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Abstract. Spatial point pattern analysis provides a statistical method to compare an
observed spatial pattern against a hypothesized spatial process model. The G statistic, which
considers the distribution of nearest neighbor distances, and the K statistic, which evaluates
the distribution of all neighbor distances, are commonly used in such analyses. One method of
employing these statistics involves building a simulation envelope from the result of many
simulated patterns of the hypothesized model. Specifically, a simulation envelope is created by
calculating, at every distance, the minimum and maximum results computed across the
simulated patterns. A statistical test is performed by evaluating where the results from an
observed pattern fall with respect to the simulation envelope. However, this method, which
differs from P. Diggle’s suggested approach, is invalid for inference because it violates the
assumptions of Monte Carlo methods and results in incorrect type I error rate performance.
Similarly, using the simulation envelope to estimate the range of distances over which an
observed pattern deviates from the hypothesized model is also suspect. The technical details of
why the simulation envelope provides incorrect type I error rate performance are described. A
valid test is then proposed, and details about how the number of simulated patterns impacts
the statistical significance are explained. Finally, an example of using the proposed test within
an exploratory data analysis framework is provided.
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INTRODUCTION

A point pattern consists of the spatial configuration of

observed events within a specified area, such as Fig. 1,

where the points represent the location of trees in a 1-ha

plot of the Wind River Canopy Crane Research Facility

(WRCCRF). Spatial point pattern statistics utilize the

distribution of distances between events to make

inference about the spatial arrangement. Specifically,

the G statistic (Eq. 1) relies upon the distribution of

nearest-neighbor distances and the K (or L) statistic (Eq.

2 without edge correction) utilizes the distribution of all

interpoint distances (Diggle 2003: Chapters 2 and 4). In

these equations, t is the distance, n is the number of

points within the given pattern, di is the distance from

point i to its nearest neighbor, dij is the distance from

point i to point j, and I( ) is an indicator function that

equals 1 if the argument is true and 0 otherwise. Both

the G and K (or L) are cumulative and calculated as a

function of increasing distance between events:

GðtÞ’ 1

n

Xn

i¼1

½Iðdi , tÞ� ð1Þ

KðtÞ’ 1

nðn� 1Þ
Xn

i¼1

Xn

j¼1; j 6¼i

½Iðdij , tÞ�: ð2Þ

These statistics can be used to test whether an observed

point pattern has similar characteristics to a specified

spatial model, such as complete spatial randomness

(CSR), and to evaluate whether a pattern exhibits

aggregation or inhibition. Additionally, it has been

considered that these statistics can provide information

about scale, i.e., the distances at which an observed

pattern deviates from the specified null-process model.

A simulation envelope is created by using at every

distance the minimum and maximum results for a

chosen statistic (G or K), calculated from a number of

Monte Carlo (MC) simulated patterns. Patterns are

simulated from the hypothesized spatial model. Ob-

served results, also calculated from the chosen statistic,

are plotted on top of this envelope and compared. The
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observed process is deemed different than the simulated

process if its results lie outside the envelope at any

distance. Kenkel (1988) pioneered the use of the

simulation envelope with the K statistic to make

inferences about competition occurring within a jack

pine stand, and this method of using spatial point

pattern statistics is now common in the literature. As

Table 1 shows, variation exists within the statistics used,

the number of simulated patterns from which the

envelope was developed, and the significance of the

confidence interval (CI) assigned to the envelope limits.

Variation even exists in the relationship between the

number of simulated patterns and the CI. The studies

listed comprise only a subset of recently published

articles employing these methods.

Unfortunately, this approach is invalid for testing an

observed point pattern against a specified spatial model

because the type I error rate is greatly underestimated.

For similar reasons, determining the distances at which

the observed pattern differs from the spatial model based

on the distances at which the results of the observed

pattern exceed the simulation envelope is also suspect.

Our first objective in this paper is to detail exactly why

the simulation envelope approach is inappropriate. We

then propose a goodness-of-fit (GoF) test which

provides expected type I error rates, and explain how

the number of simulated patterns should be chosen and

its relationship to the significance of the test. Finally, we

conclude with a simple example illustrating our method.

METHODS

Failure of the simulation envelope

The perceived, although inaccurate, type I error rate of

a simulation envelope based statistical test is a ¼ 1/s ,

where s – 1 is the number of patterns used to construct

the envelope, and the additional 1 in the denominator

accounts for the observed pattern being tested. This

result would be valid only for a one-sided test where the

limit of the envelope was comprised of the results from a

single pattern. However, researchers commonly apply

the simulation envelope in a two-sided fashion, rejecting

H0 when the results from the observed pattern fall either

above or below the envelope. Furthermore, the envelope

limits are typically comprised from the results of many

simulated spatial point patterns, each contributing to the

envelope over different distances. Freeman and Ford

(2002: their Fig. 2) demonstrate this by displaying the

progression of a simulation envelope being built.

Similarly, our Fig. 2 shows an example of the limits of

a simulation envelope for the G statistic built from 99

CSR patterns. In this example, 74 of the patterns actually

comprise the envelope at some distance. The value Ĝ�G,

where Ĝ represents either the upper or lower envelope

result and G represents the mean result calculated across

all simulations, is plotted to enhance the details of the

envelope and center the results around y¼ 0.

A type I error is defined, in general, when H0 is

incorrectly rejected even though it is true. For the

envelope shown in Fig. 2, a type I error would occur

whenever a new CSR pattern fell outside the envelope.

In this case, the probability that a CSR pattern would

exceed the displayed envelope is 74/99 ’ 0.74; much

higher than the expected type I error rate of 1/s¼ 0.01.

The weaker than expected statistical performance is the

result of many tests, one at each different distance,

being performed concurrently. This simultaneous

inference (e.g., Gotelli and Ellison 2004: Chapter 10)

FIG. 1. Plot of locations of all trees ,6 m tall, indicated by
the circles, from a 1-ha (100 3 100 m) plot of the Wind River
Canopy Crane Research Facility (WRCCRF) stem map, scaled
to a unit square (1.0 corresponds to 100 m).

TABLE 1. Recent ecological examples in which the G and/or K
statistics were used to analyze observed spatial point patterns
with the statistic(s) employed, the number of patterns
comprising the simulation envelope, and the perceived
significance of the ‘‘confidence interval’’ (CI) created by the
simulation envelope.

Example Statistic(s)
No.

patterns CI (%)

Batista and Maguire (1998) G, K 19 95
Dolezal, Stastna, Hara, and
Srutek (2004) K 99 99

Druckenbrod, Shugart, and
Davies (2005) L 1000 95

Freeman and Ford (2002) G, K 99 99
Grassi et al. (2004) K 99 99
Hirayama and Sakimoto (2003) K 19, 99 95, 99
Martens et al. (1997) L 99 95
Moeur (1997) G, K 200 90
North et al. (2004) K 100 95
Parish, Antos, and Fortin (1999) G, K 99 99
Rigg (2005) K 99 99
Salvador-Van Eysenrode
et al. (2000) G, K 1000 95

Srutek, Dolezal, and Hara (2002) L 99 95
Tirado and Pugnaire (2003) K 1000 95
Wiegand and Moloney (2004) L 99 99
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yields an underestimated type I error rate and therefore

equating the upper and lower bounds of the simulation

envelope with a (1 – a)% CI is invalid. Although

multiple testing problems are often solved using a

Bonferroni correction, it is not appropriate here

because of both the correlation between results at

consecutive distances which violates the assumption of

independence, as well as the large number of distances

being simultaneously evaluated.

Further, the method of inferring scale, i.e., the range

of distances over which the observed pattern differs

from the hypothesized model, based on where the

observed results exceed the envelope is also invalid.

Not only is the type I error rate incorrect, but because of

the cumulative nature of the G and K statistics, results at

any distance reflect both the instantaneous value at that

distance as well as the combined results from all smaller

distances. Results for an observed pattern could there-

fore lie outside the envelope at a distance where the

instantaneous value was not different than the specified

model.

A valid goodness-of-fit test

As a replacement for the simulation envelope, we

propose a goodness-of-fit (GoF) test, based on the

approach of Diggle (2003: Chapter 2) and Cressie (1991:

Section 8.4). Under this GoF test, both the observed

pattern and each of the MC simulated patterns are each

reduced to a single summary test statistic, as

ui ¼
Xtmax

tk¼tmin

½ĤiðtkÞ � HiðtkÞ�2dtk ð3Þ

where tk is distance, tmin and tmax are the lower and

upper limits of the summation in terms of distance,

Ĥi (tk) is the empirical result for pattern i for the test

statistic of interest (G or K), Hi (tk) is the mean result

computed for all patterns except for i, and dtk ¼ (tkþ1 –

tk) is the width of the distance interval.

Hi (t) is used to reduce any bias that may be present

from edge effects or from estimating the number of

points within the process (Diggle 2003):

HiðtÞ ¼
1

s� 1

Xs

j¼1; j 6¼i

ĤjðtÞ
" #

: ð4Þ

While Eq. 3 might utilize the theoretical value of the

process, H(t) in place of H(t), the theoretical value is

rarely known. Additionally, based on the weak law of

large numbers (Casella and Berger 2002: Chapter 5),

lims!‘ Hi (t)! H(t). Hence this summary statistic value

(ui) represents the total squared deviation between the

observed pattern and the theoretical result across the

distances of interest.

A vector that describes the specific distances (tk 2 t1¼
tmin, t2, . . . , tn ¼ tmax) at which the observed and

simulated patterns are to be evaluated is needed to

compute each ui. To ensure all changes in Ĝ or K̂ are

properly detected, we recommend using the empirical

distance list, i.e., the vector of all distances where the

chosen statistic changes, as determined from pre-

sampling the simulated and observed patterns.

A statistical test (i.e., rejecting or failing to reject H0)

can be performed by ranking the summary statistic value

for the observed pattern (u1) within the results from the s

– 1 simulated patterns, ui, i¼ 2, . . . , s. To be clear, the

explicit null hypothesis being tested here is not that the

observed pattern was generated by the null spatial

FIG. 2. Plot of Ĝ � G against distance for a simulation envelope built from s ¼ 99 simulations of a complete spatial
randomness (CSR) model for k ¼ 100. Ĝ represents either the upper or lower envelope result, and G represents the mean result
calculated across all simulations. The circles represent transitions when a new pattern begins to comprise that section of the
envelope. In this example, 74 of the 99 simulated patterns contribute to the envelope at some distance. Distance is a unit scale,
with 0.10 corresponding to 10 m.
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process. InsteadH0 is that the summary statistic value, u1,

calculated for the observed pattern for the chosen statistic

(G or K ) over the range of distances ft: tmin � t � tmaxg
specified is not different than those calculated for random

instances of the hypothesized spatial process model.

The observed P value of this hypothesis test ( p̂) is

calculated as

p̂ ¼ 1� rank½u1� � 1

s

¼ 1�

X
j

I½u1.uj�

s
j ¼ 2; . . . ; s

ð5Þ

where I [u1 . uj] is an indicator function that equals 1 if

u1 is greater than the given uj and 0 otherwise. For

example, if the summary statistic computed for the

observed pattern were larger than that of each of the s –

1 ¼ 99 simulated patterns, then p̂ ¼ 1 – 99/100 ¼ 0.01.

To summarize, the proposed GoF test converts the

multivariate result (i.e., the calculated statistic as a

function of distance) for an observed pattern into a

univariate summary test statistic. MC theory can then be

used to accept or reject H0, maintaining the expected

type I error rate.

Characterizing uncertainty in p̂

Since this test relies on simulated patterns to create

the null distribution of ui values, some amount of

uncertainty exists within the realized P value (p̂) of the
observed pattern when tested against a specified null

process model. Increasing the number of simulated

patterns will reduce this uncertainty, but the true P value

(p) for an observed pattern is ultimately unknowable.

Hence, it is worth understanding how the number of

simulations used to build the null distribution impacts

the amount of variation in p̂. Marriott (1979) referred to

this issue as a blurred critical region. We take a different

approach using distribution theory to determine the

variation in p̂ as a function of s.

To derive this variation, let Y represent the summary

statistic value from the data (u1) and, similarly, let Xj

represent the uj value from the j ¼ 1, . . . , s – 1

simulations of the null process. The realized P value

from Eq. 5 can be rewritten as

p̂ ¼ 1�

X
j

IðY.XjÞ

s
: ð6Þ

Under H0, p̂ has a discrete uniform distribution on 1/

s, 2/s, . . . , s/s. Assuming Y comes from H0, then by

definition, the true P value is p¼ Pr(X . Y jY). Hence,

each of the I(Y . X) is distributed Bernoulli with

probability 1 – p. The expected value of p̂ is

Eðp̂Þ ¼ E½1�

X
j

IðY.XjÞ

s
� ¼ 1� ðs� 1Þð1� pÞ

s
’ p ð7Þ

showing that the test is unbiased for large s. Similarly,

the variance of p̂ (denoted as r 2
p) is

r 2
p ¼ Var½1�

X
j

IðY.XjÞ

s
�

¼ 1

s2
ðs� 1Þpð1� pÞ’ pð1� pÞ

s
ð8Þ

for large s. We can therefore approximate the distribu-

tion of p̂ using a binomial distribution.

Estimating r 2
p based on Eq. 8 requires a value for p.

Given a hypothetical value of p̂, the theoretical variation
can be determined. For example, we might be interested

in knowing the theoretical variation of p̂ for a pattern

that might fail a hypothesis test, i.e., a pattern with a p̂
near 0.10. As such, we can set p¼ 0.10 and apply Eq. 8

to determine the amount of variation as a function of

the number of simulated patterns. This is useful because

the choice of the number of simulated patterns needs to

be made before the GoF test is performed. Then, after a

test is complete, the determined value of p̂ can be used to

directly estimate the specific variation of the given

pattern and test.

To select the size of the null distribution, one must

choose an acceptable amount of uncertainty for the

observed P value. Given that binomial distributions

converge to normal distributions for a large number of

trials, a 95% confidence interval (CI) for the true P value

of a pattern (p) can be written as

p̂� 1:96 3 rp � p � p̂þ 1:96 3 rp

� �
: ð9Þ

The CI width determines the value of r2
p, which in turn is

used to choose the number of simulated patterns. For

example, if a CI width of 0.04 were acceptable, this would

require a value of rp ’ 0.01. Using this value and an

estimated p ¼ 0.10 within Eq. 8 results in s ’ 1000.

A SIMPLE MODEL OF ESTABLISHMENT

Wiegand et al. (2003) describe how patterns in data

can aid model development, and provide an example for

spatial point pattern analysis. While their example

incorrectly uses the simulation envelope approach, we

agree with their four steps of a data based approach to

model fitting: (1) aggregation of biological information,

(2) determination of parameter values, (3) systematic

comparison between observed patterns and those

predicted by the model, and (4) secondary predictions.

Our GoF test is a necessary component of step 3 when

evaluating spatial point patterns.

Studies on a number of old-growth conifer forests

have indicated that the distribution of all trees is

clumped, and since these plots are dominated by smaller

trees, researchers have inferred an aggregated pattern of

establishment (e.g., Moeur 1993, 1997, Van Pelt and

Franklin 2000, Freeman and Ford 2002, Harris 2004).

Most studies have evaluated the distribution of tree

locations using the simulation envelope approach and

against an H0 of CSR; we instead evaluate it using the
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GoF test and against a more informative null spatial

process model. Our observed data consist of the
locations of all trees ,6 m in height (Fig. 1) within a

1-ha plot of the WRCCRF, and such trees were chosen

as these locations demonstrate the most recent aspects of
the establishment process. A visual assessment suggests

some amount of clustering in the locations of the trees.
For our null spatial process model, we chose a Poisson

cluster model, wherein q parents are first randomly

located on the plot using a random process and then X
; Poiss(l) children are placed near each parent. This

model may be appropriate given the patterns of seed
distribution and seedling establishment. The expected

point intensity k is calculated as k ¼ ql. The spatial
positions of children relative to their parents were

chosen to be identically and independently distributed

according to the bivariate normal distribution:

hðx; yÞ ¼ 1

2pr2
exp � x2 þ y2

2r2

� �
ð10Þ

so the amount of aggregation will depend on the r2

term. Additionally, x, y represent spatial coordinates

and the distribution of children points is isotropic and
stationary.

To implement this model, estimates of parameters q,
l, and r2 were needed; k was estimated directly from the
number of points in the observed plot. Once a value for

q was available, l could then be determined directly as l
¼k/q, but in the absence of guidance based on ecological

theory, how could q be determined? Hence, the
challenge here was how to determine estimates for H ¼
(q, r). If values had been estimated in a previous

analysis, we could have performed a hypothesis test of
the observed data using this model as our null

hypothesis. Instead, since estimated values are unavail-
able, the GoF test was used as part of an EDA process

to help determine a viable parameter space.

Specifically, the parameter space H was estimated
using a simulated annealing algorithm (Press et al. 2002:

Chapter 10), wherein the GoF test was performed at
each different parameterization of the model, and the

rank of u1 was used as the energy function. Again, the

rank is indicative of how far the calculated statistic for
the observed pattern differs from the mean result for the

hypothesized process.
For this example, we selected values of tmin ¼ 0 and

tmax¼ 0.10, equivalent to an actual distance of 10 m, to

represent the distances over which interaction between
trees may occur. Additionally, we set the number of

simulated patterns within the null distribution to be 499,
which yields an estimated value of uncertainty for P

values near 0.10 of rp¼0.015. To be clear, only the rank
was used here and no hypothesis testing was performed.

The results of the simulated annealing optimization

suggest that HG ¼ ( p̂ ¼ 42, r ¼ 0.148) and HK ¼ (27,
0.161). The estimated r̂ parameters suggest a similar

distance of clustering, and the q̂ parameters are within a

similar magnitude.

DISCUSSION

This paper details a statistical test to be used with the

G or K point pattern spatial statistics that yields

expected type I error rate performance. It is not,

however, intended to be a user’s guide for evaluating

observed point patterns. As such, guidelines about how

to choose an appropriate null spatial model or how to

select reasonable values for the interaction distance

limits (tmin and tmax) are outside the current scope. We

would like to emphasize, however, that use of CSR as a

null model is uninformative in that no spatial processes

are truly random, and refer readers to Diggle (2003) for

information about how to select something more useful.

Our proposed GoF test avoids the problem of simulta-

neous inference inherent in the simulation envelope

approach by converting the results calculated at differ-

ent distances into a single summary statistic. While the

proposed method is certainly not the only solution to

this problem, of importance here is that statistical tests

based on the GoF approach maintain the expected type

I error rate.

We also explain how to estimate the uncertainty in the

observed P value as a function of the number of

simulations comprising the null distribution. Research-

ers may find uncertainty in P values somewhat

unsettling. Although the GoF test always provides a-
level performance, how should we deal with it if the CI

around p̂ contains our chosen a level and how should we

choose the width of this CI? It depends upon the type of

inference that is ultimately desired from the analysis.

Under strict inference, i.e., when the null hypothesis

exists before the data is evaluated and a statistical test is

only intended to fail to reject this H0, a more

conservative approach is needed. As such, we suggest

that one reject H0 if the CI is fully below the desired a
level. This situation might warrant using a narrower CI

based on more simulations and also a tighter type I error

rate. Alternatively, under EDA conditions, more lat-

itude can be given. Fewer simulations may be necessary,

and it may be justified to increase a levels somewhat,

given the sparse nature of data usually collected. Also in

this case, we recommended rejectingH0 if the CI contains

or is fully below the specified a level.

Establishment model

Our example, although simplified, demonstrates the

major steps to be undertaken during an EDA process,

and how the GoF test could be used to facilitate model

fitting. A more complete analysis would also test

alternate model forms and evaluate the power (or type

II error rate) of the hypothesized model. We should

clarify that the simulated annealing approach is one of

many possible optimization techniques, and under any

such method the GoF test can be useful as a cost

function. Also, EDA was performed because neither an

appropriate spatial model nor parameter estimates were

available for the observed data. If both had existed, the
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GoF test would have been used to perform a hypothesis

test.

Concerning the actual estimated parameters, we

found that both the G and K statistics suggest the

Poisson cluster model may potentially be an appropriate

model for our observed data. However, we also found

that parameterization of this model was different for the

G and K. These statistics evaluate fundamentally differ-

ent aspects of a pattern and as such it may not be

expected that they would yield identical results. The next

step in any such analysis should be an interpretation of

the results, including what the fitted spatial model

suggests about the ecology of the system. We have

learned that a clustered process for the given tree

locations is a potentially valid spatial model, but we do

not yet have enough information to determine the exact

mechanism of clustering. With respect to scale, we have

been able to identify a plausible estimate of the range of

the clustering, based on the r model parameter. A next

step might examine the species and ages of individual

trees to see if clustering is related to establishment or

potentially some other environmental condition.

Evaluating scale

By nature, spatial point pattern statistics are multi-

variate, containing different values at each distance, and

it is here that information about scale (i.e., the distances

over which a process is acting) is contained. In fact, part

of the allure of using the G and K statistics is their

purported ability to provide information on the scale of

departure of the observed pattern when tested against

the hypothesized spatial model. Unfortunately, as

described above, because of the lack of statistical

significance and being based upon a cumulative value,

inference about scale based upon any such departure is

suspect.

An improved approach might be built using the

derivative of the cumulative result. The u1 value contains

information about the scales that caused the pattern to

be rejected. The full range of distances could be

partitioned back into range subsets, for multiple GoF

tests using different tmin and tmax values to be run. These

results could then be evaluated either individually or

together using some type of Bonferroni correction.

Similar ideas have been suggested by Condit et al.

(2000) and Wiegand and Moloney (2004), but we do not

know of a rigorous statistical evaluation, including type

I and type II error rates, of this approach. As such, we

remain cautious about its utility.

Further, there are questions about how to relate the

idea of scale to an ecological process that may have

caused it, particularly in the absence of discussing some

type of model and associated parameters. The concept

of scale is understandable with simple spatial models

such as hard core inhibition or clustering, i.e., where the

radius parameter strictly limits where neighbors can lie.

However, it becomes more ambiguous when soft core

models such as the Poisson cluster model described

above are used. In our view, the best approach toward

evaluating scale is only within the context of model

parameters.

Software implementation of the GoF test

We believe that ecologists fail to use proper methods

because the implementation details provided above were

previously unavailable and because common software

packages, such as the spatial model in Sþ and the

splancs and spatstat libraries in R, lack the functions

necessary to implement these procedures. Hence, the

proposed goodness-of-fit test has been implemented

using R software (available online).4 Source code

containing functions to test observed patterns via these

methods and a user’s guide can be found in the

Supplement. The current version of software only

accommodates square plots and only implements the

reduced sample edge correction method. We intend to

continue development, and as it is available as open

source software, would encourage others to tailor it to

their specific needs.
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SUPPLEMENT

R source code and user’s guide for the implementation of the statistical test described in this paper (Ecological Archives E087-
120-S1).
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