EM algorithm for maximum likelihood estimation given corrupted observations.

Introduction

EM algorithms extend likelihood estimation to cases with hidden states, such as when observations are corrupted and the true population size is unobserved.  The following EM algorithm is based on the summary by Ghahramani and Hinton (1996) of the algorithm originally by Shumway and Stoffer (1982) for estimating the parameters of linear dynamical systems from corrupted observations.  The algorithm consists of an estimation step (“E step”), which estimates the true state using a Kalman-Rauch filter, combined with a measurement step (“M step”), which gives the maximum likelihood estimates of the parameters given the data and the estimate of the true state.

EM algorithms and the Kalman filter are well-known and heavily used in engineering and computer science applications.  For some general background on EM algorithms the reader is referred to McLachlan (1996) and to Harvey (1991) for EM algorithms for time series data.  There are a multitude of books on the Kalman filter.  One of the more penetrable introductions is chapter 1 of Maybeck (1979).

This presentation of an EM algorithm closely follows Ghahramani and Hinton’s notation and derivation but adapts and extends it to the stochastic population model case.  

The state-space model

The diffusion approximation for a stochastic exponential growth model can be written as a linear state space model (written in the notation familiar in the engineering literature):
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where xt = log Nt is the true log population size and yt = log Ot is the log observations of the population size.  B is , the mean population growth rate.  Q is the 2, otherwise known as the process error or environmental variability.  R is the variability associated with sampling error or other non-process error.  Only yt, is observed; the underlying parameters, B, Q, and R, and the underlying true population size, xt, is hidden.  If we make the assumption that vt is normally distributed, then the model is a linear Gaussian state-space model, and we can use the algorithm by Shumway and Stoffer (1982) for estimating the parameters of the state-space model from yt alone.

From Eqns. 1 and 2 and the assumption that f( ) is normal, we can write the following conditional probabilities:
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Given Eqn. 1 and that we are essentially observing an ongoing stochastic process, which we happen to begin observing at t = 1, then x1 is itself a random variable that is normally distributed with some mean 1 and variance V1, and thus
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Using the Markov property implicit in the model, the joint probability of the observed time series, 
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The joint log likelihood of 
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The goal is to find the estimates of xt, B, R, Q, 1 and V1 that maximize log P(
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The EM algorithm

This EM algorithm, an extension of the Shumway and Stoffer (1982) algorithm, has four basic steps:

0) Compute some initial parameter estimates,
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, from which to start the algorithm.

1) Generate an estimate of xt by estimating 
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 using the Kalman-Raush recursion which gives the maximum likelihood estimates of 
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, and yt.  The maximum likelihood estimate of 
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2) Update the 
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3) Check to see if  has converged and no longer increases.  If not converged, return to step 1.

Writing out and describing the algorithm is rather tedious and long, however the actual code is quite trivial and encompasses about a page of text, minus the comments.  Matlab code is given at the end of this write-up.

Step 0.  Compute initial parameter estimates

To get good final estimates one needs to start the algorithm with reasonable initial parameter estimates.  I use the following initial estimates which are based on the parameter estimates presented in Holmes and Fagan (2002):
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The estimate of 
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 is based on the estimate of the non-process error presented briefly in the appendix of Holmes and Fagan (2002).  Initial estimates of 1 and V1 are also needed.  I used 
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Step 1.  The Kalman-Raush recursion

The first part uses the Kalman recursion to estimate 
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.  This is a forward recursion since we work forward to generate it.  The second part uses the Raush recursion to work backwards and compute 
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.  First, some notation:
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The ultimate goal of these recursions is to compute 
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, Pt, and Pt,t-1, which will be needed for step 2 of the algorithm.

The Kalman recursion

To compute 
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This is the well-known Kalman filter, but it looks a little different than what you’ll see in engineering texts.  First generally it is assumed that yt is a series of measurements from multiple instruments, thus the Kalman filter is always written in matrix form.  Here since yt is one measurement, it can be written in scalar form.  Second, the Kalman filter is usually presented for the model 
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.  In this application, A=1, C=1 and ut =1, so the filter is simplified quite a bit.

The Rauch recursion

Next we work backwards from t = T back to t =  2, to compute 
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One more recursion

Using Jt from the Rauch recursion with Kt and 
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Putting it all together

Using the three recursions, we can then compute the following, which are needed for step 2 of the algorithm.
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Step 2 Generate new parameter estimates

The new expected log likelihood function is given by Eqn. 7 with the new xt estimate, 
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To compute the new parameter estimates, we find the new 
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 that maximize the new .  To do this, we take the partial derivative of  with respect to each parameter, set the derivative to zero and solve for the maximizing parameter:
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Step 3 Check for convergence

A simple way to do this is to compare the new  to the previously estimated  and check if the difference is less than some threshold.  Once the log likelihood converges, you’re done.
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Matlab code

function [B, Q, R, initx, V1, LL] = PVAKalman(logdata)

%PVAKalman Find the ML parameters of a stochastic corrupted exponential growth 

%time series using EM

%

% [B, Q, R, initx, initV, LL] = PVAKalman(logdata)

% fits the parameters which are defined as follows

%   x(t+1) = x(t) + B + w(t), w ~ N(0, Q), x(0) ~ N(initx, initV)

%   y(t)   = x(t) + v(t), v ~ N(0,R)

% logdata(t) is a 1 x (1:T) vector of the logged observations; no missing years

% LL is the vector of the log likelihood values at each iteration; the idea is 

% to maximize this.

%

% The algorithm used here is an extension of the method described in 

% Shumway, R. H. and Stoffer, D.S. 1982. An approach to time series smoothing and 

%forecasting using the EM algorithm.  Journal of Time Series Analysis 3(4): 253-264.

% which is described in Ghahramani, Z. and Hinton, G.E. 1996. Parameter Estimation 

%for LDS.  U. Toronto technical report CRG-TR-96-2.

% The notation used here follows Ghahramani and Hinton except that I drop the 

%"new" subscripts.

%STEP 0 set the initial estimates

%Initialize by getting D-H estimates

T=length(logdata);

data=exp(logdata);

runsum = data(1:(T-3))+data(2:(T-2))+data(3:(T-1))+data(4:T);

B = mean(log(runsum(2:end)./runsum(1:(end-1))));

totvar = var(logdata(2:end)-logdata(1:(end-1)));

Q = (1/3)*(var(log(runsum(4:end)./runsum(1:(end-3))))-...

   var(log(runsum(2:end)./runsum(1:(end-1)))));

if(Q < 0) Q = 0.0001; end

R = (totvar - Q)/2;

if(R < 0) R = 0.0001; end

initx = logdata(1); %pi is Ghahramani and Hinton's notation, but pi reserved

V1 = 0.1; %variance of initx

y = logdata;

LL=[];

converged = 0;

previous_loglik = -Inf;

max_iter = 500;

num_iter = 0;

%run until the max log likelihood is found

while ~converged & (num_iter <= max_iter)

%STEP 1 using these initial estimates generate an estimate of x(t)

%using a forward and backward pass of the Kalman filter.  This gives

%you the ML estimate of x(t) given y(1:T) and the parameter estimates.

%initialize

xtt=zeros(1,T);  Vtt=zeros(1,T); xtt1=zeros(1,T); Vtt1=zeros(1,T);

xtT=zeros(1,T);  VtT=zeros(1,T); J=zeros(1,T); Vtt1T=zeros(1,T);

%forward pass gets you E[x(t) given y(1:t)]

x10=initx;  

V10=V1; 

for(t=1:T)

   if(t==1)

   
xtt1(1) = initx; %denotes x_1^0

      Vtt1(1) = V1; %denotes V_1^0

   else

      xtt1(t) = xtt(t-1) + B; %xtt1 denotes x_t^(t-1)

      Vtt1(t) = Vtt(t-1) + Q;

   end

   Kt = Vtt1(t)/(Vtt1(t)+R);

   xtt(t) = xtt1(t) + Kt*(y(t) - xtt1(t));

   Vtt(t) = Vtt1(t)-Kt*Vtt1(t);

end

KT = Kt;

%backward pass gets you E[x(t)|y(1:T)] from E[x(t)|y(1:t)]

xtT(T) = xtt(T);

VtT(T) = Vtt(T);

for(t=T:-1:2)

   J(t-1) = Vtt(t-1)/Vtt1(t);

   xtT(t-1) = xtt(t-1) + J(t-1)*(xtT(t)-(xtt(t-1)+B));

   VtT(t-1) = Vtt(t-1) + J(t-1)*(VtT(t)-Vtt1(t))*J(t-1);

end

xhat = xtT; %estimate of x(t)

Pt = VtT + xtT.*xtT; %E(x^2 | y]

%run another backward recursion to get E[x(t)x(t-1)|y(T)]

Vtt1T(T) = (1 - KT)*Vtt(T-1); %this is Var(x(T)x(T-1)|y(T))

for(t=T:-1:3)

   Vtt1T(t-1) = Vtt(t-1)*J(t-2) + J(t-1)*(Vtt1T(t)-Vtt(t-1))*J(t-2);

end

Ptt1=[NaN Vtt1T(2:T)+xtT(2:T).*xtT(1:(T-1))]; %Ptt1(1) = NA since 1-1 = 0

%Calculate negative log likelihood for this xhat + B,Q,R,initx,initV1 combo

loglik = - sum((y-xhat).^2)/(2*R) - T*log(abs(R))/2 ...

   - sum((xhat(2:T)-(xhat(1:(T-1))+B)).^2)/(2*Q) - (T-1)*log(abs(Q))/2 ...

   - (xhat(1)-initx)^2/(2*V1) - log(abs(V1))/2 - T*log(2*pi);

LL=[LL loglik];

%STEP 2 Re-estimate B,Q,R,initx,initV1 via ML given x(t) estimate

R = (1/T)*sum(y.*y - xhat.*y);

B = (xhat(T)-xhat(1))/(T-1);

Q = sum(Pt(2:T) - 2*Ptt1(2:T) + Pt(1:(T-1)) - B^2)/(T-1);

initx = xhat(1);

V1 = Pt(1)-xhat(1)*xhat(1);

%STEP 3 check for convergence

num_iter = num_iter+1;

converged = em_converged(loglik, previous_loglik); %subfunction below

previous_loglik = loglik;

end %while not converged

function converged = em_converged(loglik, previous_loglik, threshold)

% EM_CONVERGED Has EM converged?

% [converged, decrease] = em_converged(loglik, previous_loglik, threshold)

%

% We have converged if

%   |f(t) - f(t-1)| / avg < threshold,

% where avg = (|f(t)| + |f(t-1)|)/2 and f is log lik.

% threshold defaults to 1e-4.

% This stopping criterion is from Numerical Recipes in C p423

if nargin < 3

  threshold = 1e-4;

end

%log likelihood should increase

if loglik - previous_loglik < -1e-3 % allow for a little imprecision

  fprintf(1, '******likelihood decreased from %6.4f to %6.4f!\n', previous_loglik, loglik);

end

delta_loglik = abs(loglik - previous_loglik);

avg_loglik = (abs(loglik) + abs(previous_loglik) + eps)/2;

if (delta_loglik / avg_loglik) < threshold

   converged = 1; 

else converged = 0; end
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