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Abstract.—Diffusion models of animal movement are often criticized because they assume
animals have infinite velocity and completely random motion. To investigate the impact of these
assumptions, I compared a diffusion model with a telegraph model of dispersal. The telegraph
model assumes organisms have finite velocity and tend to maintain their direction. I compared
the models in two settings: (i) as models for dispersal of nonreproducing organisms and (ii) as
models for range expansion of organisms that simultaneously disperse and reproduce (so-called
reaction-diffusion or reaction-telegraph models). Both models predict very similar dispersal
patterns for nonreproducing organisms. In the case of reproducing organisms, however, they
predict grossly different rates of range expansion for all but a small range of parameter values.
The disparity is greatest for organisms with high population growth and low movement rates.
To assess the magnitude of disparity for different organisms, I used published data to estimate
model parameters for the cabbage butterfly (Pieris rapae), gypsy moth (Lymantria dispar),
European starling (Sturnus vulgaris), collared turtledove (Streptopelia decaocto), Black Death
(Yersinia pestis), and for rabies. All six cases fell within the narrow parameter range where the
diffusion and telegraph models yield indistinguishable predictions regarding the rate of range
expansion.

To understand how dispersal affects the evolution, population dynamics, and
distribution of organisms, mathematical biologists have commonly employed
models in which movement is represented by a simple diffusion process. These
models have their origins in the studies of Fisher (1937) on the spread of novel
mutations and Skellam (1951) on dispersal in animal populations. More recently,
diffusion models have been applied to the spread of diseases, the invasion of
exotic organisms, the efficiency of biocontrol agents, and the spread of transgenic
genes (Weinberger 1978; Murray et al. 1986; Kareiva and Odell 1987; Manasse
and. Kareiva 1991). Although diffusion models represent one of the classic areas
of mathematical biology (Toft and Mangel 1991), they are subject to criticism
because diffusion is a simplified model of organism movement that entails as-
sumptions based on conditions that no organism satisfies (Skellam 1973; Stinner
et al. 1983; Turchin 1989). The most troubling are the assumptions that organisms
proceed at infinite velocity along infinitely random paths. Although these are
commonly cited objections, they sound misleadingly drastic. These assumptions
are only realized on infinitesimal scales. On a practical scale, these assumptions
have subtle implications: (1) The assumption of infinite velocity means there is
some probability—albeit infinitesimal-—that an organism will move an infinite
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distance from its present position in an infinitely small amount of time. (2) The
assumption of infinitely random paths (in other words, zero momentum) implies
that the organism motion is unpredictable even on the shortest scales. In contrast,
organisms can only move a finite distance in a finite amount of time, and, on
smaller and smaller scales, organism movement becomes more and more predict-
able. In other words, organisms have finite velocity and inertia—the tendency to
resist changes in direction.

To investigate the implications of these differences between biologically realis-
tic motion and motion described by a diffusion model, I compared a diffusion
model to another random-walk model, a telegraph model (Goldstein 1951; Okubo
1980). In the telegraph model, organisms have a finite velocity and tend to move
in the direction in which they were previously moving; in other words, they have
inertia. Although many models have been proposed to correct the deficiencies of
the diffusion model, the telegraph equation represents a simple and fundamental
alternative to diffusion that specifically allows one to address the impact of the
assumptions of infinite velocity and zero momentum—two oft-cited objections to
diffusion models.

I begin by discussing the random-walk models of animal movement upon which
the diffusion and telegraph equations are based and compare the spatial distribu-
tion for a population of nonreproducing organisms that disperse according to
these two movement models. Next, to model organisms invading unoccupied
habitat, I develop a telegraph counterpart to the classical reaction-diffusion model
(reaction refers to the local population change) and ask to what extent the ‘‘im-
proved’’ telegraph description of movement changes predictions concerning pat-
tern and rate of range expansion of invading organisms. Finally, because the
differences between the models’ predictions depend on fundamental rates of
movement and population growth, I compare the two models using biologically
relevant parameters for a variety of species.

TELEGRAPH DISPERSAL

The simplest model of locomotion assumes that organisms make hops of fixed
length and duration. At each jump, the organism randomly chooses a new direc-
tion. Such a model is called a simple random walk. If the jump length and duration
are reduced toward zero, and, at the same time, the organism velocity is taken
to infinity, this ‘‘random walk’’ leads to the simple diffusion model for the ex-
pected change in the population density of randomly dispersing organisms,

2 2
8 D[a—f ¥ 9—5] , (1)
at ox* 3y

where § is the density of organisms at spatial coordinates x, y, and time ¢, and
D, known as the coefficient of diffusion, is a measure of how quickly the organ-
isms disperse.

If we assume instead that the organism has some tendency to jump in a direc-
tion similar to its previous direction, we have a correlated random walk, so named



DIFFUSION VERSUS TELEGRAPH DISPERSAL 781

because the direction of motion is correlated between jumps. This type of motion
has also been described as a velocity jump process and a Poisson random walk
(Dunbar and Othmer 1986; Othmer et al. 1988). Reducing the step length and
duration toward zero and using a finite organism velocity, we obtain a special
case of the telegraph equation (Goldstein 1951),

as _ 1S v2[82_5+82_5]

“2har | 2N[ox? 9y

ot 2N 912 2\ @

where vy is the organism’s finite velocity and \ is the organism’s rate of changing
direction. Thus, the larger \ is, the less inertia the organism has. The derivation
of equation (2) from a discrete correlated walk is straightforward and is analo-
gous to the derivation of the diffusion equation from a discrete random walk
(App. A).

In order to compare the predictions of diffusion versus telegraph dispersal, it
is useful to focus on a summary statistic of an animal’s movement. Following the
lead of Skellam (1951) and Okubo (1980), I consider the mean squared displace-
ment (MSD) for a population of organisms after time ¢ has elapsed. I used the
simplest constructions of the diffusion and telegraph equations in order to address
the basic changes caused by the two models’ contrasting descriptions of organism
movement. I assumed a one-dimensional, homogeneous environment where D,
v, and \ are constant in time and space. In both these models, the organisms
move independently of one another and have no preference to go in one particular
direction; in other words, there is no drift.

The expected mean squared displacement for a population of organisms dis-
persing by simple diffusion in one dimension is

MSDdiff = 2Dt N (3)

whereas, for a population dispersing according to the telegraph equation, it is

MSD,.. = yz[i - #(1 - e‘z“)] . 4)
We can see the similarity of the two models by noting that, as ¢ gets large, both
equations predict a linear increase in the MSD. If we define D as y?/2\ in the
telegraph equation, MSDy; and MSD,. approach each other as ¢ gets large.
Indeed, the predictions regarding MSDg; and MSD,,. are within 5% of each other
by time 10.5/\. The best fit of the diffusion model to the telegraph model is
D = y?/2\.

Of course, mean squared displacement is not the only prediction of interest
when modeling dispersal. In addition, plots of the frequency distribution of organ-
isms about the central release point are commonly used to describe dispersal and
gene flow. By examining the predicted frequency distribution, we gain a more
detailed picture of the differences and similarities between diffusion and telegraph
dispersal. These frequency distributions are obtained by solving the model by
assuming that all the organisms are released at position x = 0 and time ¢ = 0.
The solution to the diffusion equation is a Gaussian distribution. The assumption
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of infinite organism velocity is reflected in the infinite tails of the distribution. In
figure 1, I contrast the frequency distributions of the two models. Note that the
frequency distributions become similar as time increases and that the frontal edge
of the telegraph frequency distribution is abrupt, unlike that for diffusion. The
edge is abrupt because, in the telegraph model, the organisms move at the finite
velocity, v; therefore, at time 7, the maximum distance that an organism can be
from the release point is yz. In contrast, organisms in the diffusion model have
infinite velocity; thus, at any time ¢, some organisms can be an infinite distance
from the release point.

COMPARISON OF REACTION-TELEGRAPH AND REACTION-DIFFUSION MODELS

To model reproducing and dispersing organisms, population growth must be
added. The classical model of diffusion plus reproduction, known as ‘‘reaction
diffusion,’’ is

S _ S

i Dax2 + F(S), 5)
where F(S) is the population growth function and represents the instantaneous
rate of change for a population in the absence of dispersal. Reaction-diffusion
models have a long and extensive history (Fisher 1937; Skellam 1951; Levin 1974,
Fife 1979; Okubo 1980; Murray 1989) and have been used to model the dispersal
of such diverse species as sea otters (Lubina and Levin 1988), Neolithic farmers
in Europe (Ammerman and Cavalli-Sforza 1971, 1984), muskrats (Skellam 1951),
gray squirrels (Okubo et al. 1989), cabbage butterflies and cereal leaf beetles
(Andow et al. 1990), Himalayan tahr (Caughley 1970), and a number of passerine
birds (Hengeveld 1988; Okubo 1988).

When a population’s growth is combined with telegraph dispersal, we obtain
the following model, where F(S) is the population growth rate as in equation (5),

98 _ _ 1S y¥SPS 1 4F

= + — —
ot 2\ 912 2N 9x2 2\ ot

+ F(S), (6)

which I refer to as the reaction-telegraph model. It is important to note that
equation (6) is not simply telegraph dispersal plus the population growth term.
One cannot simply tack a population growth function onto the telegraph equation
because the telegraph equation (2) includes the 9°S/9¢> term (App. A).

Using equations (5) and (6), one can ask at what rate invading organisms will
spread upon being introduced into novel territory. The general approach is to
search for traveling wave solutions to the models. A traveling wave of invading
organisms moves through the environment in such a way that the invasion wave
front never changes shape. Figure 2 shows typical traveling wave solutions. At
time ¢, the plot of organism density versus the distance from the release point
describes the wave front shape. At later times, the front has an identical shape
but is shifted forward in space. I derive and discuss the speed of invasion in one
dimension; however, this relates in a simple way to the two-dimensional invasion
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speed. When the invasion advances across a two-dimensional landscape in a
straight wave front, the invasion velocity is the one-dimensional invasion veloc-
ity. When the front is curved outward, the invasion velocity is slower at the
leading edge, so that the front gradually becomes straight until it again has the
one-dimensional invasion velocity. When the front is curved inward, the velocity
at the lagging edge is higher, so that the front also straightens and once straight
has the one-dimensional velocity (Lewis and Kareiva 1993).

To calculate rates and patterns of invasion for the two models, I use simple
logistic growth, F(S) = rS(1 — S/K), for the population growth function. The
‘“‘carrying capacity,”” or equivalently the equilibrium population size, is repre-
sented by K, and r is the intrinsic rate of increase. When we use this population
growth function in the reaction-diffusion model, equation (5), we find that the
invading organisms spread as a traveling wave of velocity. For all biologically
reasonable releases of organisms, the velocity of the invasion wave asymptoti-
cally approaches the velocity, V4rD (Fisher 1937; Kolmogoroff et al. 1937; Uchi-
yama 1978).

Using the logistic growth function in my reaction-telegraph model, equation
(6), I found that traveling wave solutions also exist, and at the following velocities
(App. B):

Ctzele = ﬂ_z'yz forO0 < Vr2A=1 ™)
(r +2N)
=y’ for Vil2x=1. (8)

Numerical simulation of equation (6), with 0 < Vr/2A = 1, indicates that the
invasion waves travel at the minimum velocity. Under the conditions of equation
(8), equation (6) resists numerical simulation because the solution is discontinu-
ous; however, the maximum velocity of the organisms is vy, and the invasion
speed certainly cannot be greater than speed of the individual organisms. Thus,
the invasion waves of equation (8) must travel at y. Which equation to use to
predict the invasion velocity depends on the value, r/2\. This critical factor is the
ratio of the time to reverse direction over the time to produce a new individual.

If we substitute D = +2/2\ (the best fit of diffusion to telegraph) into the
equation for the reaction-diffusion wave velocity, cig = 4rD, we can compare
the wave velocities for the reaction-diffusion and reaction-telegraph models. One
immediately obvious distinction between the wave velocities of the two models
is the dependence on r. Whereas reaction-diffusion predicts a rate of spread that
increases linearly with r, the reaction-telegraph model predicts a rate of spread
that asymptotically approaches the organism velocity, v, as r increases (fig. 3).
This means that, for large r relative to N\, modeling locomotion by simple diffusion
will lead to a gross overestimate of the expected velocity of invasion; whereas,
for small r, the error is minor.

The disparity between the predicted traveling wave speeds can be summarized
by the ratio

Ctele — 1
cagg  (F2N 4+ 1)°

&)
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Fic. 3.—Traveling wave speed versus the reproductive rate for the reaction-telegraph and
reaction-diffusion models (A = 1).

For r/2N < .052, the wave speeds are within 5% of each other, and for r/2\ <
.11, the wave speeds are within 10% of each other.

Another way to compare the predicted wave speeds of diffusion and telegraph
reaction is to consider the case in which one knows the mean squared displace-
ment and the intrinsic rate of increase—the normal circumstance when applying
such models to field data. The mean squared displacement gives a measure of D
for diffusion and a measure of y2/2\ for the telegraph equation. For organisms
with differing speeds but with the same mean squared displacement, how do
the predicted wave speeds compare? As the organisms’ velocity increases, the
organisms resemble randomly moving particles with infinite velocity, and the
predicted wave speed approaches that for reaction diffusion (fig. 4).

The wave-front shapes of the reaction-telegraph and reaction-diffusion models
also differ (fig. 2). The diffusion wave front broadens as r increases, whereas the
telegraph wave front first broadens as r increases to moderate values and then
steepens as r becomes very large. When r is greater than 2\, the organisms are
reproducing faster than they are reversing direction. As a result, they ‘‘pile up”’
at x = +t, the maximum distance that the organisms can disperse from their
release point by time ¢. The invasion wave, therefore, looks like a square wave
when r > 2\. In all cases, the telegraph equation predicts a steeper front than
that predicted by the diffusion model.

COMPARISON OF TELEGRAPH DISPERSAL AND DIFFUSION WITH DATA

The theoretical analysis identifies some potentially dramatic disagreements be-
tween the reaction-diffusion and reaction-telegraph models of invading organ-
isms. One key question is whether these differences commonly arise in nature.
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Fic. 4.—Comparison of the predicted wave speeds for reaction-telegraph and reaction-
diffusion models given a fixed rD and ry%/2\ (r = .51/yr and D = 9,402 km?/yr). These
values are typical for collared turtledoves. The average yearly velocity of collared turtledoves
is at least 650 km/yr.

If organisms invariably have a higher ratio of the intrinsic rate of population
increase to the rate of direction reversal, diffusion models are doomed to misrep-
resent organism spread. Conversely, if this ratio, given by r/2\, is low, for exam-
ple, <.1, the telegraph model will provide only minor improvement over the
simple diffusion model. To compare the two models’ performance on a variety
of organisms, I calculated or otherwise obtained parameter estimates from the
literature for the cabbage butterfly (Pieris rapae), rabies in red foxes (Vulpes
vulpes), gypsy moths (Lymantria dispar), European starlings (Sturnus vulgaris),
collared turtledoves (Streptopelia decaocto), and Black Death (Yersinia pestis).
I sought organisms that disperse by a variety of mechanisms and that have high
intrinsic rates of increase (since large rates of increase accentuate the dissimilari-
ties between the two models).

Estimating Parameters

Rabies in foxes.—I1 calculated D and vy for rabies using data on three radio-
collared rabid foxes in the wild (Andral et al. 1982). For D, I followed the formula
by Murray et al. (1986):

N .
_ 1 X (straight line distance from the start)’
D= NJZ] : (10)

4 (time from start)

which gives D = 50 km?/yr. Given that two of the three foxes died closer to their
origin than their mean distance from it, Murray believes that this D is a lower
bound. He calculates an upper bound using the maximum distance that one fox
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traveled from its starting point, D = (2.7 km)?*/4 (2 d) = 330 km?*/yr. For the veloc-
ity, I used the average distance traveled per day, 9 km/d (Andral et al. 1982).

I calculated an upper bound for the exponential rate of increase of rabies by
using the rate of rabies increase at the moment the disease enters the population
(at this point, the susceptible population is at its maximum) and by assuming that
foxes go directly from susceptible to rabid with no incubation period. With these
assumptions, the rate of increase is

r = (maximum rate at which susceptibles become rabid)
— (natural + disease-induced mortality rates) .

The maximum rate at which susceptibles become rabid is 8S,, where B is the
disease transmission coefficient and S, is the population density before infection
(the maximum density of susceptibles). I obtained the disease transmission coef-
ficient (79.69 km?/foxes - yr), maximum density of susceptibles (1 fox/km?) and
natural and disease-induced mortality rates (.5 foxes/yr and 73 foxes/yr) from
Anderson et al. (1981).

Cabbage butterflies.—Jones et al. (1980) determined the average overland dis-
tance that a cabbage butterfly travels per day (700 m) and the mean distance
flown in 1 d (450 m) and over a 16-d life span (2,000 m). On individual days, the
butterflies tend to travel in a straight line; however, they travel in a random
direction on each new day. Thus, while their movement is very directed on
individual days, over several days, it resembles a random walk. To calculate D,
I used the formula

D= Z(M—D)Z , (1)

mt
where MD is the mean distance traveled and ¢ is the time during which this
distance is covered. Following Andow et al. (1990), I converted the diffusion
coefficients and overland velocity from daily to yearly by multiplying by the adult
life expectancy (10-20 d) and the number of generations per year (three to seven).
I also used Andow et al.’s (1990) low and high estimates for r (9 and 31.5/yr).

Collared turtledoves.—1 estimated D from ring recovery data on the distance
that offspring nest from their parents (Hengeveld 1989, p. 100). I calculated the
mean displacement, MD, as

2 (number of birds recovered) X (distance from release site)

MD =
D (total number of birds recaptured)

» (12

which gave 121.5 km, and used equation (11) with ¢t = 1 yr to determine D. For
v, I used the maximum ring recovery distance after 1 yr (650 km). This is certainly
an underestimate of the average overland distance traveled during dispersal. 1
calculated r from life table data (Hengeveld 1989, p. 100).

Gypsy moths.— Although adult gypsy moths are winged, they are mostly seden-
tary and the larvae are considered the dispersal agents. Long-distance dispersal
of larvae after being carried to high altitudes by updrafts is well documented
(Campbell 1981, p. 161); however, I consider the dispersal below the forest can-
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opy—this is the mechanism for local dispersal from a tree. Weseloh (1985) calcu-
lated diffusion coefficients from mark release data for the first S d of a 10-d
dispersal period. To convert this from daily to yearly, I multiplied by the length
of the dispersal period (10 d) and by the number of generations per year (one).
Weseloh never observed larvae more than 200 m from the release site. Thus, 1
used 200 m/yr as the maximum yearly velocity.

Data from yearly records of two gypsy moth infestations (Campbell 1981, p.
70) gives ratios of egg densities from year to year. At low egg densities, the ratios
ranged from 10 to 1,000. If we assume that populations are growing exponentially
at this time, the ratio of egg densities from one year to the next, E,/E, = e"”. We
can then determine r from r = 1/¢ In E,/E,, where ¢ is the generation time (1 yr).

Starlings.—1 estimated rD from range expansion maps (Wing 1943; Kendeigh
1974), using Skellam’s (1951) relation

V7@R? = 2t(mrD)'?, (13)

where R is the distance to the edge of the range. Skellam derived this relation
for a two-dimensional random walk with exponential growth. A plot of the square
root of the range area versus time will be linear, and the slope is 2(wrD)". In
the period from 1915 to 1930, the slope of the graph is 83.3 km/yr, which gives
rD = 552.2 km?/yr®. During early starling expansion, the birds were invading
empty habitats where competition and crowding effects were limited, thus we
can suppose that the growth was, in fact, exponential. To calculate the maximum
yearly velocity, I used the maximum distance between overwintering sites in
consecutive census periods (1,800 km in 9 yr; Hengeveld 1989, p. 40).

Black Death in humans.—1 used Noble’s (1974) rough estimate of D for humans
infected with Yersinia pestis in 1347. He obtained D by roughly estimating that
news and minor gossip spread 160 km in 1 yr. Thus, D is of order length?/t =
25,600 km?/yr. He estimated the transmission rate to be § = 1.024 km?/yr and
the disease-induced mortality rate to be 15/yr (corresponding to a 2-wk infectious
period). The population density was approximately 20 persons/km?. Using the
same method as for rabid foxes and ignoring the natural mortality, we have r =
5.5/yr. For comparison, measles, a highly infectious disease, has a value for r
between S/yr and 18/yr. If we assume that villages were on average 16 km apart,
then, given that D = 25,600 km?/yr, the average yearly velocity traveling between
villages was 1,600 km/yr (velocity = D/mean distance between villages) (Landahl
1953; Rashevsky 1968, p. 12).

Comparison of the Wave Speeds

Taking equation (9) and substituting D = y2/2\, we obtain an equation with r,
D, and v for the ratio of the velocity of invasion predicted by the reaction-
telegraph model to that predicted by the reaction-diffusion model:

Cole _ 1 (14)
car  (rDIy* + 1)

In table 1, the predicted invasion velocities of the two models are compared
through the parameters for the above-mentioned organisms. It is striking that,
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TABLE 1

PARAMETER ESTIMATES AND THE PERCENTAGE DIFFERENCE BETWEEN THE INVASION WAVE SPEED
PREDICTED BY THE REACTION-TELEGRAPH AND REACTION-DIFFUSION MODELS

r D v c % Difference
(1/yr) (km?/yr) (km/yr) C‘T’; between Models
Yersinia pestis 5.0 25,600 1,600 952 4.8
Cabbage butterfly (day)* 9.0 3.87 21 .927 7.3
Cabbage butterfly (day)T 31.5 18.05 98 944 5.6
Cabbage butterfly (generation)* 9.0 .298 21 .994 .6
Cabbage butterfly (generation)t  31.5 1.39 98 995 .5
Collared turtledove Sl 9,402 650 .989 1.1
European starling P 1 . F 200 .986 1.4
Fox rabies§ 6.19 50 3,285 >.999 <.1
Fox rabies 6.19 330 3,285 >.999 <.1
Gypsy moth 7 4.57 x 107° 2 .992 8

* Adult life expectancy, 10 d; generations/year, three (a low intrinsic rate of increase).
t Adult life expectancy, 20 d; generations/year, seven (a high intrinsic rate of increase).
i For starlings, rD = 552.2 km?/yr.

§ Low diffusion coefficient.

I'High diffusion coefficient.

for all of the cases, the diffusion model predicts invasion wave speeds that are
very close to those predicted by the telegraph model. I deliberately chose exam-
ples in which diffusion was likely to fail, that is, organisms with high reproduction
and low velocity; however, the greatest differences between the predicted wave
speeds of the models were 7.3% and 5.6%. These worst cases occurred with
cabbage butterflies when I used the daily movement parameters. During a single
day, the butterflies move nearly in straight lines, but, each new day, they pick a
new random direction in which to fly. Thus, over a generation, the movement is
not directed. If, instead, movement parameters for a generation are used, the
disparity between telegraph and diffusion wave speeds is less than 1%. For most
suites of biologically meaningful parameters, the invasion velocity predictions of
the reaction-diffusion model differed by less than 5% from the predictions of the
reaction-telegraph model. Clearly these data do not support the need for the
refinement of a correlated random-walk model if the question of interest involves
predicting the rate of spread of invading organisms.

DISCUSSION

As a mechanistic model of animal movement, the diffusion model is highly
unrealistic. It assumes that animals move infinitely randomly with infinite veloc-
ity. Despite this fact, the dispersal of intelligent animals with highly nonrandom
movement and finite velocity may be well described by diffusion. Although an
animal’s dispersal pattern would be unlike a diffusion pattern shortly after dis-
persal begins, as time increases the pattern approaches a simple diffusion pattern
(i.e., a Gaussian frequency distribution). When a diffusion model is used to de-
scribe mere dispersal, the assumptions of the model are reflected in the predic-



790 THE AMERICAN NATURALIST

tion that some animals will move an infinite distance—albeit with an infinitely
small probability—and that on small time scales an animal’s movement is still
unpredictable. These differences are not discernable if one chooses a large enough
time scale. For example, for an animal moving in one dimension and changing
direction three times per day, the predicted mean square displacements for diffu-
sion and telegraph movement differ by only 5% after 10.5/(3/d) = 3.5 d. When
the diffusion approximation of an organism’s movement is incorporated into more
complex models—models that address not only dispersal but also, for example,
the population dynamics and the interactions with other individuals or the envi-
ronment—the impact of approximating an organism’s movement by diffusion is
not obvious. The dissimilarity between the diffusion model of locomotion and
real organism locomotion can, in fact, create serious errors.

In this article, I examined the implications of using the diffusion approximation
in the classic reaction-dispersal model for the invasion of reproducing organisms
into unoccupied habitat. ‘‘Reaction’’ refers to the reproduction of the invading
organisms. Using the classical diffusion equation and the telegraph equation, I
examined the effect of dissimilar descriptions of organism locomotion on the
predicted pattern and rate of invasion. The telegraph equation models organisms
that move at finite velocities and whose direction from one step to the next is
correlated. Without the reproduction term, the telegraph and diffusion models
give almost identical dispersal patterns, after an initial transition period. With the
reproduction term, both models show organisms moving into the new environ-
ment as an advancing traveling wave; however, the diffusion model predicts that
the speed of invasion will increase without bound as the reproductive rate of the
organism increases, while the telegraph model predicts that, as the reproductive
rate increases, the velocity of the invasion wave increases to the organism maxi-
mum velocity and does not increase beyond that upper limit.

For organisms with a high rate of reproduction relative to their rate of changing
direction, the diffusion model predicts much higher invasion velocities than those
predicted by the telegraph model and would, therefore, be inappropriate for
studying invasions by such organisms; however, for organisms with low ratios of
reproductive rate to reversal rate, the two models give very similar invasion
speeds. It is pertinent, therefore, to determine where parameter values for actual
organisms fall between these two extremes. For this purpose, I extracted parame-
ters from the literature for six species with high reproductive rates and a wide
variety of dispersal mechanisms. In the cases in which movement was not ex-
tremely correlated, the speed of invasion calculated with the diffusion model was
within 5% of that calculated by the telegraph model. In general, the difference
was less than 2%. In the one case in which the animals’ movement was extremely
correlated (only 3.8 direction changes/d), the difference was still less than 8%.
The examples I examined are typical for organisms with medium to high repro-
ductive rates and moderate to low reversal rates. The motion of these organisms
would be described as nonrandom (or highly nonrandom). Yet these results
indicate that, for these examples, using a telegraph model, which allows finite
organism velocity and nonrandom motion, offers minor improvement over the
classic diffusion model, which assumes infinite organism velocity and completely
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random motion. It is obvious that, while, theoretically, there can be significant
errors from using the simple diffusion model to describe ecological invasions,
these errors are small when using moderate biological parameters.
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APPENDIX A

DERIVATION OF THE TELEGRAPH AND REACTION-TELEGRAPH EQUATIONS

Before describing the derivation of the reaction-telegraph equation, I briefly review the
derivation of the telegraph equation from a correlated random walk. The derivation of the
telegraph equation is simpler than, yet analogous to, the derivation for the reaction-
telegraph equation; thus, presenting the former will make the latter more obvious. Further-
more, by contrasting the two derivations, one can clearly see the effect of adding reproduc-
tion to the telegraph equation.

The derivation of the telegraph equation in one dimension is covered in mathematical
detail by Goldstein (1951) and is also covered by Othmer et al. (1988); however, the
following is adapted from Zauderer (1989). Imagine a large number of animals moving in
a correlated walk on a line. The animals make steps of length, 8, and duration, 7. An
animal continues in its previous direction with probability p and reverses direction with
probability g. At all times, animals move with velocity y. For small T, p = 1 — A7 and
g = A7, where \ is the rate of reversal. The reversal process can be thought of as a Poisson
process with intensity A

Let a(x,t) be the density, at coordinate x at time ¢, of animals that arrived from the left.
The definition of B is similar, except that it refers to animals that arrived from the right:

alx,t + 7) = palx — 8,t) + gP(x — d,1) (A1)
and
B(x,t + 1) = pB(x + d,1) + galx + 8,1). (A2)
We can use the Taylor series to expand equations (Al) and (A2) to obtain
a + 1o, + o(1) = p(a — da, + 0(8%) + q(B — 8B, + 0(d)) (A3)
and
B+ T8, + o(r) = p(B + 3B, + 0(8%)) + g(a + da, + 0(d)). (A4)

The subscript x or ¢ indicates the partial derivative with respect to x or z. Substituting
p =1 — At and g = A7 and taking the limit as & and 7 go to zero, we have

o, + %ax =AB — Ao = o, + Yo, (AS)
and

B~ 2B = N = AB = B, — 9B, (46)
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where v is the velocity. The density of animals at point x and time ¢ is represented by
S(x,7); thus, S(x,t) = alx,f) + B(x,t), since an animal must have arrived at point x from
the left or the right.

After differentiating the sum of equations (AS) and (A6) with respect to ¢ and differentiat-
ing the difference of equations (AS) and (A6) with respect to x after multiplying by vy, we
obtain

(a+B)y + v@—-B),=0 (A7)
and
Y = By + YHa + Bl = —2¥Na — B),. (A8)
Subtracting equations (A8) from (A7) and using the sum of equations (AS) and (A6), that
is, 2yAMa — B), = —2N(a + B),, we arrive at the telegraph equation
S, — Y2, + 2\S, = 0. (A9)

The derivation of the reaction-telegraph equation in one dimension from a correlated
random walk is analogous to the above with a population growth term added. At each
step, animals move as before, but also increase in number at the rate F(S). As in the
previous derivation, a(x,7) and B(x,?) are the densities of animals that arrive at x from the
left and right, respectively. After adding the growth term to the equations for o and B for
a simple correlated walk (eqq. [A1] and [A2]), the new equations for a and B are

alx,t + 1) = palx — 3,1) + gBx — 3,1) + %TF(S(X - 3,1) (A10)
and
B(x,t + 1) = pB(x + 8,1) + qalx + &,1) + ‘;"TF(S(X + 3,1). (A11)

In the interval, 7, TF(S(x,?)) animals are produced at time at point x. The new animals
have equal probability of going left or right, which leads to the '~ in the above equations.

As in the derivation of the telegraph equation, we substitute p = 1 — At and g = A7,
use the Taylor series to expand, and take the limit as  and 7 go to zero to obtain

a, + yo, = AB — Ao + %F(S) (A12)
and
B = ¥R, = ha — AB + 3F(S), (A13)

where y = 8/1 is the animal velocity.

The S(x,?) is composed of two parts, the density of animals that arrived from the left
or the right and the density of newly produced animals (as a result of reproduction). Thus,
S(x,1) = alx,t) + B(x,1) + TF(S(x,1)); however, since we take the limit as T goes to zero,
this reduces to S(x,7) = a(x,t) + B(x,?).

Now, as before, we differentiate the sum of equations (A12) and (A13) with respect to
t and differentiate the difference of equations (A12) and (A13) with respect to x after
multiplying by v, to obtain

(@ + B)y + Y@ — B)y, = F(S) (A14)
and
Y = By + ¥ + B = —2yMa — B),- (A15)

Subtracting equation (A15) from (A14) and using the sum of equations (A12) and (A13),
that is,
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2yMa — B), = —2M(a + B), + 2AF(S), (A16)
we arrive at the reaction-telegraph equation,

8*S as 3’S | aF(S)

— + 22— =yl 4+ —=+ . A17

3= ¥ S+ T2+ DNEGS) (A17)
Dunbar and Othmer (1986) also derived this equation for a velocity jump process with
reproduction using a different approach. (Note, however, that their equation contains a
slight error; vyr(n) should be 2Ar(n).)

APPENDIX B
TRAVELING WAVE ANALYSIS OF THE REACTION-TELEGRAPH EQUATION

I use phase-plane analysis to determine the existence and minimum velocity of traveling
wave solutions to the reaction-telegraph equation. Murray (1989) gives a clear summary
of phase-plane analysis in his appendices. Hadeler (1988) solved a similar telegraph equa-
tion by transforming the hyperbolic equation into a nonhyperbolic equation. His results
on wave speeds are different because he used the approach of McKean (1975) and Dunbar
and Othmer (1986) summarizing dispersal by the probability that the rightmost animal is
to the right of x. In contrast, I summarize dispersal as the density of particles at x, following
the approach of Fisher (1937) and Kolmogoroff et al. (1937).

Substituting a logistic growth function, F(S) = rS(1 — S/K), into the general reaction-
telegraph equation (A17), we have

9% S ,9°S 9

pye + 2\ o =Y pye: + at[rS(l S/K)] + 2arS(1 = S/K), (B1)
where K is the ‘‘carrying capacity’’ or equilibrium population size, and r is the intrinsic
rate of increase.

We can nondimensionalize the equation with the following substitutions:

t = N, x=x'i”‘, and S = S/K. (B2)

giving a reaction-telegraph equation with only one parameter:

Q+< —“‘Tzs))a—s=ﬁ+su—5), (B3)

at? ot ox?
where p = V2\/r. In one dimension, p measures the ratio of the time to produce a new
individual over the time to reverse direction.
To look for traveling wave solutions to equation (B3), we introduce the moving coordi-
nate system z = x — ct, ¢ > 0, which gives

2 _ 2
Cza_s;_< —M>CQ:Q+S(I—S). (B4)
9z~ p 9z 9z°

We now have an eigenvalue problem to determine the values of ¢ such that a nonnegative

solution of § exists that satisfies lim__,..S(z) = 0 and lim._,_..S(z) = 1. Equation (B4) is
equivalent to the system

9 _
0z
| (BS)
oU s c
— = 425 -1H)-U+ S0 -39,
| U s -9
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with singular points (S,U) = (0,0) and (0,1). From linear stability analysis the eigenvalues
at the steady state points are

172
0,0) A, = l{(l/p - o, [(l/p - p)c? 402] }

20 1-¢2 (1 — ¢?)? 1 - (B6)
172
1{=Q/p + p) [(l/p + p)c? 4 ] }
1 == + + .
(10 2 2{ 1 - c? = (1 - c?»? 1 —¢c?

In order for right-moving waves to be possible, strictly positive heteroclinic orbits must
exist for which lim,_,,.S(z) = 0 and lim,_, _.S(z) = 1. The eigenvalues indicate that such
heteroclinic orbits can exist for

Any p c2=1 (B7)

p=1 = ;
(p + 1/p)? (BY)
I used an ordinary differential equation solver to plot the phase-plane trajectories and
showed that these orbits do exist for these parameter values.

The existence of these heteroclinic orbits indicates that traveling wave solutions exist
but does not indicate what wave speeds are stable. To investigate the stability of these
solutions, I numerically simulated equation (B1) to find the wave speeds that are stable to
the small errors introduced by a numerical simulator. I was able to show that, for p = 1,
traveling waves form and travel at the speed V4/(p + 1/p).
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