Valpine and Hastings
2002), difficulty in separating demographic and envi-
ronmental sources of stochasticity from count data (En-
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gen et al. 1998, Morris and Doak 2002), and the ex-
traordinarily large confidence intervals around esti-
mates of risk (Ludwig 1999, Fieberg and Ellner 2000).
However, most of these problems stem from insuffi-
cient or imprecise observation.

A more fundamental challenge to PVA is that bio-
logical populations change through time according to
processes that are rarely accurately captured by any
population viability model. These processes include
nonstationarity in environmental conditions (Beissin-
ger 1995, Zeng et al. 1998, CRI 2000), individual dif-
ferences in performance (Fox and Kendall 2002, Ken-
dall and Fox 2002), and other forms of demographic
stochasticity (Lande 1993) and self-regulation through
density dependence (Dennis and Taper 1994, Foley
1994, Dennis et al. 2001). Of these complexities in
population dynamics, density dependence has been
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more frequently reported in empirical studies (e.g.,
Gaston 1988, Stacey and Taper 1992, Kemp and Dennis
1993, Dennis and Taper 1994, Foley 1994). In this
paper we explore whether or not a simple density-in-
dependent model for population growth can summarize
useful features of a density-dependent population pro-
cess in a way that might inform conservation priority
setting.

The simple model that we choose to analyze is a
PVA based on a diffusion approximation of exponential
population growth with environmental stochasticity
(Lande and Orzack 1988, Dennis et al. 1991). This
particular diffusion approximation model (hereafter,
‘‘simple DA model’’) yields maximum likelihood es-
timates of the mean population growth rate (�) and the
variance in this rate, or ‘‘process error’’ (�2), via simple
linear regression (Dennis et al. 1991). These parameters
can then be used to calculate the long-term population
growth rate, �, and a variety of risk metrics such as
the mean time to extinction and the probability of de-
cline to critical threshold levels.

Despite its simplicity and ease of use (e.g., Morris
et al. 1999, Morris and Doak 2002), the simple DA
model ignores density dependence, a potentially im-
portant population dynamic for a variety of threatened
species (e.g., Stacey and Taper 1992, Foley 1994). The
lack of density dependence in DA risk estimation has
spurred considerable recent interest in developing more
sophisticated, nonlinear models to estimate density-de-
pendent population parameters (Dennis and Taper
1994, Foley 1994, Constantino et al. 1997, Dennis et
al. 2001, De Valpine and Hastings 2002). With higher
numbers of parameters to estimate, however, these ad-
vanced methods may require more data (longer time
series) to achieve the same precision as simpler meth-
ods (Hilborn and Mangel 1997). Moreover, even when
data are plentiful, density-dependent parameter esti-
mation is much more numerically intensive than the
simple regression model required to estimate param-
eters and risk using the DA method (Dennis et al. 2001,
De Valpine and Hastings 2002).

Ultimately, advances in the ease of application of
nonlinear stochastic models may provide practitioners
with tools for predicting extinction risk that are more
accurate, and as accessible as the linear (DA) model.
Until these advances have been made, it is critical to
quantify the accuracy of linear models at estimating
risk for populations that experience nonlinear growth,
not only for future analyses, but also for evaluating
prior analyses using simple viability models assuming
density independence. Finally, even after new advanc-
es, nonlinear models still require more data to achieve
the same precision as linear models with fewer param-
eters. It will be important to identify the types of pop-
ulations for which linear models yield accurate risk
estimates despite nonlinear population growth. When
accuracy is not sacrificed, models with fewer param-
eters to estimate should be preferred. Thus, the goal of

this analysis is to quantify the accuracy of the simple
DA model at estimating risk for populations experi-
encing various forms of density dependence.

Specifically, we address three questions about the
use of a simple DA model in risk classification. (1)
How poor are extinction risk estimates generated from
the simple DA model when populations experience
density dependence? (2) For which types of popula-
tions (e.g., small but recovering vs. steadily declining)
are estimates of risk from the simple DA model likely
to be most affected by density dependence? (3) Can
simple DA methods accurately rank populations in
more general categories of risk (e.g., high, medium,
low) despite density-dependent growth in real popu-
lations?

METHODS

To assess whether the simple DA model could still
predict relative risk for populations experiencing den-
sity dependence, we generated 40-year time series of
abundance data according to three different density-
dependent processes and then estimated the parameters
from the first half of the simulated data, assuming a
simple density-independent DA model. From estimated
parameters, we predicted the expected trajectory over
the next 20 years and compared it to the trajectory
actually observed. Our results are best interpreted by
comparison to a control, in which we apply the simple
DA model to time series generated according to ex-
ponential growth with lognormal process error. In this
case, the simulated data meet all of the limiting as-
sumptions of the simple DA model (Morris and Doak
2002), and we would expect the predicted and observed
data to match. In each case, we compare the outcome
from the real model (i.e., the model used to generate
time series data) to the fate of the same populations as
predicted by simple DA methods.

Models used to generate time series data

We used time series of abundance data generated by
four discrete-time models of population growth: a den-
sity-independent model and three density-dependent
models. In each case we added environmental vari-
ability—or process error—as a lognormal variate (fol-
lowing Dennis et al. 2001) and assumed no observation
error. The density-independent model was (following
Dennis et al. 1991):

2N � N exp(� � z) z � Normal(0, � ) (1)t�1 t

where Nt is the population size at time t, � is the mean
annual growth rate, and z is the process error associated
with this rate and has variance �2. Time series data
from this simulation model meet the assumptions for
the simple DA viability model (Morris and Doak 2002).

By contrast, time series data from populations ex-
periencing density dependence violate one key as-
sumption of simple DA methods: that population
growth is density independent. The three density-de-



330 JOHN L. SABO ET AL. Ecology, Vol. 85, No. 2

pendent models that we used to generate simulated data
were: the ceiling (Lande 1993, Akçakaya et al. 1999),
Beverton-Holt (Beverton and Holt 1957, 1993, Ricker
1975), and Ricker (Ricker 1954, 1975) models. Pop-
ulations growing according to a ceiling model expe-
rience density-independent dynamics below an upper
threshold abundance, or ceiling, K, but do not exceed
this abundance level, such that

N exp(� � z) for N exp(� � z) � Kt c t c
N � (2)t�1 �K for N exp(� � z) � Kt c

where �c is the maximum growth rate achieved only
when the population size is lower than K. The ceiling
model has been used extensively in conservation sci-
ence to represent density-dependent population growth
(Lande 1993, Middleton et al. 1995, Meir and Fagan
1999) and is one of several forms of density depen-
dence available in packaged PVA software (e.g., RA-
MAS Space; Akçakaya et al. 1999). Models with dy-
namics similar to the ceiling model (e.g., ‘‘hockey
stick’’ models) also have been advocated in fisheries
science to describe the population growth of a variety
of commercial fish species (Barrowman and Myers
2000, Bradford et al. 2000).

Beverton-Holt and Ricker models are more tradi-
tional representations of density dependence in fish-
eries stock assessment models (Hilborn and Walters
1992, Burgman et al. 1993, Getz 1996, Pascual et al.
1997, DeValpine and Hastings 2002). These models
also have been incorporated into standard PVA soft-
ware, e.g., RAMAS GIS 3.0 and RAMAS Metapop 3.0
(Applied Biomathematics 1998, 2001) to represent
density dependence resulting from either contest (Bev-
erton-Holt) or scramble (Ricker) competition (Akçak-
aya et al. 1999). These models differ from the ceiling
model in two ways. First, the effects of density on the
population growth rate occur over all abundance levels
(not simply those greater than K). Second, in Ricker
and Beverton-Holt models, high values of process error
may force the population above its carrying capacity
(K), leading to strong negative density-dependent feed-
back and, consequently, abundance levels much lower
than K in the following year. This ‘‘overcompensation’’
for good years does not occur in time series generated
by a ceiling model because the population is always
reset to K during these good years (Fig. 1). Third, the
Ricker formulation of density dependence produces
damped oscillations (for 1 � � � 2) and sustained two-
period oscillations (for � � 2) even in the absence of
process error (Fig. 1). Thus, at high growth rates, pop-
ulations experiencing Ricker-type density dependence
can exhibit variability from both intrinsic (determin-
istic) and extrinsic (stochastic) sources. Overcompen-
sation and intrinsic cycling occur independent of pro-
cess error and, therefore, should seriously corrupt risk
estimates from simple DA methods that assume that
all variability arises from interannual process vari-
ability (e.g., environmental stochasticity).

The Beverton-Holt model can be written as

N � exp(� � z) K N /(exp(� ) N � N � K)t�1 b t b t t (3)

where �b is the maximum growth rate experienced by
populations growing according to Beverton-Holt dy-
namics, and all other variables are defined as in Eq. 2.
The Ricker model is expressed as

N � N exp(� � bN � z)t�1 t r t (4)

where �r is the maximum population growth rate for
populations growing according to Ricker dynamics,
and b � ��r�/K is the effect of density on this maximum
growth rate. For the parameter b, the absolute value of
�r is used, rather than simply �r, common in more
traditional versions of the Ricker model. The traditional
formulation produces biologically unrealistic behavior
for �r � 0 (specifically, bNt � 0, and Nt�1/Nt higher
for populations closer to K). Because we were inter-
ested in evaluating the performance of the simple DA
in evaluating risk for declining populations (i.e., �r �
0), we use b � ��r �/K to circumvent this pathological
behavior. Finally, note that the Ricker model as ex-
pressed in Eq. 4 is identical to logistic models more
commonly used to represent density dependence for
noncommercial species (e.g., Stacey and Taper 1992).

We generated time series for each model using values
of �max (e.g., �c, �b, or �r) between �0.5 and 2.0 (in-
crements of 0.1), and �2 between 0 and 2.0 (increments
of 0.1). Populations with positive underlying dynamics
(increasing) have �max � 0 and declining populations
have �max � 0. In the density-independent model, all
values of � and �2 were replicated across four starting
population sizes (N0 � 10, 100, 1000, and 10 000). In
density-dependent models, we used four values of K
(100, 1000, 10 000, and 100 000) and six values of N0,
corresponding to 1, 10, 25, 50, 75, and 100% of the
ceiling or carrying capacity. This was done to assess
the contribution of both ceiling height, K, and the ratio
of the starting population size to the ceiling, N0/K, to
error in risk assessment associated with density de-
pendence. In all cases, parameter values used in sim-
ulation models were chosen to encompass the range of
values estimated from a variety of representative ani-
mal species (Table 1) and a range of possible model
behavior (e.g., damped oscillations in the Ricker mod-
el). For all models, we generated 1000 40-year sto-
chastic realizations for each parameter combination
(2080 and 12 480 parameter combinations for density-
independent and density-dependent models, respec-
tively).

Comparison of DA estimates for exponential vs.
density-dependent processes

We divided the time series into a fitting interval
(years 1–20) and an observation interval (years 21–
40). We then estimated the population growth rate (�	)
and process error (�2	) during the fitting interval using
the simple DA model (Dennis et al. 1991, Morris et al.
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FIG. 1. Sample time series showing overcompensation (spikes in left panels) for Beverton-Holt and Ricker (but not Ceiling)
models and intrinsic cycling (coupled with low levels of process error) in the Ricker (but not Beverton-Holt or Ceiling) models
(right panels). Values used for the parameters �max and �2 were identical for each model but differ between columns of panels.

1999). Using our estimates of these demographic pa-
rameters, we then estimated the probability of a pop-
ulation declining to two threshold abundance levels
(‘‘quasi-extinction thresholds’’) over the observation
interval. These thresholds were 50% ( ) and 75%P	50

( ) of the population size at the end of the fittingP	75

interval. Quasi-extinction thresholds are relatively
straightforward to calculate using �	 and �2	, and they
are one of several metrics currently used to identify
populations and species of special concern by the IUCN
(2000).

Several authors provide analytical solutions for P	50

and (e.g., Lande and Orzack 1988, Dennis et al.P	75

1991) based on DA estimates of �	 and �2	; however,
these solutions are for a process that is observed con-
tinuously. In our simulated data, we observe the pro-
cess only at discrete, one-year intervals. Probabilities
of a given decline for a process observed at discrete
intervals are lower than analytical solutions for the
same probabilities for continuous observations (e.g.,
Lande and Orzack 1988, Dennis et al. 1991). Analytical
solutions for and for one discrete observationP	 P	50 75

in the future (e.g., year 21) are relatively straightfor-

ward (E. Holmes, unpublished data), but become much
less tractable for multiple observations. To circumvent
this problem, we calculate and numerically us-P	 P	50 75

ing the DA estimates of growth parameters (e.g., via
Monte Carlo methods).

To quantify the efficacy of simple DA methods at
predicting population growth parameters for the den-
sity-dependent processes, we plotted the true values of
the vital rates—those used to generate initial time series
data (�max, and �2)—against the median values of the
DA estimates of these parameters (�	 and �2	) from
each 1000 time series replicates for each parameter
combination. Similarly, to evaluate the effect of density
dependence on predictions of 50% and 75% declines,
we compared median estimates of these probabilities
( and ) to the observed frequencies of these de-P	 P	50 75

clines (P50 and P75) over the observation intervals
(years 21–40) of the original 40-year time series. These
comparisons were done for all four models. Throughout
this paper, we compare the efficacy of DA methods at
estimating maximum growth rates in populations gen-
erated by simulation models in which maximum rates
are always achieved (density-independent process) or
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TABLE 1. Representative values of model parameters estimated from real populations.

Species Fitted model �† K† (
10�2) �2 Reference

Acorn Woodpecker

California Condor
Checkerspot butterfly
Chum salmon

ceiling
Ricker§
exponentialDA

ceiling
Ricker

0.22
0.563

�0.077
0.22L

0.37

0.52
0.3

NT
46.29

5.97

0.061
0.047
0.12
0.65
0.079

Stacey and Taper (1992)
Stacey and Taper (1992)
Dennis et al. (1991)
Foley (1994)
Ricker (1975)

Cod
Elk (Teton)
Elk (Yellowstone)
Grizzly bear

Ricker
Ricker
Ricker
exponentialDA

exponentialDA

ceiling

1.77
0.73
0.47

�0.007
0.04
0.02L

0.95
14.8

113.52
NT
ND
0.579

0.32
0.05
0.005
0.009
0.015
0.004

Ricker (1975)
Dennis and Taper (1994)
Dennis and Taper (1994)
Dennis et al. (1991)
Dennis and Taper (1994)
Foley (1994)

Insects: Orthoptera
Insects: Anoplura
Insects: Coleoptera
Insects: Diptera
Insects: Hemiptera
Insects: Hymenoptera
Insects: Lepidoptera

Ricker
exponential
exponential
exponential
exponential
exponential
exponential

0.31–0.45
0.111
0.07‡
0.197‡
0.279‡
0.22‡
0.12‡

0.048–0.059
NT
NT
NT
NT
NT
NT

0.18–0.38 Kemp and Dennis (1993)
Gaston (1988)
Gaston (1988)
Gaston (1988)
Gaston (1988)
Gaston (1988)
Gaston (1988)

Insects: Orthoptera
Insects: Psocoptera
Insects: Thysanoptera
Kirtland’s Warbler
Laysan Finch

exponential
exponential
exponential
exponentialDA

exponentialDA

0.012
0.225‡
0.26

�0.02
�0.001

NT
NT
NT
NT
NT

0.016
0.37

Gaston (1988)
Gaston (1988)
Gaston (1988)
Dennis et al. (1991)
Dennis et al. (1991)

Mountain lion
Palila
Puerto Rican Parrot
Red kangaroo
Salmon

Whooping Crane
Wolf

ceiling
exponentialDA

exponentialDA

Ricker
exponentialDH

exponentialDA

ceiling

0.035L

0.077
0.034
0.117

�0.07

0.005
0.04L

10.55
NT
NT

1986.4
ND

NT
4.2

0.014
0.22
0.013
0.057
0.09

0.014
0.32

Foley (1994)
Dennis et al. (1991)
Dennis et al. (1991)
McCarthy (1996)
McClure et al., unpublished

data; CRI (2000)
Dennis et al. (1991)
Foley (1994)

Note: Abbreviations are as follows: DA, fitted by simple DA (following Dennis et al. [1991]); DH, fitted by modified DA,
or Dennis-Holmes method (following Holmes [2001]); L, based on annual growth rates (�c � Nt�1/Nt) where Nt � K; ND,
not detected by bootstrap likelihood ratio test (Dennis and Taper 1994); NT, not tested.

† �r � ln(a), K � ln(a)/b, where a and b are the growth parameters from Ricker models.
‡ Average of more than one taxon; see Gaston (1988).
§ Data fit to logistic model: � .r(1/N /K)tN N et�1 t

achieved only at certain abundance levels (density-de-
pendent processes). Thus, DA growth rate estimates
are inherently biased for density-dependent processes;
however, the magnitude and direction of this bias are
potentially informative for interpreting any bias in the
estimation of risk.

Simple DA models, which assume a density-inde-
pendent, stochastic population process with lognormal
process error, should produce both accurate and rela-
tively precise estimates of growth parameters (�	 and
�2	) and risk for populations meeting these assump-
tions, given adequate sample size. The null hypothesis
for the density-independent model is that estimated and
observed values of these variables should be nearly
equal. Thus if we plot the estimated vs. observed val-
ues, they should fall on a line with a slope of 1.0 and
intercept of 0. We used deviations from this 1:1 rela-
tionship to evaluate the effects of density dependence
on estimates of growth parameters and risk for the ceil-
ing, Beverton-Holt, and Ricker models.

RESULTS

DA estimates of �max and � 2

As expected, estimated growth rates, �	, and process
error, �2	, were accurate for time series generated by

the exponential model (Fig. 2). Real and estimated val-
ues of both parameters for populations growing ex-
ponentially tracked the 1:1 line very closely, with the
exception of process error at large values of �2 (a result
that would most likely improve with higher sample
size).

By contrast, the DA model was generally unable to
accurately estimate �max or �2 in any density-dependent
model. Maximum growth rates (�c, �b, �r,) for time
series generated by ceiling, Beverton-Holt, and Ricker
models were typically underestimated, except at values
less than zero (e.g., declining populations; Fig. 2). As
we have noted, the inability of the DA model to esti-
mate �max, is not surprising. When �max was very high
in the density-dependent models, the simulated popu-
lations fluctuated about the carrying capacity and the
apparent population growth rate was stable (�	 � 0),
as seen in Fig. 2. Differences in the level of process
error estimated from the density-dependent simulations
were similarly striking (Fig. 2, right panels). DA meth-
ods underestimated the underlying process error for the
ceiling model, but most severely overestimated this
parameter for data generated by both Beverton-Holt
and Ricker models. For all three density-dependent



February 2004 333FORECASTING RISK WITH SIMPLE MODELS

FIG. 2. Estimating growth parameters. The figure shows the relationship between parameter values used in simulations
to generate time series data (x-axis: �max, left panels; � 2, right panels) and values of these parameters estimated by a simple
DA viability model (y-axis: �	, left panels; �2	, right panels). Time series were generated according to four models of population
dynamics: density-independent or exponential, ceiling, Beverton-Holt, and Ricker. Each point represents a median value of
estimates from up to 1000 replicate simulations for a given set of parameter values, excluding combinations that produced
�500 replicate time series that did not go extinct (N � 1) within the fitting interval (t � 1–20).

models, DA estimates of process error (�2	) were ex-
tremely variable for a given value of ‘‘real’’ process
error (�2). Overestimation of process error in Beverton-
Holt and Ricker time series probably results from
‘‘overcompensation error,’’ i.e., an interaction between
process error (stochastic overshooting of K) and density
dependence (e.g., Fig. 1). In both models, overshooting
is most often followed by a sharp decline in abundance
due to density dependence, thereby inflating the vari-
ability of the population as perceived by DA methods.
In addition to a feedback between process error and
stochasticity, process error estimates are probably in-
flated for time series generated by Ricker models at
high growth rates, due to damped deterministic cycles
inherent in populations with high intrinsic growth rates
(1 � �r � 2).

Predicting the risk of decline for populations
experiencing density dependence

Differences between predicted and underlying model
parameters (e.g., � and �2) should be expected for pop-

ulations experiencing density dependence because this
population dynamic modifies the expression of these
parameters in the actual population trajectories. A more
important question then is whether the parameters and
projections from the simple DA model adequately pre-
dict important aspects of risk for density-dependent
populations, despite an assumption of density inde-
pendence. To examine this question, we quantified how
well the simple DA model predicted the probability of
percentage declines in abundance.

Predictions of the probability of 50% and 75% de-
clines again fell on, or near, the 1:1 line for time series
generated by the density-independent model (Fig. 3,
Table 2). This is the expected result, because these
populations meet all assumptions made by simple DA
methods. Predictions of P50 and P75 were less accurate
for populations experiencing density dependence. Plots
of estimated vs. observed probabilities of 50% decline
showed considerable deviation from the 1:1 line for all
density-dependent time series (Fig. 3). For the ceiling
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FIG. 3. Forecasting the risk of 50% and 75% declines. The plots show estimated (x-axis) and observed (y-axis) probabilities
of 50% (left) and 75% (right) declines in abundance for time series generated by four models of population growth: density-
independent or exponential, ceiling, Beverton-Holt, and Ricker. Each point represents a frequency of decline observed over
the fitting interval for 1000 replicate time series (x-axis) and a median value of estimates from the fitting interval of the
same time series (y-axis) derived from one parameter combination. Data include parameter values from full range (see
Methods) that produced �500 replicate time series that did not go extinct (N � 1) within the fitting interval (t � 1–20).

model, predicted probabilities were frequently opti-
mistic (i.e., predicted probability was lower than the
observed probability). In Beverton-Holt and Ricker
time series, this bias was much stronger; for most pa-
rameter values, observed P50 were at least 50%, but
predicted P50 were generally much lower (Fig. 3). This
suggests that the declines on the order of 50% are driv-
en by variability due to density-dependent feedback
and deterministic cycles in these two density-depen-
dent processes, and that such declines are not ade-
quately modeled as simple process error. Note that each
point in Fig. 3 represents the median probability esti-
mated from 1000 simulations with the same parameter
values. Thus the wide range of variation between ob-
served and predicted values of P50 (and P75) in Fig. 3
results from different parameter values rather than var-
iability in estimating these parameters (as in Fieberg
and Ellner 2000).

In contrast to overly optimistic predictions of 50%
declines for density-dependent populations, predictions
of 75% declines were more accurate or conservative

than predictions of less severe declines. Predicted vs.
observed probabilities fell on the 1:1 line with little
variability for populations, limited only by a simple
ceiling to growth (ceiling model; Fig. 3). For the Bev-
erton-Holt and Ricker time series, the predicted vs.
observed probabilities generally followed the 1:1 line,
but with substantial variability about the line. In this
case (P75), bias was generally toward conservative pre-
dictions (e.g., where predicted P75 are higher than ob-
served P75). This result suggests that the overestimation
of the intrinsic process error (Fig. 2) due to density-
dependent feedback and deterministic cycles leads to
an overestimation of severe declines. This is explored
more fully in the next section.

The time series analyzed for Fig. 3 include popu-
lations with strong positive dynamics (�max k 0) and
very high process error (�2 � 1). For real populations,
however, values of �2 rarely exceed 0.5 (Table 1;
Holmes 2001). Similarly, risk assessment is most often
done on populations that appear to be declining (� �
1) or that fluctuate around low; but steady, density (�
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TABLE 2. Parameter estimates from regression of observed risk on risk estimated by DA
methods for populations growing according to three density-dependent processes (ceiling,
Beverton-Holt, and Ricker) across the full range of parameter space examined (‘‘All space’’;
e.g., Fig. 3) and across a more limited range of parameter space (‘‘Limited space’’; e.g., Fig.
4; see Methods).

Model and risk
of decline

Slope

All space
Limited
space

Intercept

All space
Limited
space

R2

All space
Limited
space

Exponential
50%
75%

0.95
0.93

0.98
0.97

0.0
0.001

0.004
0.005

0.99
0.99

0.99
0.99

Ceiling
50%
75%

0.79
0.83

0.90
0.90

0.02
0.03

0.068
0.04

0.87
0.92

0.93
0.95

Beverton-Holt
50%
75%

0.87
0.64

1.06
0.79

�0.13
0.114

0.03
0.22

0.61
0.69

0.70
0.79

Ricker
50%
75%

0.81
0.66

0.97
0.73

�0.043
0.165

0.08
0.25

0.76
0.66

0.67
0.73

Note: Risk is defined as the probability of a population declining to either 50% or 75% of
the abundance at t � 20 years over the observation interval (t � 21–40 years).

� 0). When we limited the parameters examined in our
analysis to this more practical range of growth rate and
process error values (e.g., �max � 1, �2 � 0.5), we found
that values of correlation coefficients between esti-
mated and observed probabilities of 50% and 75% de-
clines increased substantially for all density-dependent
models (Table 2). In particular, risk estimates were sub-
stantially more accurate for time series generated by a
ceiling model (Fig. 4). For the Beverton-Holt and Rick-
er models, the relationship between predicted and ob-
served probabilities improved, but was still highly var-
iable, especially when the expected risk was low. In-
terestingly, there was less predictive bias when the true
risk of 50% or 75% decline was high (�0.75). This
suggests that the DA predictions were generally most
accurate for the most at-risk populations.

Proximity to K and the predictive accuracy
of simple DA methods

Although the simple DA model incorrectly estimated
the observed probabilities of decline for some param-
eter combinations in density-dependent simulations,
this simple model performed well for a wide range of
parameter values (i.e., the data points close to 1:1 line
in Fig. 4). In theory, estimates of risk should be least
accurate for time series with dynamics that differ be-
tween the fitting and observation intervals, but should
increase in accuracy as dynamics become more similar
between these two intervals (Dennis et al. 1991). For
populations experiencing density dependence, similar-
ity in dynamics between these two intervals is most
likely to be determined by the proximity of a population
to the carrying capacity, or, more precisely, the time
required for a population to reach this threshold abun-
dance level.

To examine the effect of distance from carrying ca-
pacity on DA predictions, we calculated average times
required for a population to reach the ceiling or car-
rying capacity:

� � x /�� �K K max (5)

where xK is the distance from the starting population
size to carrying capacity on a log scale, or log(K/N0).
This metric provides an index for similarity between
dynamics in the fitting and observation intervals. The
extent to which the fitting interval predicts the behavior
in the subsequent observation interval should be lowest
when �K → Tfit, where Tfit is the time at the end of the
fitting interval, but should increase either as �K → 0 or
�K → Ttot, where Ttot is the time at the end of the entire
time series. Hence, we hypothesized that errors in risk
estimation should be highest when populations reach
the carrying capacity near the end of the fitting interval
(�K � 20), and lowest when populations maintain a
stochastic equilibrium density about the ceiling (�K �
0) or simply do not reach the ceiling over the entire
time series (�K k 20).

Underestimation of the probabilities of 50% and 75%
declines was most severe where �K � 0 or �K � 20, but
was generally low (�0.1) where �K � 20 or �K � 0
(Fig. 5). This indicates that the overly-optimistic risk
estimates occurred mainly for those parameter com-
binations producing population trajectories reaching K
at some point during the fitting interval. We observed
this pattern regardless of the type of density depen-
dence used to generate the time series.

By contrast, overestimation of the probabilities of
decline (conservative risk estimates) did not vary con-
sistently with �K, but instead depended strongly on the
form of density dependence used to generate time series
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FIG. 4. Forecasting the risk of 50% and 75% declines when population growth and process error are relatively low. The
plots show estimated (x-axis) and observed (y-axis) probabilities of 50% (left) and 75% (right) declines in abundance for
time series generated by three models of population growth: density-independent or exponential, ceiling, Beverton-Holt, and
Ricker. Each point represents a frequency of decline observed over the fitting interval for 1000 replicate time series (x-axis)
and a median value of estimates from the fitting interval of the same time series (y-axis) derived from one parameter
combination. Data include parameter values from a more limited range (see Methods) that produced �500 replicate time
series that did not go extinct (N �1) within the fitting interval (t � 1–20).

data (Fig. 6). Overestimation of risk was common in
time series generated by a ceiling model when the ini-
tial population size was near K (�K � 0), regardless of
the value of process error experienced by experimental
populations (Fig. 6). In Beverton-Holt and Ricker mod-
els, overestimation error was only encountered for pop-
ulations with initial abundance levels very near car-
rying capacity and low values of process error (�2; Fig.
6). The narrower range of parameter values leading to
risk overestimation in Ricker and Beverton-Holt mod-
els appears to be driven by two dynamics. First, in both
Beverton-Holt and Ricker models, DA methods appear
to misattribute process error to variability caused by
feedback between density dependence and stochastic
overshooting of the carrying capacity (e.g., overcom-
pensation). Second, DA methods also misattribute pro-
cess error to damped oscillations brought on by high
growth rates, but only in the Ricker model.

In both Ricker and Beverton-Holt models, DA meth-
ods overestimate process error, which in turn leads to

overestimates of the risk faced by these populations.
This result is expected from analytical solutions for P50

and P75 in which the probability of decline from a given
initial abundance (N0) to any quasi-extinction threshold
(Nq) is equal to (Nq/N0) (cf. Dennis et al. 1991: Eq.22�/�

85). Thus, the estimated probability of any decline is
inflated by a factor:

2 2�2�e/{� (� �e)}
 � (N /N )q 0 (6a)

such that

P	 � 
(P )qe qe (6b)

where 
 is the proportional error in the estimate ( )P	qe

of the true probability of a given decline (Pqe) and e
� (�2	 � �2), the difference between estimated and true
process error. Analysis of individual time series indi-
cates that overcorrection may lead to overestimation of
process error and risk when populations have high var-
iability relative to mean growth rates for populations
growing according to Beverton-Holt and Ricker dy-



February 2004 337FORECASTING RISK WITH SIMPLE MODELS

FIG. 5. The effect of process error (�2) and mean time to ceiling (�K � �xK�/�, where xK � log(N0/K)) on the underestimation
of risk, or ‘‘overly optimistic error’’ (e � Px� , where e � 0) in predictions for the probabilities of 50% (left) and 75%P	x
(right) declines (P50 and P75) for time series generated by a ceiling (top), Beverton-Holt (middle), or Ricker (bottom) models.
Error values are averaged within each value of �K.

namics. Similarly, intrinsic cycling in populations lim-
ited by Ricker-type density dependence should lead to
further corruption of process error estimates and over-
estimation of risk (J. L. Sabo, unpublished data).

Evaluating the effect of density dependence
on the relative risk of extinction

In the context of real-world conservation settings,
practitioners often are interested in comparing the rel-
ative risk of extinction faced by a handful of at-risk
populations rather than estimating the absolute risk of
a single population. For example, if funding permitted
recovery efforts for only half of a group of 10 at-risk
species, one might wish to determine which five species
fall in the highest categories of risk. Moreover, a com-
parison of risk estimates from simple DA methods
where risk is defined in broader categories (e.g., high
vs. low) may be more robust to violations of key as-
sumptions of these models. To address the effect of
density dependence on predictions of the categorical
risk from the simple DA model, we grouped estimates
of quasi-extinction probabilities and observed frequen-
cies of similar declines into five categories: extremely

low (0–20%), low (21–40%), intermediate (41–60%),
high (61–80%), and extremely high (81–100%). We
then classified categorical risk estimates as correct (es-
timated and observed risk in same category), conser-
vative (estimated risk at least one category higher than
observed risk), or overly optimistic (estimated risk at
least one category lower than observed risk).

Simple DA methods correctly classified the risk of
50% and 75% declines for exponentially growing pop-
ulations in 87% and 98% of the parameter combinations
examined, respectively (Fig. 7). Classification was less
accurate for density-dependent populations, but among
these it was most accurate for the ceiling model. For
populations growing according to a ceiling model, sim-
ple DA methods correctly classified P50 in 69% and P75

in 84% of the cases analyzed. The simple DA model
more frequently classified risk incorrectly for popula-
tions growing according to Beverton-Holt and Ricker
dynamics (Fig. 7); correct classification occurred for
only 50–60% of all parameter combinations for either
model at either risk level. However, most incorrect clas-
sifications for forecasts of 75% declines were conser-
vative, such that the simple DA model provided either
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FIG. 6. The effect of process error (�2) and mean time to ceiling (�K � �xK�/�, where xK � log (N0/K)) on the overestimation
of risk, or ‘‘conservative error’’ (e � Py� , where e � 0) in predictions for the probabilities of 50% (left) and 75% (right)P	y
declines (P50 and P75) for time series generated by a ceiling (top), Beverton-Holt (middle), or Ricker (bottom) models. Error
values are averaged within each value of �K.

FIG. 7. Categorical risk classification. The proportions of
risk estimates that were correct (black), conservative (gray),
and overly-optimistic (white) for probabilities of 50% and
75% declines (left and right bars, respectively, for each pair)
when estimated and observed risk were converted to five
discrete categories of risk: extremely low (0–20%), low (21–
40%), medium (41–60%), high (61–80%), and extremely high
(81–100%).

correct or conservative categorical risk estimates for
the probability of a 75% decline in 91%, 85%, and 89%
of the parameter combinations for populations growing
according to ceiling, Beverton-Holt, and Ricker pro-
cesses, respectively. DA methods provided less con-
servative forecasts of the categorical risk of a 50%
decline, producing overly optimistic estimates in 25%,
41%, and 36% of the parameter combinations examined
(for the ceiling, Beverton-Holt, and Ricker models, re-
spectively). In all cases, underestimation of categorical
risk occurred most frequently for populations that were
quickly increasing toward the carrying capacity during
the fitting interval.

DISCUSSION

When using models to evaluate extinction risk, the
most important factors governing the reliability of risk
estimates typically include our certainty in parameters
like the rate of population growth, environmental var-
iability, and population size (Boyce 1992, Morris et al.
1999). Clearly, other factors, such as the form of den-
sity dependence, can play a major role in determining
the dynamics of real populations. However, estimating
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parameters can be difficult for stochastic density-de-
pendent processes (Dennis and Taper 1994), and rarely
are we likely to have either the quantity or quality of
data necessary to parameterize these types of nonlinear
population growth models in the real world. In this
paper we show that a density-independent PVA model
can still give reasonably apt assessments of relative
risk for density-dependent population processes, and
in fact can provide fairly accurate measures of absolute
risk when density-dependent populations are either at
abundance levels where density effects are not strong,
or when the effects of density remain constant over a
specified management time frame (e.g., across fitting
and observation intervals). Interestingly, the perfor-
mance of the simple DA model is best for populations
most in need of viability assessment: highly fluctuating,
declining, and slowly recovering populations.

Does density dependence affect the efficacy of simple
viability models at classifying risk?

Our results suggest that simple DA methods that as-
sume a density-independent stochastic process will
provide adequate predictions about the probabilities of
population decline, despite density dependence under
four sets of circumstances. First, simple DA methods
are less prone to underestimate risk when density de-
pendence is manifested as a simple upper threshold
(ceiling) to population growth than as a more complex,
nonlinear form of population growth (e.g., Ricker and
Beverton-Holt models; Figs. 2–3). Coefficients of cor-
relation (R2) between estimated and observed risk were
typically 10–15% higher for the ceiling than for Ricker
and Beverton-Holt models, regardless of risk level (P50

and P75) or the range of parameters analyzed (Figs. 2–
3, Table 2). Thus, the efficacy of simple DA methods
at characterizing risk depends on the form of density
dependence experienced by real populations.

That risk estimates were more robust for populations
limited only by a ceiling is not surprising because the
ceiling model generates population trajectories that
meet all of the limiting assumptions of simple DA
methods when the population is below the specified
ceiling. By contrast, the simple DA model more often
provided less reliable risk estimates for populations
that experience other, more complex, forms of density
dependence (e.g., logistic, Ricker, and Beverton-Holt).
Threshold forms of density dependence, with dynamics
similar to the ceiling model, are most often manifested
by space limitation (e.g., nest site locations or settling
space). For example, salmon may be limited by nesting
substrate such that overcrowding leads to nest super-
imposition and decreased egg survival (Flemming and
Gross 1992). Similarly, many bird species are limited
by structural features (tree hollows) needed for nesting
(Møller and Erritizoe 1996). Finally, many sessile ma-
rine invertebrates are limited by settling space for re-
cruiting pelagic larvae (Grosberg and Levitan 1992).
By contrast, population regulation by food limitation

can occur directly via scramble competition, as rep-
resented by the Ricker model, or indirectly as a result
of behavioral mechanisms or contest competition, as
represented by the Beverton-Holt model (Akçakaya et
al. 1999). Simple DA methods most likely are not as
effective at classifying risk for these types of species
(e.g., cod, elk, wildebeest).

Second, risk estimates are more precise for severe
than for modest declines. R2 values for the relationship
between estimated and observed risk were higher for
P75 than P50 in all cases except for the Ricker model,
analyzed across the entire parameter set (Table 2).
Moreover, categorical risk estimates (low, medium,
high) were more frequently correct (ceiling model) or
conservative (Ricker and Beverton-Holt models) for
P75 than P50 (Fig. 7). These results suggest that density
dependence may have less severe effects on estimates
of the probability of extreme declines.

Third, the accuracy of risk estimates from simple
DA models declines as a result of intrinsic cycling at
high growth rates (Ricker model) or as a result of strong
feedback between stochastic overshooting of the car-
rying capacity and density dependence (Ricker and
Beverton-Holt models). Simple PVAs attribute all of
the variation in population abundance to environmental
variability and assume that there are no cycles in the
population process itself or interactions between en-
vironmental variability and density dependence (as in
overcompensation). These models will thus overesti-
mate process error for populations exhibiting cycles or
overcompensation, leading to overestimates of risk.
This is, in fact, what we observed in this study. Overly
optimistic estimates of risk were observed most fre-
quently for populations generated by models known to
exhibit overcompensation or cycling (e.g., Fig. 1; Bev-
erton-Holt and Ricker). Newer methods capable of sep-
arating these two sources of error (Holmes 2001, De
Valpine and Hastings 2002, Holmes and Fagan 2002)
would probably give better risk estimates for popula-
tions with a tendency to cycle.

Finally, the efficacy of simple DA methods at esti-
mating risk for density-dependent population processes
depends not only on how the population experiences
density effects, but also on when these effects occur.
Specifically, the proximity of a population to an upper
threshold abundance level (ceiling or carrying capac-
ity) can strongly influence accuracy in risk assessment.
Not surprisingly, if the population reaches carrying ca-
pacity near the end of the period when parameters are
estimated (i.e., the fitting interval), then simple DA
methods will produce inaccurate risk estimates because
the dynamics during the fitting period will be quite
different than that during the subsequent observation
period (Boyce 1992, Beissinger 1995). Indeed, error
(most notably, underestimation) in risk estimation was
typically high for populations initially below the ceil-
ing but likely to reach this threshold before the end of
the fitting interval (i.e., 0 � �K � 20; Fig. 5). By con-
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trast, when the population was fluctuating about the
carrying capacity during the fitting and observation
periods, high overestimation errors tended to occur, but
only for Beverton-Holt and Ricker type density de-
pendence. Overall, estimation errors were lowest and
were within 0.1 of the true probabilities for populations
below carrying capacity and not likely to reach it in
either the fitting or observation intervals (�K k 20),
and for populations with ceiling-type density depen-
dence that were fluctuating stably near the carrying
capacity.

These results have important practical implications
for the use of simple PVAs in conservation planning.
Assessments by simple DA methods are generally ro-
bust when they are most needed: for declining or slowly
recovering populations and for most space-limited pop-
ulations fluctuating near their upper threshold abun-
dance level. Thus, although DA methods that explicitly
include density dependence are available (e.g., Foley
1994, Dennis et al. 2001, De Valpine and Hastings
2002), evaluating the assumption that population dy-
namics remain consistent between the prediction and
forecasting intervals may be more important than using
these more accurate PVAs to estimate extinction risk.

General recommendations about PVAs
based on simple DA methods

Based on these general findings, we recommend
against using simple DA methods in two scenarios: (1)
to estimate the probability of relatively modest declines
in abundance (e.g., �50%); and (2) to estimate the risk
of decline for a threatened population showing strong
signs of recovery. We further suggest caution in fore-
casting risk with simple DA methods for populations
strongly regulated by food limitation and thus most
likely to approximate either Ricker or Beverton-Holt
dynamics. Risk estimates are more likely to be overly
optimistic for these types of species compared to those
that experience density dependence purely by space
limitation, especially when forecasting a relatively
modest decline. In all three cases, blind application of
simple DA methods to forecast risk is likely to produce
erroneous estimates of viability. In these cases, we ad-
vise application of multiple models (e.g., the DA and
one or several density-dependent analogs) and a careful
statistical evaluation of the appropriateness of each
(Dennis et al. 1991). Finally, we note that our analysis
pertains to situations in which only count data are avail-
able. In cases where more intensive monitoring pro-
grams provide capture–recapture or demographic data,
estimation of parameters in nonlinear (e.g., density-
dependent) models may be more straightforward and
may provide more accurate forecasts of risk faced by
threatened populations.

Conclusion

The ability of simple models to inform conservation
planning hinges on the goal of viability modeling. Al-

though accurate estimates of risk are always desirable,
many real-world applications of PVA require only an
accurate assessment of the relative risk of extinction
among a handful of populations. These applications
include identifying both the most and least at-risk pop-
ulations. Identifying the most at-risk populations can
help to prioritize conservation efforts and guide limited
resources to populations most in need of recovery. Sim-
ilarly, estimates of relative risk can help to identify
which populations are in the ‘‘best shape’’ and hence
should be placed in a conservation portfolio (Groves
et al. 2000). When the desired application of a PVA is
to compare levels of relative risk among multiple pop-
ulations, simple PVAs assuming the wrong population
process may still provide a sufficiently informative an-
swer in a wide variety of situations relevant to con-
servation.
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