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Abstract. The Pareto Optimal Model Assessment Cycle (POMAC), a multiple-criteria
model assessment methodology, is described for exploring uncertainty in the relationships
between ecological theory, model structure, and assessment data. Model performance is
optimized to satisfy, simultaneously, each component of a vector of assessment criteria
(model outputs), rather than the usual procedure of optimizing performance with respect
to a single criterion. Pareto Optimality is used to define the vector optimization. The Pareto
Optimal Set reveals which combinations of assessment criteria the model can satisfy si-
multaneously. Binary interval error measures, which classify whether a parameterization
result is within an acceptable range of values, are defined for each criterion. Their use
masks small differences in the performance of different parameterizations, allowing the
Pareto Optimal Set to reveal conflicts in ability to achieve simultaneously different col-
lections of criteria.

POMAC improves the researcher’s ability to detect deficiencies and locate their sources.
It is more stringent and informative than traditional model assessment procedures because
it uses multiple criteria without weighting and aggregating them. The Pareto Optimal Set
reveals the presence of deficiencies through the model’s inability to satisfy all the criteria
simultaneously. POMAC then guides the researcher in locating deficiencies in: inadequate
selection of component ecological hypotheses underlying the model, inadequate mathe-
matical representations of these hypotheses, inadequate parameterization, poor selection
and formulation of the assessment criteria, or combinations of these. In an example, POMAC
is applied to the spatially explicit canopy competition model WHORL using ten assessment
criteria. Each criterion was selected to provide information on different aspects of WHORL’s
functioning: three stand height distribution criteria, three crown morphology criteria, and
four criteria focusing on stand competition’s characteristic differentiation of growth rates.
The Pareto Optimal Set was generated using simulated evolution optimization. POMAC
revealed deficiencies in both the model structure and its assessment criteria, leading to an
improved model and better understanding of its effective domain.

Key words: binary error measures; canopy competition; evolutionary computation; genetic
algorithms; individual based models; model assessment; model validation; multiple criteria; Pareto
Optimality; POMAC; simulated evolution; WHORL.

INTRODUCTION

Complex simulation models of ecological processes
are increasingly constructed for use in both the devel-
opment of ecological theory (e.g., Pacala and Deutsch-
man 1995, Fitz et al. 1996) and the analysis of envi-
ronmental questions (e.g., Ågren et al. 1991, Landsberg
et al. 1991, McMurtrie and Comins 1996, Schimel et
al. 1997). Such models can never be validated due to
the limited observation of system dynamics (Oreskes
et al. 1994, Rykiel 1996). They can, however, be as-
sessed to investigate deficiencies in the relationships
they define between ecological theory, model structure,
and assessment data. We propose a methodology for
this assessment.

There are four potential deficiency sources in an eco-

Manuscript received 17 December 1996; revised 25 No-
vember 1997; accepted 19 January 1998.

3 Present address: Department of Statistics, Box 35-4322,
University of Washington, Seattle, Washington 98195 USA.

logical process model, each associated with a different
phase of the modeling activity: inadequate selection of
the component ecological hypotheses (an incorrect pro-
cess structure), inadequate mathematical representation
of these hypotheses (an incorrect mathematical struc-
ture), inadequate fitting procedure (a faulty parame-
terization), and inadequate selection and formulation
of the assessment criteria (an insufficient model as-
sessment context). An assessment methodology must
be capable of both detecting each type of deficiency
and of guiding the researcher to the source of each
deficiency.

Assessments using only a single criterion have lim-
ited ability to detect deficiencies because the criterion
may be satisfied by many different model structures.
This is the problem of nonuniqueness: models with
different hypotheses or different mathematical repre-
sentations of the same hypotheses can satisfy the same
criterion equally well. Nonuniqueness prevents the pos-
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FIG. 1. General model assessment cycle.
Having completed initial model construction
(center box), the assessment cycle begins with
the selection and formulation of the criteria,
their error measures, and the parameter space
search. Model performance is optimized with
respect to the selected criteria in order to reveal
deficiencies in either the model structure (black
dashed arrow) or the criteria formulations (gray
dashed arrow). Either type of deficiency re-
quires revision (dashed lines). If no deficiencies
are detected, the criteria and error measures may
be refined for a more stringent assessment. The
assessment cycle is then repeated to investigate
the revisions.

sibility of ultimate model validation (Oreskes et al.
1994). Single criterion assessments, however, are cur-
rently the most common type of assessment applied to
ecological process models. For example, the canopy
competition models in a recent review were each as-
sessed using a single criterion (Ford and Sorrensen
1992).

Using multiple criteria to assess a model increases
the demands on model structure. The model is required
to get more right. Simultaneous multiple-criteria as-
sessments have a higher capacity to detect model de-
ficiencies than do any single-criterion, or even se-
quential multiple-criteria, assessments. This benefit has
been discussed in the context of individual-based mod-
els (Gross et al. 1992, Murdoch et al. 1992, DeAngelis
and Rose 1992, Sorrensen-Cothern et al. 1993), but no
methodologies have been proposed to utilize these
models’ many outputs, i.e., potential criteria (Gross et
al. 1992).

In ecological modeling, the most common method
of multiple criterion assessment is to calculate error
measures of different model outputs (criteria) and col-
lapse those measures into a single criterion (e.g., by
weighting and summing) (e.g., Halfon 1979, Gentil and
Blake 1981, Beck 1987, Sievanen et al. 1988, Sorren-
sen-Cothern et al. 1993). This single criterion is then
optimized by a parameter space search. While such an
aggregated measure of model performance simplifies
the optimization task, it is exactly the model’s simul-
taneous performance on these different measures (cri-
teria) that needs to be observed in order to locate de-
ficiency sources. Aggregation into a single criterion can
also limit the detection of deficiencies by limiting direct
observation of the model’s performance.

We introduce a multiple-criteria assessment meth-
odology, the Pareto Optimal Model Assessment Cycle
(POMAC), which retains the multiple criteria as a vec-
tor rather than aggregating them into a single criterion.
Model performance is assessed by first optimizing the

criteria vector, using the Pareto Optimality definition
of vector optimization (see Pareto Optimization sec-
tion). This optimization reveals the combinations of
criteria that the model can simultaneously satisfy. The
inability of the model to simultaneously satisfy all the
criteria directly reveals deficiencies. The Pareto Opti-
mal Model Assessment Cycle then proceeds through
four stages (see The Pareto Optimal Model Assessment
Cycle section, below) to determine the type of each
deficiency and locate its source. Having located a de-
ficiency, its source is revised and then the assessment
repeated to check for improvement and further model
deficiencies (Beck 1985, 1987, Beck and Halfon 1991)
(Fig. 1).

We describe Pareto Optimization and discuss its use
in deriving a multiple-criteria summary of model per-
formance. The Pareto Optimal Model Assessment Cy-
cle is then described in six stages and demonstrated in
application to the assessment of the canopy competition
model WHORL (Sorrensen-Cothern et al. 1993). The
potential use of POMAC in comparing different models
and assessing aggregation of a large model is discussed.

PARETO OPTIMIZATION

The Pareto Optimality definition of vector optimi-
zation (Vincent and Grantham 1981) was first devel-
oped in economics and is used mainly there and in
engineering (e.g., Taylor et al. 1975, Olenik and Hai-
mes 1979, Vincent 1987). To select the optimum from
a collection of vectors of criteria results, each from a
different model parameterization, one compares the
vectors and removes all dominated ones, where vector
X dominates vector Y if and only if X is at least as
good as Y with respect to all criteria and there is at
least one criterion for which X is strictly better than Y.

The Pareto Optimal Set consists of those vectors left
after all dominated ones have been removed. Most fre-
quently, the Pareto Optimal Set is used as a basis for
constructing additional multiple-criteria optimization
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TABLE 1. Example of a Pareto Optimal Set derived from the
four hypothetical tree-canopy competition model parame-
terizations discussed in Pareto Optimization.

Group
Parameter-

izations

Assessment vector

Mortality Median ht. Crown depth

1
2

2
3, 4 X

X X
X

Notes: Three criteria are used: cumulative stand mortality,
median live tree height, and mean individual tree crown depth
as proportion of tree height. Each row presents a group of
parameterizations, which produced a common assessment
vector (last three columns). The parameterizations in each
group are listed in the ‘‘Parameterizations’’ column. An “X”
in a cell denotes that each parameterization in the group ad-
equately simulates the criterion; an empty cell denotes that
no parameterization in the group satisfied the criterion.

techniques through various methods of weighting and
aggregating the criteria into a single criterion (see
Steuer 1986 or Yu 1985). Here we use it as a basis
from which to build a model assessment methodology.

For example, assume three criteria have been se-
lected to judge different aspects of a canopy compe-
tition model for trees: cumulative mortality in the
stand, median live tree height, and mean individual tree
crown depth as proportion of tree height. Each criterion
is calculated at the end of a fixed simulation time span
corresponding to a time interval for which data are
available. Each parameterization produces a vector
having three components, one component for each of
the three criteria. For each criterion a binary interval
is defined covering an acceptable range of expected
results, so that a prediction falling within the interval
is considered acceptable with regard to this criterion
and is labeled ‘‘good’’; otherwise it is labeled ‘‘bad.’’
For example, cumulative mortality predictions within
the range [77, 137] are ‘‘good,’’ predictions outside
this range are ‘‘bad.’’ Suppose the simulations of four
different parameterizations result in the following as-
sessment vectors, with components mortality, median
height, and crown depth:

Assessment vector for parameterization 1

5 (bad, good, bad)

Assessment vector for parameterization 2

5 (bad, good, good)

Assessment vector for parameterization 3

5 (good, bad, good)

Assessment vector for parameterization 4

5 (good, bad, good).

Parameterization 2 is as good as parameterization 1
with regard to mortality and median height while ac-
tually doing better with regard to crown depth; thus,
parameterization 2 dominates parameterization 1. Pa-
rameterizations 3 and 4 neither dominate, nor are dom-
inated by, parameterizations 2 or 1. No judgment can
be made regarding precedence among parameterization
2 and parameterizations (3, 4) without resorting to
weighting or preference among the criteria (e.g., mor-
tality is more important than median height, so pa-
rameterizations 3 and 4 both dominate parameterization
2). The Pareto Optimal Set is the set of undominated
parameterizations, i.e., parameterizations {2, 3, 4}.

The binary interval error measures do not discrim-
inate among parameterizations that generate the same
assessment vector. For example, while parameteriza-
tions 3 and 4 produce different criterion values, these
values generate identical assessment vectors. The Pa-
reto Optimal Set is summarized by these parameter-
ization groups rather than by the individual parame-
terizations themselves. The Pareto Optimal Set above

has two groups: parameterization 2 and parameteriza-
tions (3, 4) (Table 1).

In practice, the Pareto Optimal Set is achieved when
sufficient parameterizations of the model have been
simulated to explore the parameter space and ensure
that no additional combinations of assessment vectors
can occur. Note that the Pareto Optimal Set need not
necessarily contain a parameterization achieving all
criteria: not only may the model require different pa-
rameterizations to satisfy different criteria (e.g., Table
1), it may never satisfy specific individual criteria or
combinations of criteria.

Binary interval error measures

Binary interval error measures ignore small differ-
ences between the simulations of different parameter-
izations, treating results close to a criterion’s proposed
target value uniformly (Hornberger and Spear 1981,
Hornberger and Cosby 1985, Jaffe et al. 1987). This
robustness to possible target value misspecification is
essential when the criterion is designed to capture an
ecological process whose specific target value is not
certain. In contrast, traditional error functions (e.g.,
least squares, etc.) are designed to be sensitive to a
criterion’s proposed target value, and misspecification
can heavily influence the optimization search. Simi-
larly, these traditional error measures, when used in a
multiple-criteria optimization that aggregates the cri-
teria to a single measure, may restrict the optimization
search too quickly to parameter regions that produce
near-optimal results for a specific criterion (Kursawe
1991). This restriction may prevent the search from
locating parameterizations achieving better overall sat-
isfaction of the collected criteria—exactly the param-
eterizations of interest in model assessment. Binary
error measures are robust to both of these concerns.

Binary error measures have been employed in sen-
sitivity analysis (Hornberger and Cosby 1985, Mäkelä
1988), to investigate uncertainty in model forecasts
(Rose et al. 1991, van Straten and Keesman 1991), and
to predict the order of time series models (Keesman
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FIG. 2. The Pareto Optimal Model Assess-
ment Cycle, a refinement of the process illus-
trated in Fig. 1. Having completed initial model
construction (center box), the assessment con-
text is defined (Stage 1). The model’s Pareto
Optimal Set is generated by an optimization
search over the selected parameter space (Stage
2). Deficiencies located in Stages 3–6 require
revision and reinitiation of the cycle (dashed
arrows); otherwise assessment proceeds to the
next stage (solid arrows). Deficiencies located
in Stages 3 or 5 require revision of the assess-
ment context (gray dashed arrows); deficiencies
located in Stages 4 or 6 require revision of the
model structure (black dashed arrows). If no
deficiencies are located by the end of Stage 6,
the binary error intervals can be made more
restrictive, or more refined criteria can be se-
lected and the cycle reinitiated.

and van Straten 1989). To the best of our knowledge,
they have not been employed with a vector of criteria,
nor used to aid the summary of a Pareto Optimal Set.

THE PARETO OPTIMAL MODEL ASSESSMENT CYCLE

The Pareto Optimal Model Assessment Cycle (PO-
MAC) expands the general model assessment cycle
(Fig. 1) to include a stage of investigation specifically
focusing on each of the four potential sources of model
performance deficiency (Fig. 2): incorrect process
structure, incorrect mathematical structure, faulty pa-
rameterization, or insufficient model assessment con-
text.

The initial stages of POMAC define the assessment
criteria and the parameter space search (Fig. 2, Stage
1), and generate the Pareto Optimal Set (Fig. 2, Stage
2). Assessment then proceeds by first checking to en-
sure that deficiencies revealed in the Pareto Optimal
Set are not arising from too limited a parameter search
range (Fig. 2, Stage 3). Next the simulation results of
representative parameterizations from each group are
investigated for deficiencies in the model’s mathemat-
ical structure (Fig. 2, Stage 4) and in assessment criteria
formulations (Fig. 2, Stage 5). Any remaining defi-
ciencies can be attributed to the model’s process struc-
ture (Fig. 2, Stage 6). Each stage is demonstrated in
application to the spatially explicit canopy competition
model WHORL (Sorrensen-Cothern et al. 1993).

Initial model construction: the tree canopy
competition model WHORL

WHORL is a spatially explicit model of competition
among trees. Two stages are reiterated annually: (i)
resource (light) distribution within the stand and ac-

quisition by individuals, depending upon their amount
and distribution of foliage, and (ii) growth and resource
allocation within individuals, producing new foliage
(Sorrensen-Cothern et al. 1993). It simulates compe-
tition in Abies amabilis, a shade tolerant species, in
clustered natural regeneration at a density of 90 000
trees/ha growing to a height of 7 m. WHORL has two
simulation modes: growth of a stand of competing trees
and growth of a single tree in a neighborless environ-
ment (open-grown). Trees are composed of modules,
i.e., branches that grow and die independently. The
volume within which the stand grows consists of
‘‘cells’’ (cubes 10 cm on a side). A branch’s resource
acquisition occurs in those cells it intersects in which
it supports foliage. Different branches may extend into
the same cell. A cell’s foliage density changes, branch-
es grow, and trees increase in height according to the
amount of resource acquired. Physiological plasticity
in resource acquisition and allocation is represented by
allowing differences in foliage characteristics, e.g., ra-
diation interception efficiency (Table 2), as a function
of a tree’s relative height.

Stage 1: Selecting the assessment context

Parameter search ranges.—The parameter search
ranges for WHORL were based on prior calibrations
of the model (Sorrensen-Cothern et al. 1993, Reynolds
1997) (Table 2).

Criteria selection.—Assessment criteria differ in
their sensitivities to the model parameters. Ten criteria
were chosen so that both modes of model simulation,
open-grown and crown competition, were assessed for
each parameterization. Six criteria measure general
stand and open grown crown characteristics (Table 3,
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TABLE 2. Parameter search ranges for the spatially explicit tree-canopy competition model WHORL.

Parameters Description Minimum Maximum Scale

Branch increment Branch growth rate (m/unit of relative
production)

0.0001 0.0007 0.0001

Height increment Tree height increment rate (m/unit of
relative production)

0.00002 0.00010 0.00001

Dead Minimum production required to
sustain a branch (units of relative
production)

0.0 1.0 0.05

E Efficiency of converting intercepted
irradiation to production (relative
scale of production units per unit of
irradiation flux)

1.0 3.0 0.5

D Minimum relative irradiation level
required to sustain living foliage
(percentage of full irradiation level)

0 12 1

K Exponent controlling nonlinear decline
in foliage response to irradiation
decay (dimensionless)

0.1 0.5 0.1

Notes: See Sorensen-Cothern et al. (1993) for a more detailed description of the parameters. Scale refers to the parameter-
specific minimum step size used in the optimization search. Relative production is production per unit foliage, an index of
production in excess of maintenance respiration of leaves (Sorrensen-Cothern et al. 1993). Physiological plasticity is rep-
resented by varying the values of a tree’s physiological parameters (Dead, E, D, and K) as a function of the tree’s height
class. Height classes are defined relative to the fifth tallest live tree: short 5 height # 0.55 3 reference tree height; medium
5 0.55 3 reference height , tree height # 0.75 3 reference height; tall 5 height . 0.75 3 reference height. This requires
a Short, Medium, and Tall parameter setting for Dead, E, D, and K, for each simulation.

stand and open-grown criteria), while the remaining
four focus on the specific differentiation in growth rates
commonly observed in a stand of trees competing for
light (Table 3, growth rate criteria). It was expected
that the more specific growth rate criteria would be
harder for a model to satisfy than the more general
stand and open-grown tree criteria.

Error measures.—Binary interval error measures
were selected for each criterion based on data from a
permanent plot (Table 3) (see Sorrensen-Cothern et al.
1993 for plot details). The goal was to investigate if
the model could produce accurate simulations rather
than precisely recreate the exact values observed. Error
intervals were constructed from either 95 or 99% con-
fidence intervals, centered on observed data, where
possible. Researchers familiar with the species provid-
ed binary error intervals for the three open grown cri-
teria (T. Hinckley and R. Brookes, personal commu-
nication).

Parameter space search technique.—An evolution-
ary simulation optimization routine searched
WHORL’s parameter space and generated its Pareto
Optimal Set (see Stage 2). Simulated evolution is a
suite of optimization techniques that simulate natural
selection in order to evolve optimal parameterizations
(Michalewicz 1992, Fogel 1994). These include Ge-
netic Algorithms (Goldberg 1989, Holland 1992), Evo-
lutionary Strategies (Bäck et al. 1991), Evolutionary
Programming (Fogel 1994), and their extensions
(Michalewicz et al. 1992). The terms used are borrowed
from genetics. Each simulation from a ‘‘population’’
of parameterizations is assessed and ‘‘parent parame-
terizations’’ are then selected using a ‘‘fitness’’ mea-
sure. The search’s next ‘‘generation’’ of parameteri-

zations are ‘‘bred’’ from the parents’ population either
through parameter ‘‘mutation,’’ i.e., random selection
and adjustment of a specific setting, or ‘‘crossover re-
combination,’’ i.e., the exchange of portions of the set-
tings of two parent parameterizations.

This technique is not required for generating the Pa-
reto Optimal Set, but is more efficient than a simple
lattice search (Reynolds 1997). The Pareto Optimal Set
cannot be generated using ‘‘hill-climbing’’ techniques
(Yu 1985), either deterministic or stochastic (e.g., Sim-
ulated Annealing [Uhry 1989]), as these require a con-
tinuous univariate cost function. Evolutionary opti-
mization programs require only that a procedure be
defined for selecting parameter values for the next gen-
eration’s parents using a measure based on criterion
achievement. Multiple criteria can be successfully used
in a vector form, even with binary error functions, by
allowing membership in the Pareto Optimal Set to be
used as the optimization’s measure of achievement
(Reynolds 1997).

Stage 2: Generating the Pareto Optimal Set

The evolutionary optimization routine used both sin-
gle parameter mutations (within a given search range)
and crossover recombination of two parameterizations.
A parameterization was selected for breeding based on
a fitness function incorporating both the number of cri-
teria the parameterization satisfied and membership in
the Pareto Optimal Set (Reynolds 1997). The optimi-
zation routine’s initial population consisted of a Pareto
Optimal Set generated from a preliminary forward
search, augmented with randomly selected parameter-
izations for genetic diversity (see Reynolds 1997).

Simulated evolution produces successive popula-
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TABLE 3. Criteria chosen for WHORL’s assessment focus on three different aspects of the simulation: stand height and
mortality, morphological characteristics of open-grown tree crowns, and the differentiation in growth rates observed in
stands competing for light.

General focus Criterion Description

Binary error
interval

(observed)

Stand criteria Mortality Cumulative Mortality, year 30
(number of dead trees)

[77, 137]
(107)

Stand height frequency
distribution

P value of the Kolmogorov-Smirnov
two-sample test comparing
predicted and observed live height
frequency distributions

[0.01, 1]

Median live tree height A robust measure of tree height
central tendency

[2.82, 3.35]
(3.08 m)

Open-grown criteria Number of live whorls The number of living whorls on a
30-yr-old open grown tree

[9, 17]
(13)

Crown angle Angle formed between the mainstem
of the tree and the tips of live
branches

[10, 15] degrees

Crown length ratio Ratio of live crown length to tree
height

[0.90, 1]

Growth rate criteria Suppressed tree growth rate Slope estimate from linearly
regressing two-year height
increment on height, at year 28, of
trees # 2.8 m (Fig. 4)

[0.014, 0.046]
(0.03 m/m)

Suppressed tree R2 The variability in suppressed tree
height increment rates, measured
by the coefficient of determination
from the regression above (Fig. 4)

[0.04, 0.44]
(0.24)

Dominant tree slope Slope estimate from linearly
regressing 2-yr height increment on
height, at year 28, of trees $ 3.2 m

[20.005, 0.085]
(0.04 m/m)

Dominant tree R2 The variability in suppressed tree
height increment rates, measured
by the coefficient of determination
from the regression above

[0.0, 0.27]
(0.07)

Notes: The binary error interval associated with each criterion displays the range of results considered to have adequately
simulated the characteristic. For example, the mortality criterion is satisfied by any simulation producing a total mortality
of 77–137 trees in the first 30 yr of stand development. Where available, the value of the criterion observed at the permanent
plot is given in parentheses below the binary error interval. The interval for median live tree height is a 95% confidence
interval for the observed median height; the intervals for the growth rate criteria are approximate 99% confidence intervals
constructed from the observed regression estimates 6 3 3 standard error of estimate.

tions of model parameterizations. The Pareto Optimal
Set was updated after each population’s simulation by
comparing assessment criteria achievement relative to
that of the previous Pareto Optimal parameterizations.
The parent population, from which the next offspring
parameterizations were bred, consisted of all parame-
terizations in the current Pareto Optimal Set supple-
mented with non-Pareto Optimal parameterizations
from the last generation’s offspring to ensure ‘‘genetic’’
diversity. The parent population was of fluctuating size,
though always .75 parameterizations. Simulated evo-
lution continued for 50 generations with an offspring
population of 75 simulations each generation. At that
point the Pareto Optimal Set was considered stable be-
cause the assessment vectors had not changed for 13
generations. The Pareto Optimal Set contained 181 dif-
ferent parameterizations, partitioned by their assess-
ment vectors into eight groups. For example, 65 pa-
rameterizations produced simulations classified (by the
binary error intervals) as achieving the first eight cri-

teria listed in Table 3 but not the last two (Group 1,
Table 4).

This computationally intensive stage of the model
assessment cycle may limit the size of model to which
POMAC can be applied when using simulated evolu-
tion.

Stage 3: Assessing the adequacy of the parameter
search ranges

WHORL’s model structure could satisfy every cri-
terion, but not all ten simultaneously, indicating that
deficiencies existed (Table 4). The first potential defi-
ciency source to be checked was the fitting procedure:
perhaps the search ranges used in the optimization had
been too restricted and should be expanded? Each pa-
rameter’s search range was examined by plotting the
values of the Pareto Optimal parameterizations against
the search ranges selected in Stage 1 (Fig. 3). If all
parameterizations in the Pareto Optimal Set use a value
for a particular parameter at an extreme of its search
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TABLE 4. Pareto Optimal Set for the spatially explicit canopy competition model WHORL.

Group NP†

Assessment vector

Mortality

Ht.
distri-
bution

Median
ht.

No. live
whorls

Crown
angle

Crown
ratio

Sup-
pressed
slope

Sup-
pressed

R2
Dominant

slope
Dominant

R2

1
2
3
4
5
6
7
8

65
18

1
39

1
53

2
2

X
X
X
X
X
X
X
X

X

X

X
X

X

X

X

X
X
X

X
X
X
X

X
X
X
X

X
X
X

X
X
X
X
X

X
X

X
X

X

X

X
X

X
X
X

X

X
X
X
X
X
X
X

X

X

Notes: The 181 different parameterizations are partitioned into eight groups, with each parameterization in a group producing
the same assessment vector. An X denotes that every parameterization in the group adequately simulates the assessment
criterion; no X denotes that no parameterization in the group adequately simulates the criterion. The number of parameter-
izations in a group depends on the sensitivity of the model to different parameters, the width of the criteria error bounds,
and the stochastic nature of the simulated evolution optimization search.

† Number of parameterizations.

range, then the range may have been too limited. If so,
the search range must be extended and a new Pareto
Optimal Set generated (Fig. 2). This was not the case
here (Fig. 3), suggesting that WHORL’s deficiencies
arose from one of the other deficiency sources: its pro-
cess structure, its mathematical structure, or the criteria
formulations.

Stage 4: Investigating the Pareto Optimal
Simulations for mathematical structure deficiencies

As the parameter search ranges appeared adequate,
focus moved to WHORL’s mathematical structure (Fig.
2) as a possible source of deficiencies (Table 4). The
Pareto Optimal Set had captured the most informative
model parameterizations, reducing the number of sim-
ulations needing investigation from 3750 (the number
undertaken in the optimization search) to 181. These
were thoroughly investigated, with specific attention to
whether the criteria were satisfied in acceptable ways
(Fig. 4).

In parameterization Groups 2, 3, 5, 7, 8, and, to a
lesser degree, in Groups 4 and 6 (Table 4) simulated
tree heights had clustered distributions not found in
measured data (Fig. 4). These clusters biased the re-
gression used to determine the dominant tree slope and
dominant tree R2 criteria (for example, Fig. 4, Groups
3 or 7; criteria defined in Table 3). To investigate this
effect, regressions were recalculated with clusters re-
moved. Then only parameterizations from Groups 2
and 3 achieved the dominant tree slope criterion, and
only one parameterization from Group 3 satisfied the
dominant R2 criterion. The membership in the Pareto
Optimal Set of the parameterizations in Groups 4–8
(Table 4) was the result of bias in the regression in-
troduced by the clusters.

The clustering occurred at the tree height class
boundaries, which are set each year based on the stand’s
height distribution (as described in Table 2; see Sor-
rensen-Cothern et al. 1993). The boundaries group trees

into small, medium, and tall height classes. These class-
es determine the physiological parameter values attrib-
uted to a tree for the ensuing growth period (see Table
2 legend); they are unrelated to the height boundary
the growth rate criteria use to classify a tree as sup-
pressed or dominant at year 28 (growth rate criteria,
Table 3).

Clustering occurred when both parameters Dead and
E changed markedly between height classes. For ex-
ample, consider a simulation with Dead parameter val-
ues (10, 10, 40) for small, medium, and tall height
classes, respectively, and E values (2.5, 2.0, 1.0). As
the stand grew, a tree slightly taller than the medium/
tall height class boundary incurred high branch main-
tenance costs, i.e., its Dead parameter value was 40
relative production units. Due to competition, the tree
fell back into the moderate height class, decreasing its
branch maintenance costs by a factor of 4, from 40 to
10 relative production units, and doubling its foliage’s
conversion efficiency, from 1 to 2. These changes in
the tree’s parameter values increased its height incre-
ment to be larger than the smaller trees of the height
class it had just left (Fig. 4 and Group 5). Consequently,
it was reclassified into the tall height class the follow-
ing year—albeit, again, as one of the shortest trees in
the tall class. The cycle repeated, ‘‘attracting’’ trees to
heights around the class boundaries across which Dead
or E changed markedly. This inadequate representation
of physiological plasticity by height class-dependent
parameter values had to be revised. After the revision,
the Pareto Optimal Assessment Cycle was re-initiated
(Fig. 2).

We concluded that representing physiological plas-
ticity on a tree-to-tree scale was too restrictive, pro-
ducing extreme changes in physiological characteris-
tics year-to-year, even if the tree’s local light environ-
ment did not change markedly (as the height of the
tallest trees determined the height class boundaries).
Rather than assigning values for the foliage property
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FIG. 3. Parameter values of Pareto Optimal parameteri-
zations of the spatially explicit canopy competition model
WHORL (Table 4), plotted relative to each parameter’s search
range (Table 2). Plots (b)–(e) show the parameter value for
each height class. If the values of the Pareto Optimal para-
meterizations were all at an extreme of a particular param-
eter’s search range, it would suggest the need to expand the
search range and rerun the optimization (Stage 2, Fig. 2). E
is forced to have a lower bound of 1 by definition (see Sor-
rensen-Cothern et al. 1993).

parameters (E, D, K) to a whole tree based on the tree’s
relative height class in the stand, these parameters
would be assigned to each of the tree’s foliage cells (a
cube 10 cm on a side) according to their illumination
level. Each foliage parameter took one of two settings,
a shade foliage setting or a sun foliage setting, with a
third parameter determining the light intensity at which
the setting switched. Foliage properties could differ
within and among branches in a tree. The branch main-
tenance cost parameter, Dead, was made to vary as a
simple linear function of branch length with a minimum
cost threshold (Fig. 5). The branch and height incre-
ment rate parameters remained set at the level of the
whole tree and remained fixed for the stand. These
changes in physiological plasticity representation were
incorporated to form a new model, WHORL2.

The Pareto Optimal Model Assessment Cycle was
re-initiated with WHORL2 (Fig. 2). Its Pareto Optimal
Set was generated using the simulated evolution op-

timization routine (Table 5). The Pareto Optimal pa-
rameter search ranges were sufficient (Reynolds 1997),
and deficiencies did not appear in the model’s mathe-
matical structure (Fig. 6).

WHORL2 performed better than WHORL. The pa-
rameterizations in Groups 2 and 3 of WHORL2’s Pareto
Optimal Set (Table 5) simultaneously achieved the gen-
eral stand criteria (Median Live Height, Mortality) and
the more specific dominant growth rate criteria. This
combination was not achieved by any parameterization
in WHORL’s Pareto Optimal Set, represented by
Groups 1–3 (Table 4) after removal of the clustering-
induced bias.

The continued inability to satisfy all ten criteria si-
multaneously (Table 5) resulted from deficiencies in
either the model’s process structure or in the criteria
formulations. Achieving the stand height and open-
grown criteria (columns 3–10, Table 5) still conflicted
with achieving the dominant tree growth rate criteria
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FIG. 4. Simulation results from a representative parameterization from each of the eight groups in WHORL’s Pareto
Optimal Set (Table 4): tree height frequency distribution at year 30 (left column) and relationship of tree height at year 28
to subsequent 2-yr height increment (right column). The permanent plot (observed) data are shown in the first row of graphs.
The leftmost column of each histogram represents cumulative mortality at year 30. Two-year height increment plots display
the suppressed and dominant tree growth rate regressions for the simulation (line segments) (Table 3) and, for reference, a
locally weighted least-squares smooth (Cleveland 1979) of the observed data (continuous lines). Note the clustering of tree
heights in Groups 2–8.
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FIG. 4. Continued.

FIG. 5. Revised branch maintenance cost function in the
spatially explicit canopy competition model WHORL in rel-
ative production units, defined by three parameters: minimum
maintenance cost, slope, and intercept.

(columns 11, 12, Table 5). Assessment progressed to
investigating deficiencies in the criteria formulations
and the model’s process structure (Fig. 2).

Stage 5: Investigating the Pareto Optimal
Simulations for criteria formulation deficiencies

Stage 5 detects simulations achieving criteria in un-
acceptable ways due to poor criteria selection or for-
mulation. Formulation of a criterion may be too rigid,
involving hidden assumptions that produce biased re-
sults, or may fail to capture the intended phenomenon.

For example, it was expected that achievement of
the four growth rate criteria would require more model
refinement than achieving the six stand and open-grown
criteria. However, parameterizations in WHORL2’s Pa-
reto Optimal Set (Table 5) achieved the more specific

dominant tree slope criterion only when failing to
achieve all six less specific criteria (Groups 2–8), rais-
ing suspicions that the simulations had satisfied the
dominant tree slope criterion in an unacceptable man-
ner. This could occur due to deficiencies in the model’s
mathematical structure, such as the clustering-induced
bias in growth rate results found in Stage 3, or in the
criteria formulations themselves.

Suppressed and dominant tree classifications used in
the growth rate criteria were defined relative to sup-
pressed and dominant tree height ranges in the ob-
served data (Fig. 6): suppressed trees have heights #2.8
m at 28 yr of age, and dominants have heights $3.2
m. The impact of using these fixed height ranges to
define dominant and suppressed trees was investigated
by refitting each Pareto Optimal simulation’s growth
rate regressions to the simulation’s own apparent sup-
pressed and dominant tree height ranges. Under this
revision, the dominant tree R2 criterion was still not
satisfied by any of the parameterizations (results ranged
from R2 5 0.79 to 0.93 vs. the value of R2 5 0.07 for
the observed data) (Reynolds 1997). The dominant tree
growth rate slope criterion was satisfied only by the
Group 8 parameterization (slope 5 0.081 m increment
per meter of height), the slopes of all the other param-
eterizations were too large (0.089–0.149 m/m vs. the
observed 0.04 m/m).

The presence in WHORL2’s Pareto Optimal Set of
the parameterizations in Groups 2–7 was an artifact of
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FIG. 6. Simulation results from a representative parameterization from each of the eight groups in WHORL2’s Pareto
Optimal Set (Table 5): tree height frequency distribution at year 30 (left column) and relationship of tree height at year 28
to subsequent 2-yr height increment (right column). The permanent plot data are shown in the first row of graphs. The
leftmost column of each histogram displays cumulative mortality at year 30. The 2-yr height increment plots display the
suppressed and dominant tree growth rate regressions for the simulation (line segments) and, for reference, a locally weighted
least squares smooth (Cleveland 1979) of the observed data (contiuous lines).
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FIG. 6. Continued.

TABLE 5. WHORL2’s Pareto Optimal Set (274 different parameterizations). Otherwise, display format as is in Table 4.

Group NP†

Assessment vector

Mortality

Height
distri-
bution

Median
height

No. live
whorls

Crown
angle

Crown
ratio

Sup-
pressed
slope

Sup-
pressed

R2
Dominant

slope
Dominant

R2

1
2
3
4
5
6
7
8

260
1
2
4
2
1
3
1

X
X
X
X
X
X
X

X
X
X

X
X

X

X
X
X
X

X

X
X
X
X
X

X

X
X

X

X

X
X

X

X
X
X

X
X
X
X
X
X
X

X

† Number of parameterizations.

the assumption in the growth rate criteria that the tran-
sitional height between suppressed and dominant trees
at year 28 would be the same as that in the observed
data, i.e., 3 m (Table 3). The dominant growth rate
regression only used trees with heights $3.2 m. Hence
only a subset of the dominant trees in each simulation
in Pareto Optimal Groups 2–7 were used in calculating
the criteria results, introducing a bias (Fig. 6). Future
model assessments should use the simulation’s tran-
sitional height as an assessment criterion, with the
growth rate regressions defined relative to this pre-
dicted breakpoint.

The criteria formulations also assumed a linear
growth rate response to tree height. While this sim-
plified the criteria calculations, it poorly captured the

observed plateau in height increments (Fig. 6, observed
height increment plots). At this age, the data indicate
that height growth of large trees varies round a common
mean rather than continuing to increase with height;
the model treats competition as the dominant process
influencing growth for all trees.

The assessment process also revealed the inadequacy
of the dominant tree R2 criterion. Variability in dom-
inant tree growth rates is likely due to a variety of
factors not included in the model: genotypic variability,
microclimate effects, spatial and temporal heteroge-
neity in soil properties, water, and possibly other fac-
tors. In fact, the domain of WHORL2 is the competition
process, and any achievement of this dominant tree
growth rate criterion should have generated skepticism.



550 Ecology, Vol. 80, No. 2JOEL H. REYNOLDS AND E. DAVID FORD

The dominant tree R2 criterion was only satisfied as a
result of WHORL’s clustering or WHORL2’s biased
regressions, and in retrospect both it and the dominant
tree slope criterion were inappropriate selections.

WHORL2 was designed as a competition model, and
its ability to simultaneously achieve all the criteria ex-
cept those with deficient formulations showed it to be
effective for this goal (Group 1, Table 5). It effectively
simulated the relative reduction in growth rates of small
trees, as well as the principal features of stand mor-
tality, stand structure, and individual crown structure.
Modeling the absolute growth rate, particularly of dom-
inant trees, would require research and modeling in a
different domain.

The choice of binary interval error measures influ-
enced the composition of the Pareto Optimal Set by
determining which parameterizations satisfied each cri-
terion. Investigating the impact on the Pareto Optimal
Set of small decreases in the binary intervals’ widths
revealed the sensitivity of the Pareto Optimal Set to
particular criteria. The changes from decreasing the
width of binary intervals were explored by plotting the
Pareto Optimal simulation results against each crite-
rion’s error interval (Fig. 7). Slight reductions in the
binary intervals of any of five criteria would eliminate
two or more groups of parameterizations from the Pa-
reto Optimal Set (Table 6). This highlighted the tenuous
nature of membership in WHORL2’s Pareto Optimal
Set for many of the groups containing small numbers
of parameterizations (Table 5). In each case, the elim-
inated parameterizations’ original membership in the
Pareto Optimal Set had depended on their achievement
of the dominant tree slope criterion (in most cases due
solely to the biased criterion formulation discovered
above [see The Pareto Optimal Model Assessment Cy-
cle: Stage 5). Minor reduction in the dominant tree
slope criterion’s interval eliminated six of the Pareto
Optimal Set’s eight parameterization groups (Table 6).
This criterion’s role in determining WHORL2’s Pareto
Optimal Set illustrated that, in addition to understand-
ing how a model functions, it is equally important to
learn how it can best be assessed.

Investigating slight increases in the binary intervals’
widths would reveal whether simultaneous satisfaction
of all the criteria was narrowly missed. This would
require repeating the evolutionary optimization with
the larger intervals. We did not take this next step as
WHORL2 had already demonstrated the ability to sat-
isfy all criteria in the domain of focus.

Revising the collection of criteria and their error
measures, either by redefining them or by adding or
removing criteria, is cause to re-initiate the Pareto Op-
timal Model Assessment Cycle (Fig. 2). Knowing the
inadequacies in the criteria formulations revealed in
Stage 5, we continued to Stage 6 to investigate defi-
ciencies in the model’s process structure.

Stage 6: Investigating the Pareto Optimal Groups
for process structure deficiencies

Deficiencies not due to the parameter search process
(Stage 3), the model’s mathematical structure (Stage
4), or the criteria selection and formulation (Stage 5),
must arise from the model’s process structure (Fig. 2).
Insight into WHORL2’s process structure deficiencies
was provided by examining how the parameterizations
in each group of the Pareto Optimal Set failed to satisfy
their unachieved criteria. Following Stage 5, the dom-
inant tree R2 criterion was discounted, as was the im-
portance of parameterizations in Groups 2–7 because
they only appeared in the Pareto Optimal Set due to
bias in the dominant tree growth rate criterion.

Group 8 failed to achieve the general stand and
crown angle criteria because of an extremely high
height increment parameter setting (Reynolds 1997),
i.e., the simulated stand was too tall (Fig. 6, Group 8).
Group 1 failed to achieve the dominant tree growth rate
criterion, which was actually outside the domain of
competition, because its tallest trees grew too fast (Fig.
6, Group 1, height increment plot; Fig. 7, dominant
slope). This result suggested that WHORL2’s process
structure was missing a limit, or control, to keep the
growth rate of the tallest trees within the range ob-
served in the permanent plot data. This effect could
have resulted from a lack of mainstem maintenance
costs, foliage age, or other factors that would progres-
sively diminish the resource capture and utilization ca-
pacities of the foliage. If further research were con-
ducted into factors controlling the growth rate of large
trees, and additional functions were incorporated into
WHORL2, then the assessment cycle should be reit-
erated, employing new criteria to assess the revised
model structure (Fig. 2).

DISCUSSION

Each iteration of the Pareto Optimal Model Assess-
ment Cycle increased insight into the model’s capa-
bilities and limitations, increasing the model’s value as
a heuristic. Deficiencies in the model structure or cri-
teria formulations were deficiencies in our understand-
ing of the phenomenon being modeled. In revealing
these deficiencies, POMAC guided and directed further
research and data collection.

The application demonstrates that WHORL2 is suc-
cessful in simulating competition for light as measured
by its ability (Table 5) to satisfy simultaneously the
first eight criteria in Table 3, and that it is an improve-
ment over WHORL. WHORL2’s domain limits are re-
vealed by its inadequate representation of the processes
controlling the dominant tree growth rate (Table 5).

Multiple-criteria assessment using Pareto Optimi-
zation is a stringent technique for detecting deficien-
cies. For example, note that none of the deficiencies
detected by POMAC would have been revealed by us-
ing any single assessment criterion (Table 5), or even
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FIG. 7. Lower and upper limits of simulation results in each of the parameterization groups in WHORL2’s Pareto Optimal
Set (Table 5), for each criterion. Binary error interval limits (Table 2) are marked by vertical lines labeled ‘‘Lower’’ and
‘‘Upper’’ on the x-axis of each plot. Limits beyond the graph range are not shown. Example: Group 8’s simulation underpredicts
mortality and overpredicts median live height.
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TABLE 6. Effect on WHORL2’s Pareto Optimal Set of reducing the binary error intervals of specific criteria.

Criterion error interval reduction Change in Pareto Optimal Set

Increase mortality lower bound
Increase crown ratio lower bound
Decrease no. live whorls upper bound
Decrease suppressed slope upper bound
Decrease dominant slope upper bound

Group 8 . Groups 6 and 7
Group 6 . Groups 7 and 8
Group 7 . Groups 4 and 8
Group 5 . Groups 4 and 6
Group 1 . Groups 2, 3, 4, 6, 7, 8

Note: ‘‘Group A . Group B’’ means that the parameterizations in Group A dominate the parameterizations in Group B
under the interval reduction proposed in the left column.

any collection of the general stand and open-grown
criteria (the first eight criteria). The key feature in ap-
plication of POMAC is selecting a set of informative
and well-formulated criteria. These will be determined
partly by the context of the model’s application and
partly by current understanding of the modeled phe-
nomenon. In this sense, individual-based models are
extraordinarily amenable to assessment using POMAC
as their many outputs provide a wealth of criteria. Cri-
teria selection and formulation decisions are them-
selves assessed in the cycle (Fig. 2) and can be revised.
For example, more data will be gathered to reformulate
WHORL2’s growth rate criteria and interval limits.

The insights obtained from using POMAC are due
to considering a number of criteria simultaneously. Re-
ducing the optimization problem by disaggregating the
criterion set, or working on clusters of criteria sequen-
tially, would undermine the very purpose of calculating
the Pareto Optimal Set. For this reason, the only re-
quirements for POMAC are computational facilities
sufficient to generate the Pareto Optimal Set. While
WHORL(2)’s moderate size and well documented pro-
cess structure (Sorrensen-Cothern et al. 1993) aided
assessment, they are not requirements of the technique.
For larger models composed of more independently
functioning components than those in WHORL, it may
be best first to apply POMAC to the individual com-
ponents. Each assessment should utilize criteria spe-
cifically focusing on the adequacy of that component’s
dynamics. Once each component is deemed ‘‘ade-
quate,’’ a more comprehensive set of criteria should be
chosen for applying POMAC to the complete model
structure.

The Pareto Optimal Set can also be used as a tool
for comparing model structures. In model construction,
especially with large models, one is often faced with
choosing from competing mathematical representa-
tions: e.g., should a simpler representation of photo-
synthesis be used in a model of forest productivity or
a more complex one, containing more parameters for
estimation and having greater computational demand?
Such decisions of adequate representation tend to be
overshadowed by a focus on sensitivity analysis and
whether the parameters of a given formulation can be
inferred from the available data, perhaps as a result of
the tendency for single criterion model assessment. A
more direct assessment of the representations is to con-

struct models with each formulation, generate their Pa-
reto Optimal Sets with respect to the same criterion
set, and then compare the Pareto Optimal Sets. Are
both structures able to satisfy the same criteria in the
same ways?

Similarly, the Pareto Optimal Set can be used to
compare the capabilities of wholly different model
structures in satisfying a common set of criteria. For
example, in model aggregation (constructing a simpli-
fied model that adequately captures a more complex
model’s dynamics) characteristics considered essential
can be selected as the criteria and the simplified model
revised until it simultaneously satisfies the complete
set.
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