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Abstract. Long-term ecological data sets present opportunities for identifying drivers of
community dynamics and quantifying their effects through time series analysis. Multivariate
autoregressive (MAR) models are well known in many other disciplines, such as econometrics,
but widespread adoption of MAR methods in ecology and natural resource management has
been much slower despite some widely cited ecological examples. Here we review previous
ecological applications of MAR models and highlight their ability to identify abiotic and
biotic drivers of population dynamics, as well as community-level stability metrics, from long-
term empirical observations. Thus far, MAR models have been used mainly with data from
freshwater plankton communities; we examine the obstacles that may be hindering adoption in
other systems and suggest practical modifications that will improve MAR models for broader
application. Many of these modifications are already well known in other fields in which MAR
models are common, although they are frequently described under different names. In an
effort to make MAR models more accessible to ecologists, we include a worked example using
recently developed R packages (MAR1 and MARSS), freely available and open-access
software.
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INTRODUCTION

Who eats whom? Which predators have the strongest

cascading effects in an ecosystem? Which basal taxa

provide the most important resources in a community?

What might be the network of ecological repercussions

when a particular nutrient decreases, a species is

depleted or removed, or when temperature increases?

How do these dynamics relate to ecosystem stability?

Diverse approaches to ecosystem modeling have been

undertaken to address questions like these, in order to

gain better understanding of trophic interactions and

potential responses to human perturbations (Plagányi

2007). Such approaches include highly detailed and

spatially explicit models, (e.g., ATLANTIS; Fulton et al.

2004), energy flow models based on diet estimates (e.g.,

EcoSim; Christensen and Walters 2004) or ecophysio-

logical parameters (e.g., Ecosys; Grant 2001), models of

ecological communities as networks (Thébault and

Fontaine 2010), and individual-based models (e.g.,

OSMOSE; Shin and Cury 2004). These approaches

attempt to develop a mechanistic model of the system,

and they require data (or assumptions) about diet,

growth and biomass as well as the functional form of the

interactions among species. The development of these

mechanistic models can be challenging when such data

are unavailable and possibilities for cross-validation are

limited.

Alternatively, theoreticians, statisticians, and ecolo-

gists together have developed and applied statistical

models of community dynamics using long-term abun-

dance and environmental data. This approach is

grounded in theory concerning the patterns of temporal

correlation that emerge from species interactions (Ives

1995, Ives et al. 1999, 2003). Observational time series

data are assumed to have been generated from a

multivariate autoregressive (MAR) process. The core

pieces of this model include a species interaction matrix
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quantifying each species’ interaction with itself (e.g.,

density dependence) and interactions with others (e.g.,

competition, predation), and another covariate matrix

quantifying the impact of environmental drivers on

species’ per capita growth rates. These matrices are

estimated from the time series data as an extension of

simple linear regression, and the resulting matrices can

be converted into estimates of interaction strengths and

perturbation responses (Ives et al. 2003). Alternative

MAR model structures, representing different function-

al groupings or presence/absence of specific interactions,

can be compared using information theoretic approach-

es (such as Akaike’s information criterion, AIC) that

balance model ‘‘fit’’ with complexity (Burnham and

Anderson 2010), and comparative metrics of community

stability can be computed from the estimated model

(Ives et al. 2003, Neubert et al. 2009). The MAR

approach facilitates identification of key players and the

pathways through which abiotic and biotic drivers affect

population dynamics, and also addresses an important

complication for other statistical analyses: reciprocal

effects (e.g., Hampton and Schindler 2006). Reciprocal

effects occur, for example, when predators eat prey

‘‘today’’ and directly reduce prey biomass, but then

increase their own biomass ‘‘tomorrow’’ in response to

the prey. In this case, the correlation between predator

and prey abundances is both positive and negative, but

statistical analyses that do not explicitly identify

interaction pathways would fail to identify the recipro-

cal dynamics.

Ecological applications of MAR models are now well

documented, and they have been used extensively to

understand the dynamics of freshwater plankton com-

munities. However, they have seen limited application

outside the study of plankton communities and most

ecologists are unlikely to be familiar with these models

and their potential. Here we review the existing

ecological applications, which are mainly, though not

exclusively, in freshwater systems, and then discuss

existing and potential extensions of MAR models that

may make them more generally applicable for studying

ecosystem and community dynamics.

The MAR model formulation

To characterize population growth, a discrete-time

Gompertz model is used with log-linear density-depen-

dence (Ives et al. 2003, Dennis et al. 2006). The

stochastic univariate Gompertz equation written in

log-space is

xi;t ¼ bxi;t�1 þ ai þ wi;t ð1Þ

where xi,t is the natural log density of species i at time

step t, a is the intrinsic rate of increase for species i, and

b represents the strength of density dependence (b ¼ 1

implies density independence, 0 , b , 1 implies

undercompensation, b , 0 implies overcompensation).

The process error deviation, wi,t, represents random

deviations resulting from environmental or demographic

stochasticity from one time step to the next. Eq. 1 is a

univariate, first-order, autoregressive, or AR(1), process.

The AR(1) process can be expanded to include the

effects of exogenous variables (i.e., covariates), such as

abiotic drivers, on population dynamics. The following

equation shows the form for a single time-varying

covariate, u, with an interaction strength of c:

xi;t ¼ bxi;t�1 þ ai þ cut�1 þ wi;t: ð2Þ

If u were temperature, then c would represent how

strongly (positively or negatively) temperature affects

log-abundance.

To describe the stochastic dynamics of p interacting

species and q environmental covariates, we use a

multivariate version of Eq. 2, a MAR(1) model, which

serves as a linear approximation for nonlinear stochastic

multispecies processes (Ives et al. 2003). Hereafter, we

drop the ‘‘(1)’’ for simplicity when referring to the

model, and we use ‘‘species’’ to refer to the biotic

groupings chosen by the user (e.g., ‘‘species’’ may be a

guild of similar species). The MAR model is a system of

p linear equations describing the abundances for each

species in the community. In matrix form, the MAR

model is written as follows:

xt ¼ Bxt�1 þ aþ Cut�1 þ wt ð3Þ

where xt is the p 3 1 vector of log abundances for each

of the p species at time t, a is the p3 1 vector of a values

for each species, B is a p 3 p interaction matrix whose

elements bij describe the effect of the density of species j

on the per capita growth rate of species i, ut�1 is the q3

1 vector of covariate values at time t� 1, and C is the p

3 q matrix whose elements cij describe the effect of

covariate j on species i. The vector of process errors wt is

assumed to be drawn from a multivariate normal

distribution with a mean of 0 and covariance matrix

S; the selection of this distribution to describe the

random stochasticity that populations experience has its

roots in the statistical distribution that emerges from

stochastic population dynamics (Ives et al. 2003,

Holmes et al. 2007). It is important to note that

inclusion of appropriate environmental drivers in u may

be necessary to remove non-stationarity from the

residuals (e.g., seasonal patterns). For example, a

covariate like temperature, measured properly, might

be adequate to remove hourly patterns of activity in a

reptile. In other cases, it might be necessary to include

fixed seasonal effects using a covariate to specify month

or season. Covariates need not be restricted to abiotic

drivers. They may be biotic variables that are expected

to affect x without exhibiting reciprocal effects in the

analysis. For example, we would not expect fish

abundance to respond to plankton abundance on a

comparable time scale, so an estimated level of fish

predation has been incorporated as a covariate in MAR

models focused on plankton (Ives et al. 1999, Beisner et

al. 2003).
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Parameter estimation, parameter uncertainty

and model support

One of the major goals of MAR modeling in ecology

has been to estimate interspecific interaction strengths
(B) in food webs and the effects of abiotic drivers on

population dynamics (C) by fitting the MAR model to
time series of species abundances. The majority of MAR

applications have used one of two methods to estimate B
and C: conditional least squares, which requires that

data sets have no missing values, and maximum-
likelihood. Bayesian approaches have been less fre-

quently used in MAR modeling (cf. Mutshinda et al.
2009), though they can have some advantages. They

more easily allow for non-Gaussian error structures or
nonlinear process models, but depending on the

circumstances, maximum likelihood may perform sim-
ilarly to Bayesian approaches. Because MAR models are

linear models with Gaussian error, the Bayesian
solutions are nearly identical to those achieved with
maximum likelihood, and Bayesian estimation may take

longer to converge.

A second major goal of MAR modeling in ecology
has been to reduce the food web model to a set of
consistently strong interactions (represented by positive

and negative values in B and C) and a set of least
relevant interactions (represented by zeroes in the B and

C matrices), accomplished by a model selection step.
While it is possible to use a model with all B and C

elements estimated, these models are typically prohibi-
tively large and the uncertainty in the estimated elements

would be high (Ives et al. 1999, 2003, Hampton et al.
2006). In some instances, a priori knowledge of the

ecology of the system will help to identify zeroes (e.g.,
the direct effect of a carnivore on plants), and these

zeroes can be set by the user. Otherwise, identification is
accomplished with automated randomized search rou-

tines and information theoretic metrics, such as AIC
(Burnham and Anderson 2010). These search routines

construct thousands of MAR models with different B

and C matrices by randomly setting the elements of
these matrices to zero, and the models with the lowest

AIC scores are identified. After this model search step,
additional interactions may set to zero if they do not

appear consistently in the candidate models, as defined
by some threshold (e.g., 15% of the models [Ives et al.

1999]), or if bootstrapped confidence intervals overlap
with zero (Hampton et al. 2006). Several top models

may be considered separately, or models can be
averaged to arrive at a final model.

The B and C matrices in the final MAR model can be
viewed as a simplified model of the food web structure

(species–species interactions) and its environmental
drivers (species–environment relationships), respective-

ly. These interaction strengths are driven by the
correlation structure in the data and thus their

interpretation is subject to the usual constraints on the
interpretation of statistical correlations. Some identified

relationships may actually be mutual correlations with

an unmeasured environmental driver that was not

included in the model (Hampton et al. 2006), and some

‘‘real’’ interactions between taxa and their drivers may

fail to emerge when they are relatively weak, complex, or

inconsistent. Interpretation can be affected by choices

about grouping taxa into size classes, trophic guilds or

other functional groups, as is common in plankton

studies. For example, the tiny freshwater zooplankton

Ascomorpha ovalis has highly specialized feeding behav-

iors that allow it to exploit large dinoflagellates (Stelzer

1998), a group of algae mostly inedible to other

zooplankton. The otherwise reasonable lumping of A.

ovalis into ‘‘small grazers’’ and large dinoflagellates into

‘‘inedible algae’’ likely would obscure this relationship,

unless these taxa are numerically dominant, in which

case one might reach the generally wrong conclusion

that small grazers thrive on large dinoflagellates.

Similarly, incorrect relationships may emerge in MAR

results when particular taxa act as proxies for unmea-

sured or obscured variables. In cases like these, the

structure and interpretation of the model will rely

crucially on the natural history expertise of the

investigators.

Ecosystem stability metrics from MAR models

In the ecological applications to date, MAR models

have been used primarily to assess interaction strengths

and infer food web structure, but one can also use MAR

modeling to compute stability properties of the system

as a whole. Ives et al. (2003) describe a variety of

different stability metrics, and we highlight three of these

here.

1) The variance of the stationary distribution of

community states relative to the variance of the

process error. This property estimates the variability

of the system at equilibrium relative to the process

error variability that drives the stochasticity and is

determined by the B (species interactions) and the S

(process variances) matrices together. Stability in-

creases as the ratio of the stationary distribution

variance to process variance decreases.

2) The return rate of the system represents how quickly

the community returns to its stochastic equilibrium

after a disturbance. The return rate is determined by

the dominant eigenvalue of the Kronecker product

B�B. Stability increases as return rate increases.

3) The reactivity of the system is an index of a

community’s short-term response to perturbation.

The ‘‘worst case’’ reactivity depends only on the

eigenvalues of the estimated species interaction

matrix B. Stability increases as reactivity decreases.

Even for relatively simple ecological systems, inter-

preting how individual elements of B translate into

stability may be confusing; however, each of the above

metrics offers the advantage of reducing stability to a

single number (with confidence intervals). A further

advantage is that these metrics are not obscured by the
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magnitude of fluctuations. For example, in comparing

the dynamics of a highly variable community and a

community with low variability, one might immediately

conclude that the highly variable community was less

stable. Because the highly variable community might be

simply reflecting a more variable environmental driver

(e.g., temperature), the highly variable community in

reality might be just as stable as the community with low

variation. When relevant environmental drivers are

included in the model, MAR analyses can cut through

this overt variability to characterize the fundamental

stability of the system; e.g., a MAR may reveal that a

community exhibiting more variability is in fact more

robust to perturbation than the community exhibiting

lower variability.

Previous ecological applications of MAR modeling

In ecology, MAR modeling has been used to infer

community dynamics primarily within aquatic sciences.

Freshwater plankton communities have been a focus, in

part due to frequent data collection and the nature of

processing methods (Scheef et al. 2012). Perhaps more

importantly, the information content of these time series

typically is high; because plankton communities are

short-lived, many generations can be represented in a

relatively short study.

Previous MAR modeling of plankton data has

demonstrated the range of ecological topics and

problems that can be addressed using this approach.

Analysis of long-term freshwater plankton data using

MAR modeling has illuminated direct and indirect

pathways through which plankton community dynamics

are driven by keystone species. For example, Ives et al.

(1999) constructed MAR models of plankton dynamics

in a lake where planktivory rates had been manipulated

by adding and removing fish, and found that Daphnia

pulex, an important grazer, strongly influenced other

species in the community through both direct and

indirect interactions. Hampton and Schindler (2006)

discovered an important influence of particular algal

taxa (cryptomonads and picoplankton) on zooplankton

growth that previously had not been considered when

they applied MAR analysis to long-term data from Lake

Washington. Several studies have characterized tight

competitive or predatory linkages within freshwater

plankton communities through MAR analysis. MAR

analyses revealed strong predatory effects of an exotic

fish on the structures of plankton communities in two

Wisconsin lakes (Beisner et al. 2003) as well as strong

grazing effects of zooplankton on primary producers in

Lake Constance (Huber and Gaedke 2006) and lake

mesocosms (Duffy 2007). Use of MAR modeling has

facilitated the detection of competitive release between

plankton groups during pH manipulations in meso-

cosms (Klug et al. 2000) and between Daphnia species

during fungal parasite epidemics in small kettle lakes

(Hall et al. 2009). MAR modeling has been used to

characterize the pathways through which various

environmental factors, such as increasing temperature

(Hampton et al. 2008), dissolved organic carbon and

nutrient levels (Klug and Cottingham 2001), shifting pH

(Fischer et al. 2001), and terrestrial carbon input

(Carpenter et al. 2005) affect freshwater plankton

communities. In these studies, MAR modeling both

reinforced existing hypotheses about food web structure

and suggested new, unexpected relationships among

interacting biota.

In marine systems, there have been several applica-

tions of MAR modeling in fisheries sciences. These

applications used the terminology vector autoregressive

model (VAR), which is the name for a MAR model

without covariates (Eq. 3 minus the c and u) in the

econometrics literature. To the best of our knowledge,

the first uses of MAR modeling to analyze marine

fisheries data were applications involving the forecast of

anchovy and sardine populations in the Mediterranean

Sea (Stergiou 1991, Stergiou and Christou 1996). Since

then, MAR modeling has been used to analyze the

effects of climate and catch prices on fishing effort for

albacore tuna, Chinook salmon, sablefish, and squid in

California’s Monterey Bay (Dalton 2001); to investigate

the ecosystem linkages that affect the carite, croaker,

and honey shrimp fisheries in Trinidad’s Gulf of Paria

(Dhoray and Teelucksingh 2007); to examine fish

declines in the San Francisco Bay estuary (Mac Nally

et al. 2010); to assess the portfolio effect in coral fishes

(Thibaut et al. 2012); and to evaluate the effects of

fishing pressure and environmental fluctuations on

dynamics of commercially important cod (Clupea ha-

rengus) in the Black Sea with additional explorations of

alternative management scenarios (Lindegren et al.

2009).

In terrestrial systems, MAR modeling has had limited

application. MAR modeling has been used to study

lynx-hare dynamics (Vik et al. 2008), to examine the

effects of climate change on insect community dynamics

(Yamamura et al. 2006), and to compare the relative

importance of environmental stochasticity vs. stochas-

ticity driven by interspecific-intraspecific interactions in

rodents (Mutshinda et al. 2009). Given that trophic

interactions and ecosystem stability are of similar

interest across aquatic and terrestrial ecology, and that

long-term data sets are available across systems, the

scarcity of MAR use outside of freshwater ecology may

be due to a lack of familiarity with MAR models and the

ways in which they may be modified when data or

questions do not conform with existing examples in the

ecological literature.

As an illustration, consider the issues encountered

when attempting to make the relatively small leap from

applying MAR modeling with freshwater plankton

systems to doing so with marine plankton systems

(Francis et al. 2012, Scheef et al. 2012; Scheef et al., in

press). In common marine data sets, compared to

freshwater data, the investigator likely will find that

observation error is higher due to both spatiotemporal
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variation in sampling and the more ‘‘open’’ nature of

marine systems. There also may be fewer data points

available for each taxon, with possibly longer and

uneven intervals between collections. These characteris-

tics of multivariate time series are probably representa-

tive of a large number of ecological research programs;

they do not exclude the possibility of applying MAR

modeling, but do necessitate some modifications.

Future directions to broaden MAR usability

and applications

Successfully applying MAR models to a broader

diversity of long-term ecological data will require

extending the MAR framework to explicitly accommo-

date (1) observation error, (2) spatially replicated time

series across large geographic regions, (3) temporally

nonuniform sampling, and (4) reduced autocorrelation

structure, to accommodate varying ‘‘openness’’ of the

system and monitoring schemes with long time lags

between samples. State-space MAR models (MARSS)

offer a framework for dealing with these issues.

MAR models that do not explicitly account for

observation errors (Eq. 3) are limited to data sets where

observation error can be safely ignored (Holmes et al.

2012b). When it cannot be ignored, separating process

error from observation (measurement) error is critical

because ignoring measurement error leads to the well-

known consequence of spurious density dependence

(Shenk et al. 1998, Knape and de Valpine 2012). In a

MAR analysis, this phenomenon manifests as smaller

estimates on the B diagonal when one uses a MAR

analysis without observation error vs. one that includes

observation error in the abundance estimates (see the

Supplement for an example). Similarly, the off-diagonal

terms of the B matrix (the inter-species interaction

terms) tend to be smaller when observation error is

important but not included. State-space MAR models

combine a MAR model with an observation error

model:

yt ¼ Zxt þ Ddt þ vt ð4Þ

where yt are the observations and are modeled as a linear

function of the hidden species abundances, xt, and

optionally environmental factors that affect observation

error, dt. State-space MAR models are widely used in

other fields (e.g., Durbin and Koopman 2012), and have

been successfully employed in fisheries research (e.g.,

Lindegren et al. 2009, Hinrichsen and Holmes 2009).

Although state-space MAR models allow one to include

an observation model and estimate its variance, estima-

tion of the B matrix in the face of unknown observation

error is especially challenging (a fact alluded to in Ives et

al. 2003) and comes at a cost in terms of higher variance

in the B estimates. When measurement error variance is

small relative to process error variance, a ‘‘standard’’

MAR model with no observation error component may

actually improve the overall B estimation.

Where observation error is non-negligible, state-space

models can be tailored to allow the user to maximally

take advantage of the data at hand. For example,

spatially distributed observations (spatial ‘‘replicates’’)

may be used to facilitate the separation of variances, an

approach that has been successful in single-species

process models (Humbert et al. 2009). Conceptually,

this same approach could be applied to multiple species,

treating communities as hierarchical or spatial replicates

in a state-space MAR model. If the focus of inference is

on species interactions, the process model (Eq. 3) could

be constrained to share the B matrix across communi-

ties, with other parameters optionally shared depending

on model assumptions.

State-space MAR models also allow greater flexibility

in addressing temporal aspects of ecosystem dynamics—

accommodating longer time lags in the process model as

well as time-varying parameters. Eq. 3 shows a lag-1

MAR model, where Xt depends on Xt�1. A kth order

MAR model, where Xt depends on Xt�1, Xt�2, . . . Xt�k,

can be re-written as a first-order model by re-defining

the B matrix and X vector (see section 11.3.2 in Tsay

2010). State-space MAR models that include time-

varying parameters are known more commonly as

dynamic linear models (Shumway and Stoffer 2006).

The ability to incorporate time-varying interactions in

MAR models may be especially interesting to ecologists,

recognizing that species interactions may change with

species density, indirect effects, priority effects, a

changing environment (Kordas and Dudgeon 2011), or

through evolutionary change that occurs on ecologically

relevant time scales (Hairston et al. 2005).

Using MAR modeling

Just as linear regression remains valuable to ecolo-

gists, even though more complex analytical tools are

increasingly available, a standard MAR model will be

useful in a variety of cases where the MARSS

configuration is unnecessary or inappropriate. Two R

packages have been developed that lower the technical

barriers to fitting MAR and MARSS models to

ecological data. The MAR1 R package (Scheef 2013)

performs all aspects of fitting a MAR model to time

series data and includes routines to do the critical model

search steps. The Supplement shows complete worked

examples, including an example of fitting a model with

observation error. For fitting MAR state-space models,

the MARSS R package is available and the user guide

(Holmes et al. 2012a) includes many ecological case

studies involving multivariate process models, including

lag-p models, with various observation models and a

worked example of estimating interactions strengths

with error-ridden species and covariate data.

MAR modeling provides a framework for inferring

community structure, dynamics, stability and identifying

environmental drivers using long-term time series data.

With the maturation of many long-term ecological data

sets across ecosystems worldwide, MAR modeling is a
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method that should be broadly useful, particularly as

new tools make it easier for ecologists to fit these models
and modifications accommodate a greater diversity of

ecological data sets and questions.
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