
CHAPTER 1

Using multivariate state-space models to
study spatial structure and dynamics

Richard A. Hinrichsen and Elizabeth E. Holmes

1.1 Introduction

Populations in nature are rarely unstructured, that is acting as a single, well-mixed,
and random-mating unit. Instead populations are structured by various mechanisms.
One ubiquitous mechanism that structures populations is spatial subdivision—spread
out across multiple sites, populations naturally form subpopulations that covary to a
restricted degree.

In our work as population analysts, we are primarily concerned with risk assess-
ment and forecasting of imperiled populations. Understanding the spatial structure
within a population is important in this context, because spatial structure has a strong
effect on extinction risk and the degree to which a population is buffered from envi-
ronmental fluctuations. Monitoring data collected for populations of concern reflect
this ubiquitous spatial structure. Such data are typically collected from multiple cen-
sus sites, sites which are often thought to represent subpopulations that are at least
partly independent. Modeling multi-site data, however, presents serious challenges
for population analysts. In many cases, monitoring data are limited to simple abun-
dance counts, and data necessary to specify spatial structure—movement patterns or
common environmental drivers—are missing. This hinders the use of mechanistic
spatial models which require knowledge of the movement and the covariance of en-
vironmental drivers throughout a landscape (such as the models used in Lahaye et al.
1994, Dunning et al. 1995, and Schumaker et al. 2004).

Recently, statistical approaches based on time-series analysis and maximum-likelihood
estimation‡ have been developed to analyze population count data and infer un-
derlying dynamics (Lindley 2002, Holmes and Fagan 2002, Holmes 2004, Staples
et al. 2004, Dennis et al. 2006). These methods are based on research concerning

the asymptotic distributions of abundance that evolve from stochastic population

‡ Bayesian state-space approaches have also been developed, however, this chapter focuses exclusively
on frequentist approaches and research.
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processes (Tuljapurkar and Orzack 1980, Dennis et al. 1991, Holmes and Semmens
2004, Holmes et al. 2007). To date, this research has focused on the analysis of
single population time series and how to deal with multiple sources of variability,
specifically variability from environmental fluctuations and from measurement er-
rors. These approaches use univariate state-space models that incorporate both vari-
ance in population growth due to process error and variance in the observations due
to measurement error.

In this chapter, we extend this theory and present an analytical framework for the
analysis of multi-site count data based on multivariate state-space models. This work
has two related objectives. The first objective is to estimate the stochastic growth
rates and variances that drive the dynamics of the population given a known or hy-
pothesized spatial structure within the population. The second objective is to infer
the spatial pattern of synchrony and correlation across sites. The latter objective al-
lows us to make statistical inferences about which groups of sites act as independent
subpopulations with uncorrelated changes in population abundance, which groups of
sites act as independent but correlated subpopulations, and whether the sites appear
to be independent observations of a single population. Figure 1.1 illustrates some
of the different structures that a group of five sites might have: independent with
different growth rates, independent with a shared growth rate and uncorrelated or
correlated variability, and fully synchronized such that they appear to be observa-
tions of a single population. By synchronized, we mean that the sites not only have
correlated changes in abundance but the sites also track each other over time (without
diverging).

The methods described in this chapter are designed to infer the spatial patterns of
synchrony and correlation by disentangling the variability due to measurement error,
which causes the appearance of asynchrony and uncorrelation, from the underlying
variability in population counts due to temporal variability in growth rates. How-
ever, we do not model the mechanisms causing these patterns explicitly—rather the
methods look for the consequences: synchrony and correlation. For example, disper-
sal is one mechanism that can synchronize population dynamics. We do not model
movement rather we model the resulting synchrony. Similarly common abiotic en-
vironmental drivers, common exposure to diseases and a common prey base can
cause correlated growth rates, but we do not model drivers explicitly only the re-
sultant correlation. Determining what mechanisms drive patterns of synchronization
and correlation revealed by the analysis would require separate studies and different
types of data, however the patterns that are revealed may suggest which mechanisms
are more likely and guide further data collection and analysis.

1.2 Multivariate state-space models for multi-site population processes

The stochastic exponential model with Gaussian errors is the asymptotic approx-
imation for a wide-variety of density-independent population processes, including
complex age-structured and spatially-structured processes (Holmes et al. 2007). As
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Figure 1.1 Some of the different spatial structures possible for multi-site data. The µ in the
figures refers to the subpopulation’s stochastic growth.

such, this model is the foundation of much research on stochastic population dynam-
ics. Written in log space, this model is

xt = xt−1 + µ+ et, (1.1)

where xt represents the log-population abundance at time t, and µ is the mean rate of
population growth per time step. The process-error term, et, represents the stochastic
deviations in population-growth rate though time. The process errors are assumed to
have a normal distribution† with a mean of zero and constant variance. The stochastic
exponential model is closely related to the stochastic Gompertz model, xt = bxt−1 +
µ+ et, which is the stochastic approximation for a variety of density-dependent pro-
cesses (Ives et al. 2003, Dennis et al. 2006). Although we use the stochastic expo-
nential process in this chapter, the framework we present can be used for a stochastic
Gompertz process also.

† The normality assumption arises not from convenience but from the multiplicative nature of population
growth. As a result, the error terms in a process become normal (in log space) over multiple time steps.
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Suppose that instead of a single population, there are m subpopulations, which to-
gether comprise the total population. We can model the dynamics of this type of
population using a multivariate stochastic exponential model:

Xt = Xt−1 + B + Et, (1.2)

where Xt is anm×1 vector of log abundance in each of them subpopulations at time
t. B is an m × 1 vector of the underlying stochastic growth rates, µ1, µ2, . . . , µm,
in each of the m subpopulations. The process-error term, Et, is an m × 1 vector of
the serially uncorrelated stochastic deviations in each subpopulation’s growth rate at
time t. We assume that the process errors can be correlated between subpopulations
by specifying that Et has a multivariate normal distribution with a mean of zero and
an m×m covariance matrix Q.

Monitoring data also contain variance due to measurement error, and this will con-
found the estimation of Q—the variance due to process error. Recent methods for
addressing measurement error in population data use state-space models, which com-
bine a model for the hidden true abundances with a model for the observations of
the true abundance (deValpine and Hastings 2002, Lindley 2002, Dennis et al. 2006,
Holmes et al. 2007). We use the same approach to address measurement error in
multi-site data by using a multivariate state-space model. This is achieved by com-
bining equation 1.2 with a measurement equation that relates the observed values of
log abundance at time t to the true abundances at time t:

Yt = ZXt + D + Υt. (1.3)

Z is an n×m matrix that defines how the n observations relate to the m true abun-
dances; in general, the n observations could be any additive combination of the m
true abundances. The n× 1 vector D specifies the bias between the observations and
the true abundances. The measurement errors at time t are denoted by Υt, which
is an n × 1 vector of serially uncorrelated disturbances with a mean of zero and an
n× n covariance matrix R. It is important to note that R and D are not the same as
the variance and bias in the sampling process—for example, the errors resulting from
counting animals from, say, a plane or the errors resulting from only sampling along
a transect. The sampling process is but one source, and probably a minor source,
of measurement variability and bias in many population data sets. Bigger sources of
measurement variability come from temporal changes in sightability due to effects of
age-structure, effects of environmental conditions, and changes in the fraction of the
population contained in a site-specific census. These other sources of measurement
variance are usually unknown and unknowable (for all practical purposes).

Equation 1.3 permits many different relationships between the measurements and the
true abundances. For this chapter, we consider only two cases. In case 1, there are m
subpopulations, and each is measured once. In this case, m equals n, Z is an m×m
identity matrix, and D equals 0‡. In case 2, there is one subpopulation, m = 1, that
has been measured at n different sites. In this case, Z is an n × 1 vector of ones,

‡ D cannot be estimated in this case because it is a scaling factor that drops out during estimation.
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and Xt is a scalar (since m = 1). In this case, we allow D to be an n × 1 vector
with the first element equal to zero and the other elements estimated. This allows for
the possibility that differences in the mean log abundance between sites are due to
different biases in the measurement errors at each site.

Equation 1.2 and 1.3 form the multi-site state-space model. The objective is to use
this model to estimate the parameters {B,Q,R,D}: B gives the mean population
growth rate in each subpopulation, Q gives the variance in the population growth
between time steps, and R and D give the measurement-error variance and bias for
each site. We assume for this chapter that the process errors and measurement er-
rors are Gaussian and uncorrelated. These assumptions allow us to use estimation
methods designed for linear Gaussian state-space models. The assumption of uncor-
related errors can easily be relaxed (see for example Shumway and Stoffer 2000).
The assumption of Gaussian errors can also be relaxed (Durbin and Koopman 2000),
however parameter estimation would be considerably more involved.

1.3 Specification of the spatial structure among the subpopulations

In its unconstrained form, the multi-site state-space model allows each subpopulation
to have its own population growth rate, its own process-error variance, and any level
of correlation in the process errors between subpopulations. It allows a similar level
of flexibility in the measurement errors. We can incorporate spatial structure by im-
posing constraints on the B, Q, and R terms. For example, we might specify that the
process-error variances are the same across subpopulations, or that the measurement
errors are independent.

We will denote the alternative model structures by the triplet {fB , fQ, fR}, where
fB denotes the constraint used for B, fQ denotes the constraint used for Q, and fR

denotes the constraint used for R. In all cases, f = 1 will denote the unconstrained
form.

1.3.1 Structure of the population growth rates (fB)

1. fB = 1 Each subpopulation has an independent and different mean growth rate.
In this case, B = µ, where µ is anm×1 vector of subpopulation-specific stochas-
tic growth rates µi. This is the unconstrained form for B.

2. fB = 2 Each subpopulation has the same mean growth rate. B = µ, where µ is
an m× 1 vector of µ’s, all of which are equal.

3. fB = 3 There is one population (m = 1) that has been measured at n different
sites. Consequently, there is only one population growth rate. In this case, B, Q
and Xt are scalars: B = µ, Q = σvar and Xt = xt. This case also affects the
structure in the measurement errors: Z is an n×1 vector of ones and D is an n×1
vector of biases, the first of which is set equal to 0†

† Effectively we are estimating the biases relative to the bias for the first measurement time series. This
should be kept in mind when interpreting the estimated true abundances.
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1.3.2 Structure of the process-error variances (fQ)

1. fQ = 1 An unconstrained covariance matrix. Each subpopulation has a different
level of process-error variance, and each pair of subpopulations has a different
level of covariance between their process errors. In this case, Q is an m × m
covariance matrix with terms on the diagonal and off-diagonals.

2. fQ = 2 A diagonal covariance matrix with unequal diagonal entries. In this case,
each subpopulation has a different level of process-error variance, but the process
errors between subpopulations are independent. Thus, the off-diagonal terms in
the covariance matrix are 0. Q is an m ×m covariance matrix with terms on the
diagonal and zeros on the off-diagonals.

3. fQ = 3 A diagonal covariance matrix with equal diagonal entries. Each subpop-
ulation has the same level of process-error variance, but the errors are indepen-
dent. Q = σvarI, where σvar is the common process-error variance term and I
is an m×m identity matrix. This gives a covariance matrix with all terms on the
diagonal equal to σvar and the off-diagonal terms equal to 0.

4. fQ = 4 A covariance matrix with equal variances and covariances. Each subpop-
ulation has the same level of process-error variance, and the covariances between
process errors are equal between any two subpopulations. Q = σvarI+σcov(U−
I), where σvar is the common variance term and σcov is the common covariance
term. I is anm×m identity matrix and U is anm×m unit matrix. This gives a co-
variance matrix with all terms on the diagonal equal to σvar and the off-diagonal
terms equal to σcov .

1.3.3 Structure of the measurement errors (fR)

The constraints on the measurement-error variances are the same as for the process-
error variance. The different measurement-error models are denoted, fR = 1, 2, 3 or
4, where the constraints are defined as in section 1.3.2 with references to ‘process-
error’ replaced with ‘measurement-error’ and with references to Q replaced with R.

1.4 Estimation of the population parameters using maximum likelihood

Equation 1.2 and 1.3, along with the model constraints specified by {fB , fQ, fR},
form the constrained model for the multi-site data. Using this model, we can estimate
the parameters that describe the population dynamics, B and Q, and the parameters
that describe the measurement error, R and D. There are two main approaches to
parameter estimation: maximum-likelihood estimation and Bayesian estimation. In
this chapter, we focus on maximum-likelihood estimation. However, the likelihood
functions specified in this chapter are also used in Bayesian estimation. Thus, this
chapter provides the building blocks needed for a Bayesian approach as well.
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1.4.1 The likelihood function

The first step of maximum-likelihood estimation is to specify the likelihood of the
parameters, Θ = {B,Q,R,D}, given the observed data. In our case, the data are n
time series of observations for time 1 to T . We denote the n observations at time t as
Yt, and the set of all observations for time t to T as YT

1 ≡ Y1,Y2, . . . ,YT .

The observations at time t, Yt, are dependent on the past observations, Yt−1
1 . Thus

we cannot write the likelihood simply as L(Θ) =
∏T

t=1 p(Yt). Instead we write the
likelihood as a product of the conditional probabilities†:

L(Θ|YT
1 ) = p(Y1)

T∏
t=2

p(Yt|Yt−1
1 ), (1.4)

where p(Yt|Yt−1
1 ) is the probability density function for Yt given all of the observa-

tions up to time t−1. Note that Y is not Markov (only X is), thus we must condition
on Yt−1

1 rather than Yt−1. The distribution of p(Yt|Yt−1
1 ) is multivariate normal,

and we denote the mean of this distribution as Ỹt|t−1 and its covariance matrix as
Ft. Ỹt|t−1 is defined as E(Yt|Yt−1

1 ), the expected value of Yt conditioned on Yt−1
1 .

Ft is defined as E((Yt − Ỹt|t−1)(Yt − Ỹt|t−1)′), also conditioned on Yt−1
1 . The

initial conditions are specified by p(Y1), and will be treated as either an estimated
or a nuisance parameter (see section 1.4.2).

Using the probability density for a multivariate normal, we can write out the likeli-
hood function given in equation 1.4 as

L(Θ|YT
1 ) =

T∏
t=1

exp
{
− 1

2 (Yt − Ỹt|t−1)′F−1
t (Yt − Ỹt|t−1)

}
((2π)n|Ft|)1/2

. (1.5)

To calculate the likelihood, we need estimates of Ỹt|t−1 and Ft. We do not have these
directly, but we can solve for them indirectly by rewriting them in terms of Xt and the
deviations in Xt from the predicted values. First, we define xt|t−1 ≡ E(Xt|Yt−1

1 ).
Then, using the measurement equation (equation 1.3), we have:

Ỹt|t−1 = E(Yt|Yt−1
1 ) = E(ZXt + D + Υt|Yt−1

1 )
= Zxt|t−1 + D. (1.6)

Next, we define Pt|t−1 ≡ E((Xt−xt|t−1)(Xt−xt|t−1)′). Then, using the measure-
ment equation (equation 1.3) again, we have:

Ft = E
([

Yt − Ỹt|t−1

] [
Yt − Ỹt|t−1

]′)
= E

([
Z(Xt − xt|t−1) + Υt

] [
Z(Xt − xt|t−1) + Υt

]′)
= ZPt|t−1Z′ + R. (1.7)

† For more background on the derivation of the likelihood see, for example, Harvey (1989) section 3.4.
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Thus using equations 1.6 and 1.7, we can solve for the likelihood if we have estimates
of xt|t−1, the expected value of Xt given the observed data up to time t − 1, and
Pt|t−1, the deviations between Xt and xt|t−1.

1.4.2 Estimation of xt|t−1 and Pt|t−1 using the Kalman filter

The multi-site state-space model is a linear dynamical system with discrete time and
Gaussian errors. This type of problem is extremely important in many engineering
fields. In 1960, Rudolf Kalman published an algorithm that solves for the optimal
(lowest mean square error) estimate of the hidden Xt based on the observed data up
to time t for this class of linear dynamical system. This algorithm, now known as the
Kalman filter, gives an estimate of E(Xt|Yt

1), which we will denote as xt|t, and the
covariance, E((Xt − xt|t)(Xt − xt|t)′), which we will denote as Pt|t. The Kalman
filter also provides the optimal estimates of Xt conditioned on the data up to time
t−1, i.e., xt|t−1 and its covariance, Pt|t−1. These are the estimates that are needed to
calculate Ỹt|t−1 and Ft in equations 1.6 and 1.7. These in turn are used to calculate
the likelihood. The Kalman filter is widely used in time-series analysis, and there are
many textbooks covering it and its applications. The books by Harvey (1989) and
Shumway and Stoffer (2000) are particularly useful for ecologists because they are
geared towards physical, biological and economics applications.

The Kalman filter is a recursion that consists of a set of prediction equations followed
by a set of updating equations. The prediction equations are so named because they
predict the states at time t given information up to and including time t− 1:

xt|t−1 = xt−1|t−1 + B (1.8)
Pt|t−1 = Pt−1|t−1 + Q. (1.9)

Using the output from the prediction equations, new estimates conditioned on the
data up to time t are calculated using the updating equations:

xt|t = xt|t−1 + Pt|t−1Z′F−1
t (Yt − Zxt|t−1 −D) (1.10)

Pt|t = Pt|t−1 −Pt|t−1Z′F−1
t ZPt|t−1. (1.11)

This recursive algorithm is started with initial values x0|0 and P0|0, which are the
mean and variance the population abundance at time t = 0. Using those initial values,
one iterates through the prediction and updating equations for t = 1, 2, 3, . . . , T . This
provides the time series, xt|t−1 and Ft, that are needed to calculate the likelihood.

Typically, there is no prior information for the abundances at time t = 0. One so-
lution is to estimate x0|0 and P0|0 as extra free parameters. Alternatively, the initial
conditions can be specified using a diffuse prior distribution for X0. This is done
by setting P0|0 = κI (where I is an m × m identity matrix), substituting this into
the Kalman filter equations and allowing κ to grow arbitrarily large. Since X0 is de-
fined as normal with a mean of x0|0 and variance P0|0, this has the effect of setting
a diffuse prior on X0. When fB = 1 or 2, this diffuse prior leads to x1|1 = Y1 and
P1|1 = R. When fB = 3, x1|1 and P1|1 are scalars, and the diffuse prior leads to
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x1|1 =
(
O′R−1Y1

)
/
(
O′R−1O

)
and P1|1 = 1/

(
O′R−1O

)
, where O indicates

an m× 1 vector of ones.

For simplicity, we presented the likelihood calculation as if there were no missing
values in the data. However, one of the strengths of state-space approaches is that
missing values are easy to accommodate; if some values within Yt are missing,
those values become a place-holder that will be filled with the optimal estimate for
the missing data point. Harvey (1989), section 3.4, shows how the Kalman filter
equations are modified when there are missing values.

1.4.3 Maximization of the likelihood function

The Kalman filter provides estimates of xt|t−1 and Pt|t−1 that together with equa-
tions 1.6, 1.7, and 1.5 allow us to calculate the likelihood of the parameters, Θ. Our
objective is to find the Θ that maximizes the likelihood. There are a variety of ap-
proaches to the maximization problem. One standard approach is a Nelder-Mead
algorithm, which is available as a pre-packaged routine for most computing soft-
ware. However, for the multi-site state-space model, we found that this algorithm
did not always converge. Another approach, which we found to always converge,
is the estimation-measurement (EM) algorithm presented in Shumway and Stoffer
(1982) and Shumway and Stoffer (2000, section 4.3). The EM algorithm involves
iteratively estimating the true, hidden, abundances conditioned on all of the data,
using that to re-estimate the parameters and then using the updated parameters to
re-estimate the true abundances. This is repeated until the likelihood converges‡. An-
other wrinkle that can be added is restricted maximum likelihood (REML). Because
of the measurement errors, there is a negative temporal correlation in the data. This
negative correlation provides additional information which can be used to improve
the estimates (Staples et al. 2004, Dennis et al. 2006). In section 1.6, we will discuss
bootstrap methods for specifying the confidence intervals, standard errors and bias
of the maximum-likelihood parameters.

One issue of concern for all of these maximization methods is that when the time
series are short (T is small) or contain many missing values, the likelihood surface
can become multimodal. The problem in this case is that the likelihood surface has
its largest peak with either the Q or R diagonal terms are set at zero, and there is a
smaller peak at the correct value where all Q and R diagonal terms are non-zero. The
result is that all of the variance in the data is put into process-error or measurement-
error variance. Intuitively, what is happening is that there is not enough information
in the data to partition the variance. If this is discovered to be a problem, which
will be apparent by either of the Q or R diagonal terms going to zero, there are
two general solutions. First, the size of the model can be constrained such that it is
commiserate with the information in the data. For example, the population structure
can be constrained (e.g., by setting fB = 3 or fQ = 4) so that there are fewer

‡ The EM algorithm is a hill-climbing algorithm. Thus steps must be taken to ensure that it does not get
stuck on local maxima (Biernacki et al. 2003)
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parameters to estimate. The second general approach is add an informative prior on
the variance parameters using a Bayesian approach. In this case, the prior will affect
the posterior estimates. This is the objective in this case, since the data do not contain
enough information in and of themselves to partition the variance. Obviously, the use
of an informative prior should be done with caution, but there are situations where
researchers have external information on the plausible range of measurement-error
or process-error variance.

1.5 Investigation of the population structure using model-selection criteria

In section 1.4, we specified a particular population structure by putting constraints on
B, Q, and R. We can also use the multi-site state-space framework to measure the
data support for different population structures (Figure 1.1) rather than specifying a
structure a priori. The different structures are denoted by the triplet {fB , fQ, fR}
presented in section 1.3. These form a nested set of models varying from unstruc-
tured (a single population but measured with multiple time series) to fully structured
(different stochastic growth rates and process-error variances in each subpopulation
and correlations in the process errors between subpopulations).

Using model-selection criteria (Burnham and Anderson 2002, Johnson and Omland
2004), we can measure the data support for the different models. The basic idea is
that different models are fit to the data, the fit of the model to the data is measured
using the likelihood function, and the fit is penalized for the number of parameters
estimated by the model. The latter corrects for the fact that more complex models
will tend to fit data better, simply because there is more flexibility in the model. The
function that specifies how the likelihood is penalized for complexity is the model-
selection criterion, and it gives a relative measure of data support. There are a variety
of different model-selection criteria used in model selection. The most commonly
used are Akaike’s information criterion (AIC) (Akaike 1973, Burnham and Anderson
2002), Bayesian or Schwarz information criterion (BIC) (Mcquarrie and Tsai 1998),
and deviance information criterion (DIC) (Spiegelhalter et al. 2002). Mcquarrie and
Tsai (1998) is a good reference for model selection approaches specific to time-series
data, and Burnham and Anderson (2002) is a good reference for model-selection
approaches for the ecological sciences. In the example below, we illustrate the use of
AIC for measuring the data support for different structures within a group of chinook
salmon subpopulations.

1.6 Analysis of Snake River chinook salmon dynamics and structure

The Snake River is one of the major tributaries of the Columbia River, and histor-
ically it produced a large proportion of the chinook salmon within the Columbia
basin. However, anthropogenic impacts such as the construction of hydropower dams
on the Columbia and Snake Rivers, habitat destruction, and over-fishing led to large
declines in the chinook populations within the Snake River and its tributaries. In
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1992, the Snake River spring/summer chinook Evolutionary Significant Unit† (ESU)
was listed as threatened under the U.S. Endangered Species Act, along with other
salmonid ESUs in the Columbia River basin. This Snake River ESU includes all wild
(not hatchery-released) chinook salmon that spawn in the spring and summer in the
Snake River and its tributaries: the Tucannon, Grande Ronde, Imnaha, and Salmon
Rivers (Figure 1.2). Chinook that spawn in the spring and summer spend their first
year in freshwater near their natal streams and migrate to the ocean as yearlings.

1

5

4

6

3

2

Figure 1.2 Map of the Snake River spring/summer chinook ESU. The location of the subpop-
ulations are shown with the gray ovals: 1) Bear Valley/Elk Creek , 2) Sulphur Creek, 3) Marsh
Creek, 4) Upper Valley Creek, 5) Big Creek, 6) Lemhi River. To reach these spawning areas,
fish must pass through (or be barged around) eleven hydropower dams.

To illustrate the use of the multi-site state-space model, we analyzed time series from
six distinct chinook subpopulations in the upper reaches of the Snake River basin
(Figure 1.2). Chinook salmon show strong fidelity to their natal streams, thus the fish
spawning within a specific stream are most likely to have been spawned in that stream
or nearby. The six subpopulations we analyzed were Bear Valley/Elk Creek, Sulphur
Creek, Marsh Creek, Valley Creek, Big Creek, and Lemhi River (Figure 1.2). The
time-series data for each subpopulation represent estimates of the spawning salmon
abundances within each subpopulation from 1980 to 2001 (Figure 1.3). Our analysis
focused on two questions: 1) Given a particular structure for the six subpopulations,

† Evolutionary Significant Unit is the term for a population segment that is considered distinct for the
purpose of conservation under the U.S. Endangered Species Act (Waples 1991).
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what are the maximum-likelihood estimates of the stochastic growth rates and the
true abundances? and 2) What population structures are most supported by the data?
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Figure 1.3 The 22-year time series of spawning abundance and smoothed estimates for 1)
Bear Valley/Elk Creek , 2) Sulphur Creek, 3) Marsh Creek, 4) Upper Valley Creek, 5) Big
Creek, and 6) Lemhi River. The ×’s are the actual spawner counts, the black line is the
smoothed estimates of spawner abundance from the Kalman smoother, and the gray lines give
the upper and lower 95% CIs for the smoothed estimates (the estimates with the measurment
errors removed).

1.6.1 Estimation of the stochastic growth rates and true abundances

To separate out the measurement errors and provide estimates of the true abundances
within each spawning site, we used the Kalman smoother. The Kalman smoother
provides the optimal estimates of Xt given all the data, YT

1 . The Kalman smoother
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starts with the xT |T estimates from the Kalman filter‡ and works backwards from T
to 1 using the following updating equations:

xt−1|T = xt−1|t−1 + Jt−1

(
xt|T − xt|t−1

)
(1.12)

Pt−1|T = Pt−1|t−1 + Jt−1

(
Pt|T −Pt|t−1

)
J
′

t−1, (1.13)

where Jt−1 ≡ Pt−1|t−1P−1
t|t−1. At the end of the recursion, we have the smoothed

estimates of Xt conditioned on all the data. The smoothed estimates are denoted
xt|T .

The smoothed estimates have a simple relationship to the maximum-likelihood esti-
mates for the stochastic growth rates:

B =
1

T − 1
(
xT |T − x1|T

)
, if fB = 1 or 3, (1.14)

B =
1

T − 1
O′Q−1

(
xT |T − x1|T

)
O′Q−1O

, if fB = 2, (1.15)

where O is an m× 1 matrix of ones.

1.6.2 Investigation of the subpopulation structure using AIC and AICb

To determine which population structure was best supported by the data, we used
Akaike’s Information Criteria (AIC) (Akaike 1973, Burnham and Anderson 2002)
and the bootstrap AICb (Cavanaugh and Shumway 1997). In particular, we were
interested in whether the six sites should be treated as one population sampled with
six independent time series or as six separate subpopulations with correlated process
errors. AIC and AICb measure the data support for models with different population
structure. Models with lower AIC and AICb scores have better data support relative
to models with higher AIC or AICb scores.

For model q, where q specifies a unique {fB , fQ, fR} triplet, the AIC is defined as:

AICq = −2 logL(Θ̂q) + 2p, (1.16)

where Θ̂q is the parameter set {B,Q,R,D} that maximizes the likelihood of the
observed data YT

1 given model q, and p is the number of effective parameters in
model q. We calculated the maximum-likelihood estimates Θ̂q using the EM algo-
rithm (Shumway and Stoffer 1982, 2000).

AICb is a variant of AIC that corrects for AIC’s bias towards overly complex models
when the sample size is small. AICb has the same objective as the more familiar
AICc—the small sample-size corrected AIC (Burnham and Anderson 2002)—but

‡ The Kalman filter is a forward recursion and provides an optimal prediction of Xt given the past,
Yt−1

1 . The Kalman smoother is a backwards recursion that provides optimal estimates of the past
given the future, in this case Xt given YT

1 .
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AICb is designed for state-space models. AICb for model q is defined as:

AICbq = −2 logL(Θ̂q) + 2

{
1
N

N∑
b=1

−2 log
L(Θ̂q(b))
L(Θ̂q)

}
, (1.17)

where Θ̂q(b), b = 1, . . . , N , represents a set of N bootstrap replicates of Θ̂q . The
bootstrap replicates are generated using the following procedure (Stoffer and Wall
1991; Shumway and Stoffer 2000, section 2.6). Using the parameters Θ̂q , the model
q is fit to the data. This provides a time series of the innovations ε for t = 1 to T ,
where εt ≡ Yt−Ỹt|t−1. The bootstrap replicates of the innovations time series, ε(b),
are generated by taking T samples with replacement from ε. The bootstrap-generated
ε(b) are then used in what is termed the innovations form of the state-space model
to generate a bootstrapped Y(b) time series. This process is repeated N times to
produce N bootstrapped Y(b) time series. For each of these Y(b) time series, the
parameters that maximize the likelihood of the bootstrapped data Y(b) are found.
This produces the N bootstrapped estimates: Θ̂q(b), b = 1, . . . , N .

1.6.3 Confidence intervals and diagnostics

To determine the accuracy of the parameter estimates, we used a parametric bootstrap
approach (Shumway and Stoffer 2000, section 2.6). The N bootstrap replicates of
Θ̂q(b) were used to estimate confidence intervals, standard errors and bias for each
of the estimated model parameters. To construct 95% confidence intervals for the
k-th parameter within Θ̂q , the 2.5 and 97.5 percentiles for the k-th parameter in the
bootstrap replicates Θ̂q(b) were used as the lower and upper confidence limits.

The bootstrap standard error for the k-th parameter was defined as the mean squared
difference between the k-th parameter in the bootstrapped samples and the mean
value of the k-th parameter in the bootstrapped samples:

SE =
1

N − 1

N∑
i=1

(
k̂q(b)− 1

N

N∑
b=1

k̂q(b)

)2

, (1.18)

where k̂q(b) denotes the k-th parameter in Θ̂q(b). The bootstrap bias was calculated
as:

bias =
1
N

N∑
b=1

k̂q(b)− k̂q, (1.19)

where k̂q is the maximum-likelihood estimate of the k-th parameter in Θ̂q . As a rule
of thumb, bias is considered a potential problem when it exceeds 5% of the SE.

Diagnostics were applied to the fitted state-space models to determine whether they
were appropriate for analyzing the salmon data. When running model diagnostics,
prediction errors in state-space models play a similar role to that of residuals in an
ordinary least-squares regression. Like residuals, the prediction errors are assumed to
be independent and normally distributed. The normality assumption was examined
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using quantile-quantile (QQ) plots (Chambers et al. 1983) of the standardized pre-
diction errors. Jarque-Bera tests for normality were also applied to the standardized
prediction errors (Cromwell et al. 1994). The assumption of serially independent pre-
diction errors was examined using autocorrelation-function plots and the Box-Pierce
test for independence (Box and Pierce 1970).

1.6.4 Results

The estimates of the mean stochastic growth rate were positive across all the top
models. This indicates a population that is increasing. The stochastic growth rate es-
timate for the best model was 0.14, suggesting a robust mean growth rate of 14%
per year. However, the estimated growth rates had large standard errors and corre-
spondingly wide confidence intervals that included negative values (Table 1.1). This
indicates that even with six 22-year time series, the data are insufficient for confi-
dently estimating whether the population is increasing or decreasing.

Results on the population structure however are more informative. Out of the 36
state-space models considered, the model with fB = 3, fQ = 1‡,and fR = 2 had the
lowest AICb and AIC values (Table 1.1). This is the model with a single population
that is measured with six different time series, each with independent and different
measurement errors. This model had considerably more support (∆AIC > 10) than
the next competitor. The model equivalent to six independent salmon subpopulations
each measured independently, {fB , fQ, fR} = {1, 2, 2}, fit extremely poorly. This
model ranked 30 out of the 36 models with a ∆AICb score of 170.7 compared to the
best model (Table 1.1).

The result that the model with a single population fit the data best indicates that the
six subpopulations were highly correlated. Surporting this, we also found that the
model {fB , fQ, fR} = {1, 1, 2}, which has an unrestricted process-error covariance
matrix, also indicated that the process-error correlations were high. The correlation
coefficients for this model ranged from 0.86 to 1.0 (Table 1.2). In contrast, the mea-
surement errors were found to be uncorrelated. The best-fitting model had a diagonal
measurement-error covariance matrix, R, with unequal variances (fR = 2) and zero
correlation between all subpopulations. The measurement-error variances differed
greatly between the six subpopulations (Table 1.3). Marsh Creek had an estimated
measurement-error variance of 0.03 (SE = 0.03) compared to Upper Valley Creek,
which had an estimated measurement-error variance of 1.14 (SE = 0.36). Changing
from a diagonal R matrix with unequal variances to a diagonal matrix with equal
variances produced the second best model with a ∆AICb of 14.5 above the best
model. Bias in the measurement-error estimates ranged from 4% to 63% of SE.

The methods are designed to look for correlation and synchrony across sites. In the
case of these salmon time series, we see both strong correlation and strong synchrony.

‡ Note that when fB = 3, m = 1 so Q is a scalar.
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Table 1.1 Results of the model-selection analyses which fit models with different population
structures to the salmon data. Models are by ranked by ∆AICb scores. Lower ∆AICb indicates
more data support for that model. Generally, a ∆AICb > 10 indicates low data support. p
indicates the number of parameters in each model.

Model Lower Upper
form Mean 95% 95%

Rank fB fQ fR µ limit limit p ∆AIC ∆AICb

1 3 1 2 0.14 -0.32 0.59 14 0 0
2 3 1 3 0.11 -0.27 0.54 9 19 14.5
3 3 1 4 0.09 -0.23 0.44 10 20.2 18.9
4 2 4 2 0.14 -0.37 0.60 15 22.9 31.6
5 1 4 2 0.13 -0.34 0.61 20 28.5 36
6 2 4 3 0.11 -0.27 0.52 10 44.4 46.4
7 2 2 4 0.00 -0.07 0.08 15 49.2 50.5
8 2 3 4 -0.01 -0.08 0.07 10 47 51.5
9 1 4 3 0.11 -0.31 0.51 15 52.5 53.2

10 2 4 4 0.08 -0.20 0.34 11 45.5 57.5
11 1 3 4 -0.01 -0.08 0.06 15 55.3 58.8
12 1 2 4 -0.02 -0.13 0.09 20 57.8 73
13 1 4 4 0.08 -0.18 0.35 16 53.6 73.2
14 3 1 1 0.10 -0.19 0.40 29 8.3 88.8
15 2 3 3 0.06 -0.05 0.16 9 109.1 104.3
16 2 3 2 0.07 -0.04 0.17 14 113.1 110.1
17 2 2 3 0.06 -0.07 0.17 14 117.9 118
18 2 2 2 0.05 -0.06 0.16 19 119.9 121.8
19 2 3 1 -0.01 -0.07 0.06 29 41.7 122.4
20 2 4 1 0.10 -0.19 0.39 30 28.3 123.7
21 2 1 2 0.14 -0.20 0.48 34 44.5 124.2
22 2 2 1 0.01 -0.06 0.08 34 37.1 125.5
23 1 3 1 -0.01 -0.08 0.05 34 45.6 132.8
24 1 3 3 0.06 -0.05 0.15 14 119 135.2
25 1 3 2 0.07 -0.05 0.18 19 123 144.2
26 1 1 2 0.12 -0.29 0.53 39 52.6 145.2
27 1 4 1 0.11 -0.18 0.38 35 32.6 150.2
28 2 1 3 0.17 -0.11 0.47 29 53.1 157.1
29 1 2 3 0.06 -0.04 0.17 19 127.8 161.5
30 1 2 2 0.06 -0.05 0.16 24 129.4 170.7
31 1 2 1 0.00 -0.07 0.07 39 42.4 172.3
32 1 1 3 0.12 -0.32 0.57 34 61.7 180.2
33 2 1 4 0.17 -0.12 0.47 30 54.9 213.2
34 1 1 4 0.12 -0.33 0.54 35 63.6 231.5
35 2 1 1 0.15 -0.10 0.40 49 52.3 274.9
36 1 1 1 0.09 -0.15 0.33 54 61.1 294.7
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Table 1.2 Estimated correlation coefficients for the process errors. Model {fB , fQ, fR} =
{1, 1, 2} was used to estimate the unconstrained covariance matrix Q which was then used to
calculate the correlation matrix.

Bear Valley/
Elk Cr. Marsh Cr. Sulphur Cr. Big Cr. Lemhi R.

Marsh Cr. 1.00
Sulphur Cr. 0.99 0.99
Big Cr. 1.00 1.00 0.99
Lemhi R. 0.86 0.87 0.79 0.85
Up. Valley Cr. 0.98 0.99 0.95 0.98 0.93

Table 1.3 Measurement-error variances using the best-fitting model with lowest AICb.

Lower Upper
Estimate SE 95% CI 95% CI Bias

Bear Valley/Elk Cr. 0.13 0.05 0.04 0.23 -0.20
Marsh Cr. 0.03 0.03 0.00 0.10 0.14
Sulphur Cr. 0.66 0.22 0.26 1.11 -0.17
Big Cr. 0.28 0.09 0.11 0.47 -0.22
Lemhi R. 0.53 0.16 0.24 0.87 -0.21
Up. Valley Cr. 1.14 0.36 0.49 1.83 -0.20

From the time-series data alone, we cannot infer what mechanism is driving this pat-
tern in the salmon data. These six salmon stocks are exposed to a similar ocean envi-
ronment and river-migration environment, and this would lead to correlated process
errors. However, the process errors would need to be perfectly correlated in order to
produce synchrony because without perfect correlation, the time series across the six
sites would eventually diverge. This suggests that there is another mechanism that is
causing synchrony. Dispersal, in this case straying of spawners to non-natal streams,
is known to occur and is a possible mechanism for the synchrony.

Diagnostics were run on the model with the lowest AICb score. The QQ plots indi-
cated no deviation from normality in the prediction errors except for the Marsh Creek
subpopulation. For Marsh Creek, the normal QQ plot showed large deviations from
a straight line in the tails of the prediction errors, and the Jarque-Bera test indicated
that the distribution was not normal (p-value = 0.003). This deviation from normal-
ity, however, was driven by a single prediction error (from the year 1994), which
was 2.74 standard deviations below zero. When this prediction error was deleted, the
Jarque-Bera test indicated no significant deviation from normality (p-value = 0.59).
The Box-Pierce tests, based on lags up to five years, indicated that the prediction er-
rors were serially uncorrelated. The autocorrelation functions, however, did indicate
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a relatively large negative lag-1 autocorrelation for Sulphur Creek (r = -0.53) and a
relatively large positive lag-5 autocorrelation (r = 0.45) for the Bear Valley/Elk Creek
subpopulation.

1.7 Discussion

The analysis of the salmon data suggests that the population dynamics within the
upper Snake River basin are highly synchronized. The best fitting models indicated
very high correlations in the year-to-year fluctuations in subpopulation growth rates
and a common stochastic growth rate for all of the six subpopulations. This implies
that these subpopulations tend to act as a single population. Biologically, this is not
surprising; a certain amount of straying of spawners into non-natal streams is known
to occur and in addition, the salmon from the different spawning sites are exposed
to a similar environment after they leave their spawning stream. They migrate down
the same river corridor to the ocean and then spend two to four years in the ocean. In
contrast, the modeling suggests that measurement errors are uncorrelated among the
six subpopulations, with variances that differ. This is not surprising given that site
differences can greatly affect the accuracy of spawning-abundance counts and given
that counts at different subpopulations are made on different days.

Aside from revealing these important patterns in the data, does the multivariate tech-
nique improve the accuracy of the stochastic growth rate estimates—relative to sim-
ply fitting a univariate model to each subpopulation time series independently, then
taking the average? At first glance, the answer appears to be no. The univariate
stochastic growth rates can be obtained by using the model {fB , fQ, fR} = {1, 2, 2}.
This is the model that specifies an independent stochastic growth rate and variance for
each subpopulation, and treats the data as if there is no correlation between subpopu-
lations or measurements. This model gives an SE of 0.052 for the average stochastic
growth rate, while the best multivariate model, {fB , fQ, fR} = {3, 1, 2}, gives a
much larger SE of 0.23. Shouldn’t we expect the model with the lowest AICb to
produce lower standard errors? The answer is no, because standard error estimates
of models with poor AICb are unreliable. The standard errors are largely a function
of the estimated variance matrices (Harvey 1989). Therefore, poor estimates of the
variance matrices mean poor standard error estimates and poor confidence intervals.
The model {fB , fQ, fR} = {1, 2, 2}, which gives low standard errors, has one of the
worst ∆AICb scores (170.7 in Table 1.1), and therefore inferences on precision are
not as reliable as those from the top model.

Bias is another part of accuracy that must be considered. The stochastic growth rate
estimates were not biased, but variance estimates were. For example, the model with
smallest AICb, had a process-error variance that was biased downward by 20% SE.
It also had biases in the measurement-error variance that ranged from 14% to 22%.
Lindley (2003) found that when time series are short, the Kalman filter (used in this
chapter) tends to lead to underestimates of the true process error. This suggests that
some bias correction procedure ought to be investigated for the variance estimates.
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Another possibility is using restricted maximum likelihood, which was found to gen-
erate unbiased estimates of process- and measurement-error variance in a univariate
setting (Staples et al. 2004). Currently, however, this method does not handle mul-
tivariate data or missing values, it sometimes fails to converge, and it can generate
negative estimates of measurement-error variance. The slope method (Holmes 2001),
can also reduce process-error bias, but it also does not handle multivariate data and
may generate negative variance estimates.

Multivariate state-space modeling has a long, rich history in the engineering and eco-
nomics literature and has proved a powerful tool for modeling and forecasting dy-
namical systems. This approach allows analysts to deal with data from multiple sites
simultaneously, handle missing values, and impose different assumptions concern-
ing the spatial structure within the population dynamics and within the measurement
process. Although we have assumed a linear model with Gaussian and uncorrelated
errors, these assumptions can be relaxed and the same framework could be used
but with the parameters estimated via alternate estimation algorithms. In summary,
the multivariate state-space approach provides a formal framework for incorporating
spatial structure into the analysis of multi-site time series data and can reveal impor-
tant relationships among subpopulations—relationships that would remain concealed
with a single-site or non-spatial approach.
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