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Abstract 

Two-dimensional spectral analysis is a general interrogative technique for describing spatial patterns. Not 

only is it able to detect all possible scales of pattern which can be present in the data but it is also sensitive to 
directional components. 

Four functions are described: the autocorrelation function; the periodogram; and, the R- and O-spectra 
which respectively summarize the periodogram in terms of scale and directional components of pattern. The 
use of these functions is illustrated by their application to a simple wave pattern, a wave pattern with added 

noise, and patterns simulating competition and invasion processes. 

Introduction 

Watt (1947) advanced the thesis that by studying 
how the pattern of plants in a community changed 
with time deductions could be made as to the im 

portant processes controlling ecosystem develop 

ment. Greig-Smith (1952) recognized that these 

descriptions of pattern should be quantified, and 

proposed the technique whereby plant frequency is 

counted in an array of contiguous quadrats and a 

nested analysis of variance calculated with the 

quadrats considered in ordered groupings of in 

creasing size. This technique has been used exten 

sively to describe different scales of pattern in vege 
tation (see Greig-Smith (1979) for a review). 

However, the generality of Greig-Smith's tech 

nique is limited in two important respects which can 

affect its value in an exploratory examination of 

pattern. First, scales of pattern can only be detected 
at the size of the individual quadrat and at multipli 
cations of 2, 4, 8, . .. of this size, and so some 

pattern may be missed. Moreover, where the quad 

rat size is close to the smallest scale of pattern then 

the precise starting point of the sample within the 

pattern will influence the degree to which this scale 

is detected. Second, the technique will not detect 

directional components of a pattern, i.e. aniso 

tropy. This is an important limitation, because 

plants may be subject to directional biological or 

environmental stimuli. 

Two-dimensional spectral analysis overcomes 

both of these problems. For the variance of the data 
is split into far more general components than the 

powers of two, each component being a measure of 
the contribution of a specific frequency of occur 
rence of a particular pattern. This technique is 

analogous to turning the tuning knob on a radio, 
identification of a scale of pattern being akin to 

identifying the wavelength of a radio signal. Indeed, 
two-dimensional spectral analysis provides a com 

prehensive description of both the structures and 
scales of pattern in a spatial data set and so is a 

general interrogative technique. 
Spectral analysis of line transects of contiguous 

quadrats, i.e. samples in one dimension, has been 

compared with other techniques for the analysis of 

pattern. Ripley (1978) concluded 'Spectral analysis 
is by a wide margin the most reliable and informa 
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tive method', though he added that experience is 

needed to avoid misinterpretation of spectra. Hill 

( 1973) commented that spectral analysis is the tech 

nique most sensitive to regularities in the data 

which make it the most likely to pick up both real 

patterns and'spurious' effects, whilst Usher (1975) 
concluded that, 'Spectral analysis appears to be 

sufficiently robust for the analysis of data with a 

large stochastic element, however the main prob 

lem is spurious peaks in the analysis owing to the 

discrete nature of the majority of botanical data'. 

Thus the sensitivity of spectral analysis and its abili 

ty to reveal the range of patterns in a data set is 

acknowledged but the objective assessment of the 

analysis is questioned. 

Here we describe two-dimensional spectral anal 

ysis through analysis of data containing some sim 

ple patterns. Subsequently (Ford & Renshaw, 

1984) we describe how the analysis of field data, in 

combination with that of simulated patterns, can be 

used to build models of pattern generating pro 
cesses in vegetation. Programs to compute all the 

analyses described here may be obtained directly 
from the authors, and so it is not necessary to have a 

full appreciation of the mathematical details in 

volved in the calculations. 

(a) Cosine wave 

(b) RuhoconreI ah i on 

Punch i on 
(c) Per iodognam 

(d) R-spechnum (e) 8-spechnum 

25 4. 

R 20 

10 I 

5 

I I I I I I I I I I I I I I I I 
2 4 6 8 10 12 H 16 18 20 22 20 40 60 80 100 120 140 160 

Fig. I. Spatial analysis of a pure cosine wave with p 
= 

q 
= 4. (a) cosine wave; (b) autocorrelation function; (c) periodogram; (d) 

7?-spectrum; (e) 0-spectrum. 
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(a) Cosine wave wihh noise 

(b) fluhocorreI ah i on 

Punch i on 

(c) Per i odogram 

(d) R-spechrum (e) 0-spechrum 

10 12 14 16 18 20 22 20 40 60 80 100 120 140 160 180 

Fig. 2. Spatial analysis of a pure cosine wave (Fig. 1 a) with added random noise, see text, (a) cosine wave with noise; (b) autocorrelation 

function; (c) periodogram; (d) /^-spectrum; (e) 0-spectrum. 

Two-dimensional spectral analysis 

Two-dimensional spectral analysis does not des 

cribe pattern by a single statistic; four main func 

tions are used which we illustrate by their applica 
tion to two patterns of known structure. The first 

pattern is a cosine wave at 45? to a Cartesian sam 

pling frame and with four complete cycles along 
each axis (Fig. la) generated by calculating cos 

[2tt{(ps/m) -\-(qt/n)}] where m = n ? 
32, i.e. the 

number of points per axis, and p 
= 

q 
? 4. For the 

second pattern we calculated a cosine wave in the 

same way, but to each of the individual 32 X 32 

elements random noise was added from a Normal 

distribution with mean 0 and standard deviation 1. 

In this resulting pattern (Fig. 2a) the underlying 
cosine wave is not discernible. Analysis is made 

after subtracting the mean of the 32 X 32 array from 

each element, and we denote this mean-corrected 

array by Xst (s 
= 

1, ..., m; t ? 
1, ..., n). 

Complete output of the periodogram, polar 

spectrum and autocorrelations described below 

may be obtained with the authors' program from a 

single command. Two versions are available: a 
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computationally slow program requires only that 

the number of rows (m) and columns (n) are even; a 

far faster program requires m and n to be powers of 

2. For m X n in excess of 50 X 50 the fast version is 

recommended if cpu time is important, but this 

requires m and n ? 
64, 128, 256, etc. However, the 

danger of non-stationarity, i.e. a trend in pattern 

across the plot, may increase with m and n, and a 50 

X 50 data set is usually more than sufficient to 

detect all scales of pattern of interest provided the 

sampling intensity is sensibly chosen. We have 

often used 32 X 32, and even 20 X 20, successfully. 
For large data sets sub-division into non-overlap 

ping rectangles enables consistency of pattern to be 

checked. 

Sample autocovariance 

We define the sample autocovariance at lag (j, k) 
for 0 ^y < m and -n < k < n by 

m-j 

Cjk=(llmn) 2 XXstXs+jt(+k (1) 
5=1 / 

where the second summation is taken over t ? 
\,. . ., 

n-k if k ^ 0 and over t = -Jfc+1, ..., n if k < 0. The 

spatial autocorrelation matrix is then given by 

{CJk/s2} where s2 denotes the sample variance of the 

{Xst}. The full spatial autocorrelation matrix has a 

central value of C00/ s2 = 1, i.e. the data 'correlates 

perfectly' with itself, and the values at increasing 

distances from the center are estimates of the corre 

lation between points and their successively more 

distant neighbours. Conventionally, and as ex 

pressed in (1), each possible neighbour pair is re 

presented only once, and a matrix of entries almost 

twice the size of the data matrix is obtained (Fig. 

lb). The sample autocovariance of a cosine wave is 

itself a cosine wave, but with the individual entries 

having decreasing amplitude with increasing dis 

tance from the central point, as at increasing lags (J, 

k) fewer products are summed in the calculation of 

the individual entries in the function (1) though the 

denominator (mn) remains constant. There is posi 
tive correlation between neighbours in the direction 

along the waves, whether the points themselves are 

on a ridge or in a trough, and moving across the 

waves first negative correlation and then positive 
correlation as the displacement (lag) advances to 

the degree where the pattern repeats itself which 

here is at (j, k) 
= 

(32/4, 32/4), i.e. (8,8). The auto 

covariance function of the pattern with noise added 

(Fig. 2b) has a similar structure to Figure 1 b except 
that the individual entries are of smaller amplitude 
save, of course, for Cjk?s2 

? 1 at y = k ? 0. Thus the 

addition of noise, which is always present in real 

data, reduces the size and clarity of the autocorrela 

tion structure but not the overall effect. 

The periodogram 

A more compact description of spatial pattern is 

often obtained by evaluating the periodogram or 

sample spectral function; this shows the extent to 

which the data contains periodicities at different 

frequencies. The data is transformed by cosine 

waves of different wavelengths which, in the anal 

ogy of tuning a radio set, represent discrete but 

small bands of reception. The transformation ap 

portions the sample variance between the range of 

frequencies. The size of the sample area limits the 

detection of low frequency, i.e. large-scale patterns, 

whilst the number of sample units (m, n) limits the 

detection of high frequency, i.e. small-scale pat 

terns. 

The periodogram may be calculated via either the 

autocovariance function 

ml n-\ 
jp kq 

fpq= ? S CJkcos{27T(? + ?)} (2) 
j=-m+\ k=-n+\ m n 

or, equivalently, directly through 

hi 
= 

m"(a2pa + 
b2pq) (3) 

where 

m n 
PS at 

apa 
= 

(l/mn) S 2 Xst cos [2ttQ?+?)](4) 
5=1 t=\ m n 

and 

m n 
PS at 

bpq 
= (l/mn) 2 2 Xst sin[27r(? + ^-)] (5) 

5=1 t=\ m n 

The full range of frequencies is over p=0,.. .,m-l; 

q 
= 

0,..., n-\, but because of the symmetry relation 

Im-p,q 
? 

Ip,n-q 
we nee(^ onlv consider the half-period 

ogram/7 
= 

0, ..., m/2; q 
= 

-n/2, ..., n?2-\ (for m 

and n even). This choice of p,^-values is appro 

priate, for the sign of q relates to the direction of 



79 

travel of the waves: q positive or negative implies a 

general NW-SE or NE-SW alignment, respectively. 
The periodogram (Fig. lc) of the cosine wave 

pattern has a single entry atp 
? 

q?4, i.e. /44, which 

accounts for all the variance. This shows the pattern 
is a wave which repeats 4 times in 32 units along 

both axes; i.e. the waves are aligned at 90? to the 

diagonal line joining the coordinates (1,1) and 

(32,32), and the wavelength along that line is 

(32\Jl)l 8 = 
4\/2. The simplicity of Figure 1 c com 

pared to Figure 1 b illustrates the effectiveness of the 

periodogram relative to the autocovariance func 

tion. 

Although the addition of noise to the cosine wave 

reduces the contribution of the single periodogram 
value /44 to total variance from 100% to 33.14%, /44 
still totally dominates the periodogram (Fig. 2c). 
Formal tests of'significance' of single entries in the 

periodogram are in general highly subjective, be 

cause in many instances spectral features are re 

presented by a cluster of adjacent entries. Renshaw 

& Ford (1983) adopt a less formal 'censoring ap 

proach'. They replace values of {Ipq\ which contrib 
ute less than c% of total variance (for some c to be 

determined) by zeros, and c is chosen to be just large 

enough for most background noise to be removed. 

The value c = 
400/ mn % was found appropriate in 

their work, though it will not be of universal appli 
cation. To test individual values, entries in the half 

spectrum [Ipq\ 
are first expressed as percentages of 

the total variance, for they are then approximately 
distributed as (100/ra/7)x2. For example, with m ? 

n=32 critical values for a one-sided test at the 5%, 
1% and 0.1% levels are respectively 0.59%, 0.90% 

and 1.35% of total variance. 

Although the addition of noise to the pure cosine 
wave greatly reduced the contribution of /44 to the 
total variance, at 33.14% it still greatly exceeds the 
next highest /^-value of 0.69%. In general such 

dominance is not to be expected, and most 
/^-ele 

ments which exceed the censoring value of c ? 0.4% 

(which here number 27) would contribute to the 

overall shape of the spectral feature. We stress that 
the censoring approach helps to identify possible 
structure in the periodogram and does not consti 
tute a formal test procedure. 

The polar spectrum 

The presence of a distinct directional component 

of pattern, i.e. anisotropy, is amply revealed for 

both the cosine wave and the cosine wave plus noise 

by the dominant entries at /44. However, the pres 

ence of either anisotropy, or just a slight rise over a 

particular band of frequencies, may not always be 

visually apparent from the periodogram {Ipq\. 
Transformation to the corresponding polar spec 
trum can highlight such features for it represents 
directional components and scales of pattern se 

parately. Directional components are analyzed 

through the 0-spectrum, which is a plot of elements 

with approximately the same frequency angle 

(tan l(p/q)). Scales of pattern are analyzed through 
the /^-spectrum, which is a plot of elements with 

approximately the same frequency magnitude 

(V(P2 + q2)\ 
For each value of Ipq 

over the range 

p=0 ; q 
= 

-n/2,...,-\ 

p 
= 

1, ..., m/2 
- 

1 ; q 
? 

-n/2, ..., n/2 
- 

1 

p 
? 

m/2 ; q 
? 

-n/2, ..., 0 

we evaluate r = 
\/(p2 + q2) and 0 ? 

tanl(p/q), 
having first scaled the Ipq to ensure that their aver 

age value is unity. Next we consider (for example) 
the groups 0<rsil,l<r^2,.. .and-5? <0^5?, 

5? < 6 < 15?, .. ., 165? < 0 ̂  175? and allocate to 

each interval the appropriate /^-values. Finally we 

divide the sum of the Ipq in each interval by the 

number of values counted within it. This yields 

respectively, the /^-spectra and 0-spectra. In the 

absence of spatial structure all the Rr and 0? values 

have expected value unity. Different periodogram 
structures may have similar polar representations, 

and care must be taken in interpretation by refer 

ring back to the original sample spectrum. As 
would be expected, the /^-spectrum (Fig. Id) cor 

responding to the periodogram (Fig. lc) shows a 

large peak (at 4\]2 
? 

5.66) in the interval 5 < r ̂  6, 
whilst the 6-spectrum (Fig. le) has the anticipated 
maximum (45?) in the interval 35? < 6 ̂  45?. This 

simple example clearly illustrates how the scale of 

pattern and wave direction are determined separ 

ately from the R- and 0-spectrum, respectively. For 

the cosine wave with noise both the R- and 0-spec 
tra (Figs. 2d, 2e) have high values considerably in 
excess of 1 at the same points as for the pattern 

without noise (Figs. Id, le). 
Since the individual Ipq are approximately dis 

tributed as (100/ mri)x\, then for a particular R- or 
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0-interval (say Rr or 0?) which contains N periodo 

gram elements the polar spectral value for Rr or 0? 
is distributed as (\?2N)x2h- Hence tests of signifi 
cance at specific r- or 0-values can be made. For 

example the R- and 0-spectra in Figures 2d, 2e have 

peaks of 11.20 at r ~ 6 and 4.57 at 6 ? 
45?, respec 

tively. The corresponding polar segments contain 

16 and 43 elements, respectively, so the critical 

values at the 0.1 % significance level are ( 1 / 32)x22 
= 

1.95 and (l/86)x|6 
= 154. Both of these are very 

small in relation to the computed values ( 11.20 and 

4.57), and so the two polar peaks are extremely 

significant statistically. 

This example illustrates the usefulness of calcu 

lating polar spectra because, although a cosine was 

used as the basis for generating Figure 2a, visually 
its influence could not be seen in the data. 

Spectra of some simulated patterns 

Interpretation of two-dimensional spectra can be 

assisted by appreciation of the spectra of patterns of 

known structure, particularly where an observed 

pattern is thought to be the result of two or more 

generating processes. Evidence for the influence of 

(a) Verh?cal and horizontal 

inhibition, 372 points. 

(c) Per iodogram oP (a). 

b) R-spectrum 15 16 

op (a) - and (b) 

(b) Random distribution oP 
372 points. 

(d) Per iodogram oP (b). 

(P) 8-spectrum 15^16 
oP (a) - and (b) 

Fig. 3. Spatial analysis of two point patterns, (a) simple inhibition process, see text; (b) inhibition-free process for the same number of 

points, see text; (c) periodogram of (a); (d) periodogram of (b); (e) and (f) R- and 0-spectrum, resp. of (a) and (b). 
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more than one generating process in a pattern was 

seen in a Scots pine stand, Pinus sylvestris (Ren 

shaw & Ford, 1983) where tree positions were in 

terpreted, not surprisingly in a regularly thinned 

forest, as showing spatial inhibition whilst the can 

opy exhibited growth under a directional influence. 

Here we separately consider the spectra of first an 

inhibition process and then directional structure. 

Subsequently (Ford & Renshaw, 1984) we consider 

their combination in a model for the development 
of Epilobium angustifolium L. communities. 

Inhibition 

A simple inhibition process was simulated (Fig. 

3a), the value 1 being placed sequentially at random 

on a 32 X 32 lattice {X^} of O's, subject to a min 

imum nearest-neighbour distance of \?2, until there 

was no more room for points to be placed (maxi 
mum packing). This occurred when 372 of the 1 024 

sites were occupied. A minimum separation dis 

tance of \?2 means that adjacent row and column, 
but not diagonal, sites must be empty, and so there 

is a strong diagonal structure. In contrast Figure 3b 

shows a simulated inhibition-free pattern with 372 

points placed at random on the lattice but with no 

site containing more than one point. There are ad 

jacent, non-empty sites on rows and columns as 

well as on diagonals. 

Comparison of the two periodograms (Figs. 3c, 

3d) shows that the diagonal inhibition structure 

features very strongly, with all large periodogram 
elements being crowded into the SE and SW 

corners, whilst in contrast the periodogram of the 

inhibition-free process gives no indication of spec 
tral structure. The respective polar-spectra (Figs. 

3e, 30 confirm these conclusions. The R- and 0 

spectra both remain close to 1 for the inhibition 

free process, as expected for a random pattern. For 

the inhibition process the /^-spectrum peaks at r = 

18-22 and the 0-spectrum peaks at 35?-55? and 

125?-145?. These 0-values emphasize the 45? and 

135? diagonal structure of the inhibition pattern, 
and as the diagonal length of the 'sample' area is 

32\/2 units the corresponding frequency range of r 
= 18-22 relates to a scale of pattern in the range 

(32\/2)/22 to (32\/2)/18 units, i.e. 2.1 to 2.5 units 

Only with a regular pattern of alternating O's and l's 

could the scale equal 2 exactly. 
Generation of both the inhibition and spatially 

random patterns (Figs. 3a, 3b) involved the use of a 

random number generator. Further patterns gener 

ated by the same processes, but using different ran 

dom number sequences, yield slightly different pe 

riodograms. The range of values in the 7^-spectra 

generated from 20 independent simulations for 

both processes are shown in Figure 4. The expect 
ed value of the scaled /^-spectrum for a random 

distribution is 1 for all values of r. The envelope 
defined by maximum and minimum values from 20 

simulations of the random process always encloses 

1, and has its least spread at r ? 16 and its greatest 

spread at r ? 1 and r ? 23 because the low and very 

high frequency annuli contain few Cartesian values. 

The envelope from 20 simulations of the inhibition 

process shows a narrow, slowly increasing band 

lying well below 1 for r = 4 to r = 14 after which it 

increases rapidly, lying above the envelope of the 

random process for r = 17 to 22 with a single 

exception at r = 19. This defines the high frequency 

pattern of the large number of small, regularly 

spaced points on the lattice. 

Fig. 4. /^-spectra of patterns generated on a 32 X 32 lattice. 
- 

envelope (max and min values) from 20 simulations, 

maximum packing with nearest-neighbour distance \Jl\ 
one simulation with nearest-neighbour distance \Jl but 

2/3 maximum packing. 
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(a) Regularly spaced points along 
parallel, angled lines. 

(c) Periodogram oP ta). 

(e) R-spechrum 
oP (a) _ and (b) 

(b) Random variation added to the 
line and point distribution oP (a). 

(d) Periodogram oP (b) 

(P) 8-spectrum 
oP (a) _- and (b) - 

20 40 60 80 100 120 140 

Fig. 5. Two models of an invasion process, (a) regularly spaced points along parallel angled lines; (b) random variation added to the line 

and point distribution of (a), see text; (c) periodogram of (a); (d) periodogram of (b); (e) (Xl (H) and (0 R- and 0-spectrum, resp. of (a) and 

(b). 

The detection of an inhibition process depends 
on packing density. We found that as the number of 

occupied sites in the inhibition process were re 

duced to 2/ 3 of maximum packing the intensity of 

spectral entries dropped (Fig. 4) though the overall 

shape remained. At maximum packing the inhibi 

tion pattern is strongly diagonal (Fig. 3a), being the 

result of simulating the process on a square grid. 
The inhibition distance is \?2 and 96.2% of nearest 

neighbour distances are at \?2 units, 2.2% at 2, and 

1.6% at \/5 units, which yields a high contribution 

from frequencies above 16 on the 45? and 135? 

diagonals. 

As the number of occupied sites in an inhibition 

process is increased then the annulus of significant 
entries in the Cartesian spectrum is moved to higher 
frequencies. The lowest frequency approximates 
the maximum, and the highest the minimum, near 

est-neighbour distances. This structure can be seen 

in the analyses of both the distribution of plants of 
willow herb (Ford & Renshaw, 1984) and the spac 

ing of individual trees at Thetford Forest analyzed 

by Renshaw & Ford (1983, their Fig. 6b). 
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Spread in a preferred direction 

Invasion of an area by a plant species may be 

directional and the resulting spatial pattern there 

fore anisotropic. Many plants spread by horizontal 

roots, rhizomes, or similar structures creeping un 

derground, which produce aerial shoots at intervals. 

Some problems in detecting the directional compo 
nent of an underlying pattern, for example a 

spreading root system, from the distribution of un 

its on it, for example plants, were examined with 

simulations of a simple model. Points of origin of 

roots were placed a constant distance (d) apart 

along a base line, and the angle of spread (0) from it 

was distributed as N(pe, ofy, i.e. as a Normal ran 

dom variable with mean pe and variance o\. Aerial 

shoots were positioned sequentially along each root 

a distance m apart where m was distributed as 

N(nm, o2m). Grid counts on a 32 X 32 matrix were 

made of the presence of aerial shoots over an area 

distant from the base line (to eliminate the regulari 

ty of start positions) for various combinations of 

the parameters d, ?xe, o2e, p.m and 
o2m. 

The values pe 
= 70? and pm?d 

? 3 were retained 

throughout. With o\ 
= 

o2m 
= 0 (Fig. 5a) the process 

is deterministic and the largest single spectral entry 
was 14.4% at (4, -11 ). The corresponding 0-angle is 

160? which is the direction across the roots, and so 

their corresponding direction is at right angles, i.e. 

160?-90? = 70? (Fig. 5f). However, the extreme 

regularity of the pattern, i.e. parallel lines of equid 
istant points, was such that additional regularity 
exists in the data, notably along diagonals to the 

generated lines, and this additional structure was 

apparent in the spectrum: (i) 22.8% centered at 

(11,0) 
- the result of l's in every third (sometimes 

second) row; (ii) 16.8% centered at (15, -11) 
- con 

jugate waves angled around ?jl0 
= 

36?; and, (iii) 
20.8% centered at (8, 11) 

- 
conjugate waves angled 

around p.e 
= 126?. Similar conjugate patterns have 

been demonstrated in other regular patterns (Table 
IV and Fig. 13 in Ford, 1976), and failure to appre 
ciate them can lead to wrong interpretation. 

Retaining the parallel line structure by keeping o2d 
= 0 but marginally increasing o2m greatly reduced. 
these conjugate patterns, and their associated spec 

tra were downgraded to a low-intensity band run 

ning from features (ii) to (i) to (iii). When we also 

allowed o\ > 0 (in Fig. 5b, o\ 
? 

4.0) the simulated 

patterns consisted of lines in various orientations, 

and although the Cartesian (4, -11) value (Fig. 5d) 
was diffused amongst its neighbours the polar 0 

spectrum still provided a good detector for aniso 

tropy (Fig. 5i). For example, values for root direc 

tion in two typical simulations with: (i) o2m 
= 

0.25, o\ 
-4.0 were 0.63 at 60?, 3.72 at 70?, 1.14 at 80? and 

0.44 at 90? ; (ii) o2m 
= 1.0, o2 = 400.0 were 0.89 at 60?, 

1.72 at 70?, 1.67 at 80? and 0.69 at 90?. In case (ii) 
the orientation of the simulated roots varied con 

siderably, as did the distance between shoots on the 
same root, yet the general direction of invasion was 

still easily discerned from the 0-spectrum. Thus 
even if an ecological data set contains a very weak 

directional component then it is likely that the 0 

spectrum will detect it. 

Discussion 

Two-dimensional spectral analysis as we present 

it here uses four functions which combine to high 

light different aspects of pattern structure. This, in 

combination with the censoring approach used to 

assess the significance of spectral entries, makes it a 

powerful technique. It is particularly suited to the 

general interrogation of data for the occurrence of 

pattern, and is limited only by the requirements that 

the pattern comprises features which are repeated 
within the sample frame and are no smaller in scale 

than twice the distance between the points of the 

sample grid. 

It may appear that two-dimensional analysis can 

reveal features which would not be expected from 

the pattern-generating mechanism, as in the'conju 

gate wave' example above. This is not the case, for 

simple generating rules can produce complex pat 

terns and one must be aware of this in interpreta 

tion. However, as we demonstrate in Figure 5, addi 

tion of variability to the generating process disrupts 
such second-order features, and in analyzing data 

from the natural environment we have not found 

the occurrence of conjugate patterns a problem. 

To perform a two-dimensional spectral analysis 
data must first be collected in a contiguous two-di 

mensional array. However, discussions on metho 

dology, notably Hill (1973) and Usher (1975), have 

concentrated on pattern analysis of one-dimen 

sional arrays. Two points must be made. First, 

providing the intensity of sampling is correct we 

have repeatedly found that spectral analysis of only 
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Fig. 6. A series of one-dimensional transects taken at various angles (0) through a two-dimensional cosine wave with added noise, and 

their respective periodograms. 0 is the angle between the transect and the direction of travel of the wave, is the frequency of pattern 

repeats along the transect, p and q are the frequencies of pattern repeats along each axis, with \/(p2 + q2) 
= 8. 

a 32 X 32 array of sample points gives an adequate 

analysis. Second, analysis of one-dimensional ar 

rays assumes that there is no directional component 
in the pattern, i.e. that it is isotropic. The effect of 

sampling a cosine wave of wavelength 8 with added 

noise by a series of one-dimensional transects at 

different angles to the direction of the cosine wave 

illustrates this problem. When a transect of 64 

points was taken along the direction of travel of the 

wave then there was a dominant entry in the spec 
trum at the expected frequency 

= 
64/8 

= 8 (Fig. 
6). However, as the transect was made at increasing 

angles to the direction of travel of the wave the 

dominant entry appeared at lower frequencies. For 
an angle of 30? w = 7, for 45? w = 6, for 60? to = 4, 
and when the transect runs at 90? to the wave 

direction then no spectral features are apparent as 

the data are pure noise. 
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Thus although a linear transect may detect the 

presence of pattern, when the direction of the wave 

is unknown the one-dimensional analysis cannot 

determine the scale of pattern. From the analysis of 

ecological data we have found directional compo 
nents to be widespread and consider the general a 

priori assumption of isotropy to be unacceptable. 
Two-dimensional spectral analysis has the furth 

er advantage over one-dimensional analysis that in 

general more periodogram values are contained in 

the spectral features. This means that further 

smoothing is usually unnecessary which is rarely so 

for one-dimensional spectra. Moreover, as the R 

and 0-spectra are an average of periodogram 

values their smoothness is ensured. 
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