
In response to Ellison (2003): an alternate explanation of frequentist versus 
Bayesian inference 
 
Ellison (2003) argues that the fundamental difference between frequentist and Bayesian 
statistics is the view of probability as proportions (frequencies) versus viewing 
probability as subjective belief.  For many non-Bayesians, I think this statement will be 
misleading or at least apt to be misunderstood.  Bayesian statistics is widely used in the 
hard sciences, such as physics, signal analysis, and astronomy.  It is not a “soft” 
subjective branch of statistics, rather it provides a way of making “reverse” inference: 
working backwards from a particular observation to put weights on the models (or 
parameters) that could have produced that observation.  It is a method for solving the 
‘optimal decision making’ problem, that is to figure out the odds that the optimal rational 
player would put on different model parameters if they had to place bets.  It is solving not 
the problem “what is the frequency of my data under a particular set of parameters (the 
hypothesis)” but rather “what is the optimal odds function for the parameter given the 
data”? 
 
The following are different statements of the basic difference from two physicists posting 
on the sci.physics.research listserv.   

“The basic difference between Bayesians and frequentists is this: 
Bayesians condition on the data actually observed, and consider the 
probability distribution on the hypotheses; they believe it reasonable to put 
probability distributions on hypotheses and they behave accordingly. 
Frequentists condition on a hypothesis of choice and consider the 
probability distribution on the data, whether observed or not; they do not 
think it reasonable to put probability distributions on hypotheses (in their 
opinion, one hypothesis is true, the rest are false, even if we do not know 
which is the case), and they behave accordingly.”  Bill Jeffreys, U Texas. 
 
“The frequentist fixes the true value of the parameter, and calculates from 
that a probability distribution for the data.  The philosophy here is that the 
parameter must have a true value, even though we happen to be ignorant 
of it, but the data could be any number of things, even though we happen 
to have gotten one particular thing this time. This fits in with thinking of 
probabilities as relative frequencies of data in hypothetical ensembles. 
 
The Bayesian fixes the true value of the data, and calculates from that a 
probability distribution for the parameter.  The philosophy here is that we 
know what the data is, even though we might just as easily have gotten 
something else, but we are in ignorance about what the parameter is, even 
if we agree that the parameter does have a precise value. This fits in with 
thinking of probabilities as degrees of belief concerning unknown facts.” 
Toby Bartels, UC Riverside 

 
These statements better reflect how I think about the differences between frequentist and 
Bayesian inference.  Here I delve into these ideas more in depth and explore how I think 



about Bayesian inference versus frequentist inference.  I’m neither a Bayesian nor a 
frequentist, and this discussion is meant to be entirely pedagogical rather than 
persuasive.1 
 
Inference about random variables2 
Both frequentist and Bayesian inference are based on inductive inference, inference based 
on observations of random events.  “The majority of species on earth are in the class 
Insecta.  Given a randomly selected species, it’s probably an insect.” is an example of 
inductive inference.  In its inherent uncertainty, it differs from deductive inference in 
which inferences must logically follow with certainty.  “No insects are mammals.  A 
beetle is an insect.  Therefore a beetle is not a mammal.”  However, Bayesian and 
frequentist differ in the type of inductive reason they use.  Before describing the 
difference, I need to define some terminology about random occurrences (whether 
frequentist or Bayesian):  
 

frequency:  the fraction of times an event occurs in a really large set of identical 
replicates.  Although it’s easy to describe frequency with this physical analogy, 
it’s really a conceptual idea that puts a quantitative ‘weight’ on the occurrence of 
different data.  It’s not really possible to replicate all the conditions under which 
the data were generated, yet we can still think about this conceptually.  Some type 
of conditional is almost always stated (or implied): “the frequency of A given I do 
my data collection in a particular way” or “frequency of A given model B true”. 
 
odds:  Assume I observe some outcome x.  Let the frequency with which model A 
produces x be a, and the frequency with which model B produces x be b,  I’ll refer 
to the ratio of a to b as the odds of A to B.  The odds function is a relative 
measure (a to b) so can be normalized (divided by) a constant without loss of 
meaning.  If a/b is big, it implies that A is more credible than B.  It says nothing 
about the absolute frequency with which x appears under A or B. 

 

                                                 
1 This discussion is directed to those who are more familiar with the frequentist view of statistics.  It’s my 
attempt to help those folks get past “wrong, wrong, wrong” when they hear Bayesian statisticians describe 
things, and get to “oh, that’s what’s they’re doing.”  This discussion will be largely non-mathematical.  
There are ample references for math elsewhere.  For other perspectives written for ecologists see Hilborn & 
Mangel 1997, chap 1; Ellison 2003; Lewin-Koh et al. 2004; Goodman 2004.  Note, it’s not my intent to 
persuade anyone of what statistics to use since I have no idea what questions my reader thinks about and 
how my reader prefers to tackle questions.  My impression from following engineering and physics 
listservs is that some stick with a Bayesian or frequentist approach uniformly, while others choose their 
approach depending on the objective at hand and which approach is more facile and widely accepted for 
said objective.  I tend to take the latter approach, except that unlike many Bayesians, I take a very critical 
view of what constitutes a proper prior, in fact the priors I would acceptable are closer to what frequentists 
would accept – even if I use the prior in an entirely Bayesian way to solve P(param|data) and defining 
probability as the ‘optimal rational player function’.  As opposed to using Bayes theorem, to solve the 
frequentist question P(data|param) and defining probability as the ‘frequency of N’.  Isn’t there just one 
probability? No, there are a multitude.  A probability is a construct that obeys the axioms of probability 
theory.  But I’m getting ahead of myself….   
2 My thinking on this has been influenced by Jayne’s “Probability theory: the logic of science” chap 1 
(http://bayes.wustl.edu/etj/prob/book.pdf) and Polya’s books on plausible reasoning.   



I will avoid use of the term ‘probability’ since frequentists and Bayesian statisticians use 
terminology differently, and this leads to endless confusion when trying to talk about 
both statistical approaches at the same time3.   
 
Frequentist statistics bases inference on frequency and is concerned with defining the 
hypotheses under which the observed data would occur with low frequency.  Those 
hypotheses can then be rejected:  
 

A implies that x is unlikely (low frequency) 
x is true 
A not credible 

 
Bayesian statistics uses inductive inference based on the odds, and it is concerned with 
the estimating the relative frequency of the data x under different hypotheses: 
 

A implies that x occurs with frequency a 
B implies that x occurs with frequency b 
x is true 
The odds of A being true to B being true are a to b 
If a >> b, it means A is more credible than B (all else being equal4). 

 
Frequentist methods are focused on rejecting hypotheses that are outright unlikely to have 
produced the observed data.  Bayesian methods are focused on the relative frequency 
with which different hypotheses produce the same observed data.  This relative 
frequency, which in Bayesian statistics appears in the form of the ratio of likelihoods (or 
summations of likelihoods), is a measure of the data support5.  Whether the observed data 
are infrequent under the hypotheses is irrelevant.  If this last statement is puzzling, 
remember that in Bayesian inference, the support that data confer on hypotheses is based 
on measures of relative frequency of the data under those hypotheses.   
 
Why does frequentist and Bayesian inference work? 
Here’s one simple, simple explanation that you’ll find from philosophy of logic6. 
 
Suppose you have some set of empirically distinguishable hypotheses, one of which, ht, is 
true (but we don’t know which).  Let fi be the frequency of x if hi is true.  The weak law 
of large numbers [convergence in distribution] tells us that as the sample size of x goes to 
infinity, fi for all hi untrue goes to 0.  Thus only the true hypothesis remains.  This is why 
frequentist inference works.  Collect enough data, eventually all untrue hypotheses are 
rejected and but the true hypothesis isn’t. 
 

                                                 
3 For a mind-twisting essay on what probability actually means, check out 
http://plato.stanford.edu/archives/sum2003/entries/probability-interpret/#3.5 
4 Yes, I’ve left out the prior.  I know that. 
5 What about priors?(!)  I’ll get to that later. 
6 http://plato.stanford.edu/entries/logic-inductive/ 



Suppose again you have some set of empirically distinguishable hypotheses, one of 
which, ht, is true (but we don’t know which).  Let fi be the frequency of x given hi true.  
Once again, the weak law of large numbers tell us that as the sample size of x goes to 
infinity, the odds on ht relative to the untrue hypotheses go to infinity.  This is why 
Bayesian inference works.  Collect enough data, eventually only the true hypothesis has 
non-zero odds. 
 
The reverse inference problem: the importance of priors 
In the reverse inference problem, you want to make inference about whether A or B is 
true given some observed data, x.  What you know is that if A is true, x will be observed 
pa% of the time, while if B is true, x will be observed pb% of the time.  What are the odds 
of A being true versus B being true?  You know that one is true, you just don’t know 
which one.  So diagrammatically if we denote the frequency of x as f(x): 
 

A  f(x|A) = pa  f(not x) = 1-pa 
 
B  f(x|B) = pb  f(not x) = 1-pb 

 
Let’s say that x is the result of a coin toss from a coin your friend just pulled out of his 
pocket.  x = heads.  The question is whether the coin (which you didn’t examine) is A, 
two-sided with heads on one side and tails on the other, or B, heads on both sides.  Now 
pb/pa = 2.  So are the correct odds, that the coin is two-headed versus normal 2-to-1?  Of 
course not.  I’ve never seen a two-headed coin in my life, and unless I have reason to 
suspect trickery on my friend’s part, my prior assumption is that it’s really unlikely the 
coin is two-headed.  The odds have to include a prior assumption about the odds on A 
versus B:   
 

[1] (new odds on B versus A given x) = (prior odds on B vs A) x 
a

b

p
p

 

 
In this case, my prior odds on two-headed vs. two-sided are really small, and my new 
odds are still highly in favor of two-sidedness.  Just observation of one head, isn’t enough 
to overcome my prior assumption about the severe unlikelihood of a two-headed coin. 
 
What if my friend proceeded to do 20 more flips in a row and each and every one came 
up heads?  Now I start to get suspicious.  I’m not sure that there isn’t something fishy 
about the coin.  The data are forcing me to update my assumptions about the coin.  My 
friend then proceeds to do 500 flips and all are heads.  At this point, I know there is 
something fishy about the coin.  The odds I put on it being two-headed versus two-sided 
are overwhelming. 
 
If you hadn’t figured it out already, Eq. 1 is Bayes theorem (rearranged a bit) used in a 
Bayesian way7:  the prior odds are the ratio of the so called prior probability of B, π(B), 

                                                 
7 By that I mean, the type of coin was not a random variable.  I could have said that my friend reached into 
a bag of 100 coins and pulled one out, flipped it, and it was heads.  Could I reject the hypothesis that the 



to the prior probability of A, π(A).  I used the term ‘odds’ so that the frequentist 
definition of ‘probability’ = ‘frequency’ would not automatically throw my frequentist 
reader off track.  When I’m feeling particularly rebellious against Bayesian ‘probability’, 
I just think of π(B) as the ‘odds on B’/(‘odds on B’ + ‘odds on A’).  Yet despite my 
strong comfort with the frequentist definition of probability, when I wrote this, my 
natural inclination was to write ‘what is the probability that the coin is two-headed?’ even 
though in this example the coin is either two-headed or not and its type is not a random 
variable in the frequentist sense.   
 
Epilogue: I ask my friend to show me the coin, and it is a completely normal two-sided 
coin.  Turns out my friend could do even or odd flips at will and simply looked at the top 
of the coin before flipping8. 
 
Translation of common Bayesian/frequentist arguments 
There are few common examples that Bayesians use to convince frequentists the error of 
their ways.  These examples invariably leave frequentists saying ‘wrong’, ‘wrong’, 
‘wrong’ and the Bayesian amazed and astounded that the frequentist can hold such 
bizarre views.  This is my top three list of Bayesian arguments that leave frequentists 
dumb-founded, along with my attempt at translation for both. 
 
1.  The coin-flipping example 
A friend reports to me that he flipped a coin 12 times, obtaining 9 heads and 3 tails. He 
asks, is the coin fair or not? The frequentist calculate the tail area, i.e., the proportion of 
times one would get 9 or more heads in 12 flips (in an *infinite* series of identical 12-
flip trials), given that the coin is fair. Pr(heads >= 9 in 12 flips) = 0.075, which is not 
rejected at the 5% level (2-tailed test). I report this to my friend. 
 
But my friend tells me I have done this wrong. The reason is, that instead of deciding in 
advance to toss the coin 12 times and record the number of heads and tails, he decided in 
advance to toss the coin until he obtained 3 tails, and to record the number of heads and 
the total number of tosses. The probability is now different since we have a waiting time 
problem (negative binomial) Pr(# flips to get to 3 tails >= 12) = 0.0325, which is rejected 
at the 5% level. 
 
To the Bayesian, this is sheer nonsense.  The analysis changed depending on what was in 
your friends head even though the actual data are the same!  With a Bayesian analysis, 
the posterior on p=1/2 is the same regardless of how your friend flipped.   
 
                                                                                                                                                 
bag has only two-headed coins at the α level?  Now the coin type is a random variable, and knowing the 
number of coins in the bag, I can clearly talk about the probability, in a frequentist way, that the coin is 
two-headed.  To solve this problem, I use Bayes theorem but as a frequentist and I’m asking about the 
frequency of coin types in the bag. 
8 If as a frequentist, you’re inclined to say ‘ha, this shows the problem with Bayesian statistics’, I would 
like to point out that the frequentist would have rejected the hypothesis that the coin is two-sided.  The 
problem is not the method of statistical inference, but rather the formulation of the possible hypotheses in 
the first place which should have been more specific: ‘two-sided and random-flipping’.  Careful and proper 
formulation of hypotheses/models is important for statistical analysis, period. 



Translation: 
The goal of the frequentist’s experiment was to test the null hypothesis.  The absolute 
frequently with which the data occur under the experiment is critical to the frequentist.  If 
the observed data occur easily, then the null cannot be rejected.  In the case of the coin 
flipping, the absolute frequency of 3 tails out of 12 is higher if you flip until you get to 3 
tails versus if you just flip to 12.  That’s why the frequentist rejects under one type of 
coin flipping and not the other.  Testing null hypotheses may seem weird to some 
Bayesians, but there is a long tradition within empirical fields for doing science this way 
and this really is what some scientists intend with a particular experimental test. 

 
Although, Bayesians often use this example to argue that Bayesian statistics conditions 
only on the data, this is not true.  The likelihood function depends not only on the data 
but also how the data were collected.  The likelihood for p=1/2 is different in the two 
experiments.  It’s just that in this particular case the likelihood differs by a constant.  This 
constant falls out when we take the likelihood ratio, and the Bayesian is concerned with 
the ratios of the frequency of data (likelihood ratio) not absolute frequency. If my friend 
instead said, actually I can determine whether the coin lands head or tail and I decided 
ahead of time to flip 12 times with 3 tails, well, clearly the Bayesian analysis will must be 
changed – based on what was in the friends head.  In this case, the likelihood is 
independent of p and the data provide no information on the value of p. 
 
2. People want to know the probability that the parameter is in a particular interval, 
thus Bayesian inference is more natural and thus superior. 
 
The frequentist is likely to grumble that people want significant results but does not mean 
we should adjust our statistical framework to provide this. 
 
Translation: 
When Bayesians use this argument they are usually referring to the frequent mis-
interpretation of frequentist confidence intervals as a statement about where the 
parameter is likely to be.  Frequentist CIs are supposed to be interpreted relative to the 
null hypothesis test statistic only9.  If they do not cover the null, reject the null.  One 
example, the Bayesians like to bring up is that the CIs for the mass of the neutrino 
include negative values.  However, to the frequentist the CI is not a statement about the 
true mass of the neutrino, it’s statement about whether we can reject the hypothesis that 
the neutrino’s mass is 0 (or whatever the null is).  It’s a statement about the power of the 
experiment to reject the null. 
 
Bayesians are right that scientists often need to estimate parameters of models.  The 
Bayesian or likelihood (if you’re allergic to priors) framework is a natural way to do this 
and to show parameter estimation uncertainty in a uniform framework.  Frequentist 
statistics isn’t designed for that.  Just like Bayesian statistics isn’t designed for rejecting 

                                                 
9 There is a rather subtle, and I would say, fascinating difference between correct versus accurate 
frequentist CIs.  Correct CIs show proper coverage: CI (a random variable) covers true parameter (1-α)% 
of the time.  Accurate CIs do that plus they properly show the observed data’s power to reject the null 
hypothesis.  See appendix so some references and discussion about this.   



hypotheses.  It’s true that when using Bayesian approaches you have to be careful to 
make sure that the candidate model(s) can actually produce your data; otherwise, you get 
the best parameter estimates for a bad model and your predictions will be bad.  But good 
model selection is an integral part of proper practice in Bayesian statistics, and all texts 
discuss this. 
 
While Bayesians are right that their framework is more, often much more, facile for 
specifying parameter estimation uncertainty, it often seems that Bayesian proponents are 
unaware that many scientists do experimental science where they have no underlying 
model.  I was at talk by Mary Power the other day.  It was on some experimental tests of 
stream ecosystem functioning and the idea was to test the response of various ecosystem 
components to addition or removal of particular elements.  This was an experiment to test 
whether there was an effect.  How do you write this down as a parameter estimation 
problem and why would one want to?  Frequentist statistics allows one to analyze this 
experiment without specifying the underlying model.  We can ask ‘Is the mean 
significantly different?’ – without having to specify any likelihood functions.  I should 
note that I have discussed this with Bayesians, and they always insist that classical tests 
(such as some type of ANOVA) do assume a model for the data and thus a likelihood 
function.  I have never been successful at arguing that classical frequentist approaches are 
‘model-free’ and that maximum-likelihood estimation is philosophically controversial for 
similar reasons as Bayesian statistics – that being that a model is being assumed when the 
underlying model is unknown. 
 
3. The bad statistician argument 
Both Bayesians and frequentists like to bring up examples that show how each side is 
fatally flawed.  The examples typically involve what would be considered poor statistical 
practice within each respective field. 
 
 

In summary, frequentist or Bayesian? 
Surprising as this may be to my Bayesian friends, I often feel the need to ask ‘What is the 
frequency of my data under a null hypothesis?’  Frequentist confidence intervals is the 
natural way (for me) to do this – even if there is a Bayesian equivalent.  I have clear 
understanding of what the frequentist CI means and that’s what I want to answer this 
question.  At the same time, I have to do projections, i.e. to estimate where the population 
will be in the future.  For this question, estimation, the Bayesian approach feels right.  I 
want a measure of data support for different parameters values and I want to weight or 
average10 those values in an appropriate way and weighting by the posterior or by the 
likelihood ratio is well supported.  The question I am still trying to understand is whether 
to use likelihood ratios alone or to use them in a Bayesian construct with a prior.  
Currently it’s difficult for me to conceive of the meaning of the likelihood ratio in an 
absolute way without reference to a prior.   
 
But both frequentist and Bayesian statistics seems to me to involve a ‘hand-waving’ step: 
for frequentists this is the ‘consistent as n goes to infinity’ step since n is never infinite.  
                                                 
10 I can imagine weighting versus averaging depending on the exact needs of the analysis. 



For Bayesians, the hand-waving is in prior specification - typically.  Usually people 
specify vague priors and say that that’s ok as long as the prior doesn’t influence the 
posterior.  Each statistical camp seems to view the other’s hand-waving step as fatal.   
 

If Bayesian, subjective versus objective? 
At first glance this may seem like a no-brainer.  Obviously, we want to be objective and 
“let only the data speak!”  Before taking such a rigid position, let me describe an example 
of how subjective priors have been used to help interpret experiments to measure the 
mass of the neutrino (from Efron’s 2005 lecture, “Bayesians, Frequentists, and 
Physicists”).  The mass of a neutrino is really small, close to 0, and when physicists 
measure it the estimates come up negative about half the time due to measurement error.  
If the estimate is sufficiently negative, then the classically calculated confidence intervals 
are entirely negative; the upper bound on the mass of the neutrino is negative.  There is 
nothing incorrect about this since the definition of a α-CI is “if the CI is constructed with 
such a procedure, (1-α)% of the constructed CIs will contain the true value.”  It should be 
pretty clear that the entirely negative CIs are one of those 5% of cases where the CI 
doesn’t include the true value.  Correctness notwithstanding, physicists found CIs that 
only include patently impossible values for the mass of the neutrino to be unsatisfying.  
In a Bayesian analysis, one can easily incorporate restriction on the mass of the neutrino 
by specifying a prior with 0 weight in negative masses.  What you get from the Bayesian 
analysis is a “credible interval” in which (1-α)% of the area of the likelihood function is 
found.  It never goes negative.  You’ve gained a consistent measure of data support for 
the neutrino mass given the experimentally measured value.  Note though you’ve given 
up the notion of an interval in which the true parameter appears with fixed frequency11 
 
Ok, so that’s a little example of an informative prior based on physical constraints.  One 
can easily come up with lots of examples like that.  However, physicists also argue for 
the importance of subjective priors in the process of scientific discovery.  The idea is that 
a scientist (of any statistical bent) does an experiment (or otherwise acquires data), and 
then analyzes that data and decides on the next step.  That decision on the next step is 
based on the scientist’s prior beliefs.  Think of the situation of a group of physicists 
talking about the results of their neutrino experiment and discussing how to design the 
next experiment.  If you imagine that discussion, it’s got involve how the results of this 
experiment updated whatever prior beliefs (based on theory, logical arguments, prior 
experiments) that they have about the mass of the neutrino.  But just because you use 
Bayesian statistics with subjective priors to help you in the process of scientific discovery 
doesn’t require that you publish results with CIs calculated using priors – you might still 
argue that it’s proper to do just likelihood profiles (say) of some sort.  Some arguments12  
for a mixed approach are Feldman & Cousins (1998) and Efron (2005) [I’m positive there 
are lots more pertinent ones, Berger?]. 

                                                 
11 It’s important to remember that Bayesian (1−α) credible intervals are not the same as frequentist 
confidence intervals.  A (1-α) credible interval will NOT cover, in general, the true value (1-α)% of the 
time (cf Feldman & Cousins 1998 article on a unified approach to frequentist CI construction for example).  
Rather it is a statement about the RELATIVE probability of the data if the parameter is in the credible 
interval versus not in the interval (modified appropriately by the prior weight that you put on this ratio). 
12 There are many out there and these are probably not the best, nonetheless. 




