EFFECTS OF SPATIALLY VARYING GROUND MOTIONS
ON SHORT BRIDGES

By Thomas E. Price' and Marc O. Eberhard,” Members, ASCE

ABSTRACT: The effects of non-uniform excitation on short bridges were studied by computing the response
of an idealized bridge to a suite of earthquake ground motions. The ground motions for each support were
developed from seven measured ground motions and from idealizations of wave passage and coherency loss
effects. For each set of support motions and for a range of bridge lengths and periods, the maximum support
reactions were compared with the reactions calculated for coherent motions. For variable support motion, the
contribution of the antisymmetric modes tended to increase, whereas the contribution of the symmetric modes
generally decreased. Consequently, the dynamic component of the end support reaction computed using coher-
ency loss excitation exceeded the response to coherent excitation for 62% of the bridges considered, varying
from 75-180% of the coherent response. In contrast, the dynamic component of the central support reaction,
which is affected only by symmetric modes, was unconservatively predicted in only 20% of the cases. Based
on these observations, a method that relies on modifying the modal participation factor was developed for

incorporating the effects of multisupport excitations into coherent response calculations.

INTRODUCTION

For many years, engineers have known that the spatial var-
iation of strong ground shaking can significantly affect the
response of long bridges (Abdel-Ghaffar and Rubin 1982; Du-
manoglu and Severn 1990; Nazmy and Abdel-Ghaffar 1992).
Since the advent of the SMART1 dense accelerograph array
in Taiwan (Abrahamson 1985), it has been observed that this
effect can be significant for shorter bridges as well (Harichan-
dran and Wang 1988, 1990; Zerva, 1990, 1991). Most studies
of the effects of spatially variable ground motion have been
performed using random vibration methods that rely on an
empirical characterization of the support motions, including
power spectral density and coherency functions. Unfortu-
nately, this implementation requires that some of the richness
of measured earthquake accelerograms be neglected.

In this paper, an alternate analysis procedure is imple-
mented. Recently, methods have been developed to generate
directly earthquake acceleration histories consistent with re-
corded strong-motion array data (Hao et al. 1991; Abrahamson
1992, 1993) and empirical models of spatially coherency loss.
For these ground motions, one can compute bridge response
histories and response maxima directly. When computed for a
number of bridge configurations and earthquake motions, these
maxima can be used to determine circumstances in which the
effects of spatially variable support excitation are significant.
This procedure can also be used to develop design methods
that account for spatially variable ground motion.

This study investigates the effects of multisupport excitation
on the transverse response of a short bridge by evaluating re-
sponse of an idealized bridge model to strong ground shaking
from a suite of accelerograms. The bridge model, shown in
Fig. 1, comprises a symmetric prismatic beam having two
equal spans. Support motion time histories for a suite of ac-
celerograms were generated corresponding to coherent, wave
passage, and coherency loss models of spatially variable earth-
quake shaking. An empirical model of spatial coherency decay
was enforced for the generated time histories using the pro-
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cedure of Abrahamson (1992, 1993). Support reactions of the
bridge were then computed via time history analysis. The
change in response relative to coherent excitation was calcu-
lated for the wave passage and coherency loss excitations and
for various combinations of bridge length and period. Finally,
a modification to coherent response analysis is proposed to
account for these effects.

MODEL OF SPATIALLY VARIABLE GROUND MOTION

Response of the idealized bridge model (Fig. 1) was com-
puted for a suite of support acceleration time histories. Seven
earthquake records, described in Table 1, were chosen to re-
move possible bias arising from the characteristics of an in-
dividual earthquake record. The time histories encompass a
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FIG. 1. Idealized Bridge Model
TABLE 1. Suite of Acceleration Time Histories
Epicen-
Earth- Magni- Focal tral dis-
quake Date tude | mechanism Record tance | PGA
(1) (2) 3 4) (5) (6) @
El Centro | 05/19/40 | 7.1 |[Strike-slip |Imperial Valley 9 342
Irrigation Dis-
trict
Olympia 04/13/49 7.1 |Interplate  |Olympia 30 161
subduction
Kem 07/21/52 7.7 |Reverse Taft 43 173
County
Imperial 10/15/79 6.8 |[Strike-slip |Differential Ar- 27 284
Valley ray
Station 1
SMART1 12/17/82 6.9 |Reverse Station 103 77 15
Event 20
(Taiwan)
Coalinga 05/02/83 6.7 [Reverse Pleasant Valley 9 267
Pump Plant,
basement
Landers 06/28/92 7.3 |Strike-slip |Lucerne Valley 2 735

Note: Magnitudes are M, when available; M, otherwise. Epicentral distances are
in units of km. PGA are in units of cm/s’.




variety of focal mechanisms, epicentral distances, and record-
ing site conditions. Except for the SMART1 Event 20 record,
the time histories are familiar to the engineering community
and have been widely used in design practice. The SMART1
time history was included to provide a basis of comparison
with the findings of Harichandran and Wang (1990).

Observed spatial variability in strong ground shaking is be-
lieved to arise from five sources: geometric attenuation, vari-
ation in local geology, wave passage effects, ray path effects,
and extended source effects (Der Kiureghian 1996). Attenua-
tion effects were not considered in this study, because they are
only measurable over distances much larger than the short
bridges considered. Local geology effects were not considered
either, as they depend on a specific soil profile. The wave
passage effect was used as a simple description of ground mo-
tion variability, because its implementation is straightforward
and deterministic. Extended source and ray path effects were
modeled as an ideal spatially varying stationary random pro-
cess.

Spatially variable earthquake shaking measured at discrete
locations is often described using the coherency function. For
observations at two stations denoted by x and y, the frequency
dependent coherency function can be written as

S
Vo) = [l—s“*—\/—u%] exp(id,,) M
¥y

where §,, = cross-spectral density, and S, and S,, = power-
spectral densities for observations x and y. Power- and cross-
spectral densities are frequently estimated using smoothed per-
iodograms computed from earthquake array records. The 9,
term is a deterministic factor that accounts for wave passage
between stations x and y and is a function of frequency, station
separation distance, and apparent propagation velocity of the
seismic disturbance

wvy

VAPP

where @ = circular frequency in rad/s; v = station separation
distance; and V,ep = apparent propagation velocity of the dis-
turbance. The apparent propagation velocity is itself a function
of the characteristic velocity of the medium and the angle of
incidence of the seismic disturbance.

The bracketed quantity in (1) is referred to as the lagged
coherency, a real number between O and 1 that measures the
fraction of energy that can be represented as a coherent wave
traveling between the two locations. It is often assumed that
this measure quantifies the effects of finite source dimension
and ray path variability. In this study, the empirical model
developed by Harichandran and Vanmarcke (1986) was used
as a predictor of the lagged coherency. The authors modeled
the lagged coherency as a weighted sum of exponential decay
functions

Ty 2

—2v
[¥olew, v)| = A exp [W a-4+ aA)]

-2v
+ (1 —Aexp|— (1 - A+ aAd
( Jexp [ P ( )] 3)
where A and a are constants having values of 0.636 and
0.0186, respectively; and 6 is a function of frequency having
units of meters given by

® 2954 ~112
6(w) = 31,200 [1 + (9—49—) ] @)

Note that the lagged coherency decreases with increasing fre-
quency and station separation distance.
To provide a reasonable upper bound on the influence of

the wave passage effect and to be consistent with studies by
previous researchers (e.g., Harichandran and Wang 1990), an
apparent propagation velocity of 1,000 m/s was used herein.
This velocity is consistent with earthquake excitation com-
posed primarily of surface waves, such as might be observed
at an alluvial recording site located a moderate distance from
the source. Similar values of V,pp were computed by O’Rourke
and colleagues (O’Rourke et al. 1982; O’Rourke and El Hmadi
1988) using accelerograms from the 1971 San Fernando and
1979 Imperial Valley earthquakes.

GENERATION OF SPATIALLY VARIABLE GROUND
MOTIONS

Using the procedure developed by Abrahamson (1992,
1993), three sets of support excitations were computed for
each accelerogram listed in Table 1, corresponding to coherent,
wave passage, and coherency loss excitation. In each case, the
recorded accelerogram was taken as the ground motion at sup-
port O, and motions were generated for supports 1 and 2. In
the following, it is convenient to describe the support motions
relative to support 0. If the amplitude and phase of the motion
at support 0 is known (e.g., from a Fourier analysis of a re-
corded accelerogram), the amplitude and phase of the motion
at the other supports are described using the relation

U(w) = V(w)Uw) )

where U = a frequency-domain representation of the vector of
support excitations; and U, = excitation at support 0. ¥ is a
nondimensional spatial variability parameter that varies ac-
cording to the ground motion model. This factor plays an im-
portant role in the dynamic response computations presented
in this paper.

The first, and simplest, model of spatially variable support
motions used was that of coherent excitation analysis, the cur-
rent state of practice in the engineering community. ¥ is given
in this case by the trivial equation

Viw) =1 (6)

Next, the wave passage effect was used as a simple, deter-
ministic model of spatially variable ground motion. The model
assumes that an earthquake disturbance propagates as a co-
herent group of waves traveling at constant velocity, with the
lagged coherency being implicitly set equal to unity. Using (1)
and (2), the jth component of ¥ is given by

W,(w) = exp (i V“’ jLs) M
APP

where V,.pp = apparent wave propagation velocity; and Lg =

span length of the idealized bridge. A very large value of V,pp

implies that the earthquake disturbance reaches each support

simultaneously and is equivalent to the assumption of coherent

excitation.

The third ground motion model included the loss of corre-
lation among the support motions predicted by (3) and (4), as
well as wave passage effects. Generating ground motions is
more difficult in this case, because the lagged coherency de-
fined in (1) must be satisfied between each pair of computed
time histories. To compute time histories at n locations, it is
necessary to satisfy the resulting (n*> — n)/2 equations simul-
taneously for each frequency component of the acceleration
time histories. Also, since the lagged coherency function is
itself stochastic in nature, an element of randomness must be
introduced into the computations.

For this study, the method developed by Abrahamson (1992,
1993) was used to generate the support acceleration and dis-
placement time histories. This procedure requires that the Fou-
rier amplitude spectrum of shaking at each support be set equal
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to the spectrum at support 0. The model of coherency loss is
then enforced by randomly perturbing the Fourier phase spec-
tra of all stations from the value at support O and minimizing
a penalty function based on (3) and (4). Wave passage effects
are applied deterministically to the resulting time histories. Fi-
nally, the acceleration histories are baseline corrected to con-
strain the relative station displacements.

Because the Abrahamson procedure is probabilistic, it is not
possible to write an expression for ¥ in closed form, as was
done for the coherent and wave passage models. However,
once suitable ground motions have been generated, it is pos-
sible to compute the components of ¥ on a frequency-by-
frequency basis. To ensure consistency with (6) and (7), ¥, is
given by

Uy(w)
¥(w) = Un(@) 8)

Support acceleration histories were computed for each com-
bination of earthquake, model of spatially variable ground mo-
tion, and support separation distance. For several cases of co-
herency loss motion (four of the 35 generated support
motions), the maximum displacement relative to support 0 oc-
curred more than 10 s after the strong shaking portion of the
record. Because this result seemed contradictory to the physics
of the problem, these time histories were discarded and recom-
puted.

The strong shaking portion of example acceleration histories
computed using the coherency loss model and a station sep-
aration distance of 30 m are shown in Fig. 2(a). While the
acceleration records are similar, particularly in the longer pe-
riod components, they vary in the higher frequencies consis-
tently with the frequency-dependent model of coherency loss.
Also, there is a delay equal to 0.03 s between adjacent sup-
ports, equal to the station separation distance divided by the
apparent propagation velocity (1,000 m/s).

Figs. 2(b and c) show the lagged coherency computed for
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FIG. 2. Example Coherency Loss Support Acceleration Time
Historles for L= 30 m: (a) Computed Time Histories; (b) and (c)
Coherency Computed for Time Histories
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the example acceleration time histories. Because the lagged
coherency is itself a biased estimator, the inverse hyperbolic
tangent of lagged coherency is shown as the plot ordinate.
Computed coherencies are shown as open circles, while the
coherency model used to generate the time histories is shown
as a solid line. Variation of the computed coherencies about
the empirical model is consistent with the stochastic nature of
the coherency function.

SOLUTION OF EQUATIONS OF MOTION

Herein, the bridge was modeled as a two-span continuous
beam with simply supported ends and uniform structural prop-
erties having n, free degrees of freedom (DOF) and ns support
DOF (Fig. 1). The equations of motion for this system can be
written as (Human 1990)

MF F MF S v.l‘ + CFF CF S ",I
M Mg i Cis Css u
+ Kere Kis| |V - 0
Kis K u £ €)]

where M, C, and K = structural property matrices, partitioned
into free DOF (*:5) and support DOF (*g). The model DOF
have been also partitioned into free DOF (v,} and support DOF
(u). The reaction forces at the supports are given by f;.

One can solve (9) for the active DOF by describing v, as
the sum of two components, known as the pseudostatic re-
sponse (v,,) and the dynamic response (v,). The pseudostatic
response results from the differential support displacements in
the absence of inertial loading. Neglecting the inertial loading
terms, the pseudostatic response can be computed using

—K#Keu (10)

The multiplier of the support motions, —K 77 Kss, is a matrix
of dimension n, by ns, wherein the kth column represents the
deflected shape of the structure resulting from a unit displace-
ment applied at the kth support.

The dynamic response (v,) is caused by inertial loading of
the structure. It can be computed by multiplying out the first
row of (9), eliminating v,, using (10), and neglecting loading
due to damping effects. In the case of a lumped mass matrix,
the final equation for v, is given by

MV, + Crevy + KiepVa = MFFKF-‘I'I'KFSﬁ an

If the mass and stiffness matrices possess normal modes and
the damping matrix is orthogonal, an expression for the jth
modal ordinate can be written as

3, + 208y + @iy = & MeK 7Kl (12)

where y, = jth modal ordinate; ¢, = mass-normalized mode
shape of the jth mode; and ; and § = natural circular fre-
quency and damping ratio of mode j, respectively.

A frequency domain solution was used to solve (12). For a
case in which the support motion is a complex harmonic mo-
tion of frequency w whose amplitude is given by (5) the equa-
tion of the jth modal coordinate is found by substituting (5)
into (12) as follows:

Yj + 2wj§/Y; + ijj = (¢1TMFFK Krs)( wz‘y(w)Uo(w)e—m)
(13)

where Y, = Fourier component of y, corresponding to fre-
quency .
A harmonic solution for ¥, can be obtained by solving the

linear differential equation
= ABUy(w)e ™ 14)

where A, = familiar dynamic amplification factor (e.g., Humar
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FIG. 3. Generalized Participation Factor for Selected Modes
of Continuous Two-Span Beam

1990); and B, = frequency-dependent generalized participation
factor for mode j given by

B, = (& MeK 77 Kps) ¥ () (15)

B, is a complex scalar function of only the structural geometry
and the model of ground motion spatial variability. For co-
herent input motion, B, is equal to the coherent participation
factor.

As B, is independent of the properties of the support time
histories, (15) can be used to predict the influence of spatially
variable excitation on structural response. Fig. 3 shows the
magnitude of the generalized participation factor (B;) for the
first few modes of the idealized bridge, evaluated using the
wave passage ground motion model given in (7). The nondi-
mensional period TV,pp/Ls is used as the abscissa of Fig. 3,
where T = 27/w, and | B;| has been normalized by its limiting
value, which is given by

By = D, | (0] MoK 7K )| (16)

For each mode, |B;| approaches the coherent value in the
limit as TV, pp/Ls — . Eq. (15) yields the same curve for all
antisymmetric modes of the two-span beam considered in this
study, which increases from its coherent value (0) to peaks at
TVape/Ls = 4, 4/3, .. .. For wave passage excitation, the re-
sponse of symmetric modes either increases or decreases, de-
pending on the mode. The response of the first symmetric
mode decreases for finite apparent propagation velocities while
the second symmetric modal response increases. A depiction
such as Fig. 3 can be used to predict whether the effects of
wave passage excitation will increase or decrease a particular
response quantity, depending on the contribution of the various
modes to that quantity.

Using the solution for simple harmonic excitation given in
(14) and (15) and techniques of Fourier synthesis, the modal
coordinates y; can be computed for each set of support motions
used in this study. The dynamic displacement response is then
recovered using modal superposition, and total response is ob-
tained by adding the dynamic response and the pseudostatic
response computed from (10). Finally, support reactions can
be computed using the second row of (9).

PROPERTIES OF BRIDGE MODELS

The properties of the two-span bridge model must be spec-
ified to apply the aforementioned solution procedure. To en-
sure that the bridge model would have typical properties,
bridge lengths and fundamental lateral periods were chosen
using the ambient vibration database of Dusseau and Dubaisi
(1993). The measured lengths and periods of short-span
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FIG. 4. Fundamental Lateral Periods of Short Bridges (Dus-
seau and Dubaisi 1993)

bridges are plotted in Fig. 4 for several types of bridge con-
struction. The data for all bridge types were used to develop
a relation between bridge length and fundamental lateral pe-
riod having the form

7,=% an
a

where T, = fundamental lateral bridge period in seconds; L =
total bridge length in meters; and a and n = calibration con-
stants. Nonlinear regression was used to determine the best-fit
curve for the database, plotted as the solid line in Fig. 4 (a =
780, n = 1.20).

The regression data were then used to compute a 90% log-
normal confidence interval about the best fit. The lower bound
of this interval (@ = 1,060) was selected as the lower bound
for bridge periods. Based on the recommendations of ATC-32
(“Improved’’ 1996), it was assumed that the effective EI under
strong ground shaking would be reduced by 25% from the
ambient vibration value. Therefore, the upper bound of the
confidence interval was increased by an additional 15%, re-
sulting in a final upper bound “a’’ value of 480. Upper and
lower bounds are shown as the dashed curves in Fig. 4. These
bounds agree well with the results of Mahmoodzadegan et al.
(1994), who measured a transverse period of 0.07 s for a 30
m long bridge subjected to quick-release vibration. They agree
also with the fundamental period of the 63 m long Meloland
Road Overcrossing measured during quick-release testing (0.30
s) (Werner et al. 1990).

Span lengths of 10, 20, 30, 40, and 60 m were chosen to
represent the bridges in the database, assuming a bridge com-
posed of two equal spans. A range of fundamental periods
between the computed upper and lower bounds was used in
the response computations.

Modal periods and frequencies for higher modes of the ide-
alized bridge were computed using the fact that the modal
frequencies have fixed ratios based on the bridge geometry.
By static condensation of the beam rotational degrees of free-
dom, the mass and stiffness matrices of the idealized bridge
can be written as

_ El
Mer = mLMrr; Kpr = 7 i (18)

S
where El = flexural rigidity of the beam; m = mass per unit
length; and L; = span length. The quantities denoted with an
overbar are nondimensional and depend only on the bridge
geometry. Lumped-mass and standard beam stiffness formu-
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lations were used in the structural property matrices, which
were generated from a finite element model having 49 total
degrees of freedom.

Normal modes of the structure are computed using the ei-
genvalue equation given by

Ker — ©]Mer)d; = 0 19

Substituting (18) into (19) and dividing through by EI/L},
the eigenvalue equation is given by
_ mL} _
(KFF = ‘-012 E_Is Mnr) b,=0 (20
It can be seen by inspection of (20) that the mode shapes
of the structure are independent of the structural properties of
the beam (EI, m, and L) and depend only on the boundary
conditions. Also, the modal frequencies are now given in non-
dimensional form, implying that it is not necessary to specify
the structural properties directly in order to model the beam.
Natural frequencies for modes other than the first can then be
computed using the ratios of the nondimensional frequencies.
In the interest of limiting computational cost, only the first 28
modes of the bridge, corresponding to over 99% of the par-
ticipating mass, were used in the response computations.

COMPUTED DYNAMIC RESPONSE

Time history analyses were performed for 1,638 combina-
tions of bridge length, fundamental period, ground motion
model, and earthquake accelerogram to compute the maximum
dynamic response amplitude (v,). The greater maximum ab-
solute support reaction at supports 0 and 2 was reported as the
maximum end support reaction for the structure. Because ob-
served seismic bridge damage (Hall 1995) indicates that sup-
port elastic force demand is a critical design concern, partic-
ularly in brittle structures, this paper presents computed
support reactions only. Price and Eberhard (1996) report ad-
ditional response quantities, including relative midspan dis-
placements, bending moments, and the sum of support reac-
tions.

To facilitate comparison of the maximum response com-
puted for coherent excitation with that computed for nonco-
herent motions, the maximum wave passage and coherency
loss dynamic responses were normalized by the maximum co-
herent response. A ratio greater than 1.0 indicates that coherent
response analysis was unconservative. Normalized dynamic
response ratios for end support reaction and central support
reaction are plotted against the dimensionless parameter
ToVare/Ls in Fig. 5. This parameter is equivalent to the ratio
of the fundamental structural period to the time a seismic dis-
turbance takes to traverse a span of the bridge. Use of this
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TABLE 2. 90% Upper-Brand Dynamic Response Ratios

Normalized by
Normalized by Approximate
Coherent Response Response
Wave |Coherency| Wave |Coherency
Response quantity [ passage loss passage loss
(1) (2) (3) 4) (5)
End support reac-
tion 1.28 1.27 1.03 1.04
Central support re-
action 1.07 1.07 0.94 0.97
Midspan displace-
ment* 1.57 1.58 1.08 1.10
Central support mo-
ment* 1.02 1.03 0.96 0.98
Sum of support
reactions* 0.98 1.00 0.96 0.99

Note: Upper bounds correspond to a 90% one-sided Gaussian confi-
dence interval. Midspan displacement measured relative to a chord
through the end supports.

*Data reported in Price and Eberhard (1996).

parameter removes the influence of the value of V,pp from the
wave passage response computations. Since V,pp was chosen
to represent a lower bound in this study, the influence of wave
passage effects may be taken as an upper bound, relative to
coherency loss.

The end support reaction response ratios shown in Figs. 5(a
and b) indicate that coherent response analysis was unconser-
vative in most cases. Response ratios greater than 1 were com-
puted over the entire range of 7,V app/Ls for both wave passage
and coherency loss excitations. The maximum wave passage
end support reaction was underpredicted by coherent analysis
for 77% of the computations, by an average of 10%. Similarly,
coherency loss response was underpredicted by coherent anal-
ysis for 62% of the analyses and by an average of 7%. Most
importantly, several response ratios greater than 1.5 were com-
puted. Table 2 reports statistical 90% upper bounds for the
response ratios for various response quantities. For end support
reactions, the 90% upper bound response ratios were 1.28 for
wave passage excitation and 1.27 for coherency loss excita-
tion.

In contrast, central support reaction response ratios were
generally less than 1 [Figs. 5(c and d)]. Coherent analyses
were unconservative for wave passage and coherency loss ex-
citation in less than 20% of the cases. Coherent analysis was
conservative by an average of 14% for wave passage excita-
tion and 17% for coherency loss excitation. Central support
reaction 90% upper-bound response ratios were 1.07 for both
wave passage and coherency loss excitation.

It is significant that the effects of variable support excitation
differ for the end and central support reactions. The difference
is attributable to the fact that the contributing modes for each
response quantity are affected differently by multisupport ex-
citation effects, as discussed previously. The central support
reaction is dominated by the contribution of the first symmetric
mode, which exhibits reduced participation under wave pas-
sage excitation, as shown in Fig. 3. On the other hand, the end
support reaction receives a significant contribution from the
antisymmetric modes, for which response is increased by wave
passage effects, also shown in Fig. 3. The 90% upper-bound
dynamic response ratios in Table 2 indicate that similar phe-
nomena were observed for relative midspan displacement (an-
tisymmetric modes contribute significantly), and central sup-
port moment (dominated by first symmetric mode), and the
sum of support reactions (dominated by first symmetric mode).

One might expect that bridge length would have a strong
influence on the response to variable support excitation. Sta-



tistical analysis of the data plotted in Fig. S indicates, however,
that the dependence of dynamic response ratio on bridge
length is not significant. Observed differences are small rela-
tive to the overall variability of the data.

COMPUTED TOTAL RESPONSE

Ratios of maximum wave passage and coherency loss re-
sponse to maximum coherent response were also computed for
total response, which is the sum of the dynamic and pseudo-
static components. Total response ratios for end support re-
action and central support reaction are shown in Fig. 6. Re-
sponse ratios that would appear outside the plotted area are
denoted by an arrow indicating a larger value.

The relative influence of the pseudostatic and dynamic re-
sponse components can be seen by comparing Figs. 5 and 6.
The contribution of pseudostatic response does not signifi-
cantly affect wave passage response for either reaction; total
response ratios are similar to dynamic response ratios in both
cases. Coherency loss response, however, has a significant
pseudostatic component, especially at small values of T,V pp/
Ls and shorter span bridges. For values of TyVapp/Ls less than
approximately 8 and span lengths less than or equal to 20 m,
many total response ratios greater than 2 were computed.

To compare the magnitude of the computed coherency loss
pseudostatic response maxima with the results of other re-
searchers, the maximum deflection of the central support rel-
ative to a chord through the end supports was computed for
each set of support time histories. Maximum pseudostatic de-
formations and stresses of the idealized bridge can be shown
to be proportional to this quantity. The computed maximum
deflections were roughly equal to 0.08Lgu,,,, where up,, =
maximum displacement at support 0, and L is given in meters.
Although this value corresponds to a pseudostatic response
greater than that predicted by other researchers (Harichandran
and Wang 1990; Der Kiureghian (1991), analysis of acceler-
ograms recorded at the Chiba array (Katayama et al. 1990)
indicates that even larger pseudostatic response may occur.
Furthermore, computations presented by Zerva (1992) dem-
onstrate that the relative displacements are highly sensitive to
the choice of coherency model. Clearly, direct field measure-
ments of spatially varying displacement caused by earthquake
shaking are needed to refine estimates of pseudostatic re-
sponse.

Response of a two-span beam to spatially variable excitation
has been studied by Harichandran and Wang (1990) and Zerva
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(1990, 1991) using random vibration methodology and by Der
Kiureghian and Neuenhofer (1991) using response spectrum
analysis. Harichandran and Wang (1990) and Der Kiureghian
and Neuenhofer (1991) present computations for moment over
the central support that indicates this quantity is reduced for
non-uniform excitation. These findings are consistent with the
90% inner bound central support moment response ratios com-
puted in this study (Table 2).

The maximum absolute midspan displacement was de-
creased by spatially variable excitation, as found by the pre-
vious researchers. This response quantity, however, is strongly
influenced by the presence of a rigid-body component of
bridge response. When the rigid-body motion was removed
from the midspan displacement computations, relative mid-
span displacement increased significantly over coherent re-
sponse (Table 2). Because both relative midspan displacement
and end support reaction are nonzero in the antisymmetric
modes, this finding is consistent with the end support reaction
response ratios in Figs. 5 and 6. The trend in the computed
reactions agree with Zerva (1990, 1991), who found that
bridges subjected to wave passage excitation could experience
increased end support reactions over a range of apparent prop-
agation velocities, for certain combinations of bridge length
and period.

APPROXIMATE DYNAMIC RESPONSE COMPUTATION

Methods have been proposed previously to account for the
effects of support excitation (Abrahamson 1985; Yamamura
and Tanaka 1990; Der Kiureghian and Neuenhofer 1991; Ber-
rah and Kausel 1992). In general, these methods either require
a prohibitive number of numerical integrations, or cannot be
extended to structures with modes having a vanishing coherent
participation factor.

The method presented in this paper was developed based
on the observation both herein (Fig. 5, Table 2) and in previous
studies (e.g., Zerva 1990) that a loss of coherency generally
leads to a reduced response. It should be possible, therefore,
to conservatively estimate maximum response using wave pas-
sage excitation alone. Luco and Wong (1986) reached a similar
conclusion for the analysis of a rigid foundation, wherein re-
sponse to partially coherent excitation was conservatively pre-
dicted using properly calibrated wave passage analysis. This
approach is attractive because the wave passage model is de-
terministic, admits closed-form solution, and is less compu-
tationally expensive to implement than the coherency loss
model. Furthermore, the proposed method can be applied to
any analysis in which spatially variable ground shaking can
be described deterministically (e.g., using site response anal-
ysis).

The approximation was implemented by modifying the par-
ticipation factor used in coherent analysis to account for the
influence of wave passage effects. The generalized modal par-
ticipation factor defined in (15) and plotted in Fig. 3 yields a
frequency-dependent measure of the interaction between a
given mode of the structure and the effects of wave passage
support excitation. If the mode being excited is lightly
damped, then the excitation is filtered sharply about the
mode’s natural frequency. It is proposed to neglect the fre-
quency dependence of B, and set the participation factor equal
to the magnitude of B, evaluated at the natural frequency of
the mode. To ensure a conservative approximation, the value
of | B)| used herein was not allowed to be less than the coherent
participation factor. Using this substitution, analysis can be
carried out as for coherent analysis, with the only exception
being the definition of the participation factor.

It should be noted that the curves shown in Fig. 3 are ap-
propriate only for the bridges considered in this study and that
T}, Vare, and Ls must be specified to evaluate | B;|. However,
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it would be computationally inexpensive to use a representa-
tion such as Fig. 3 to choose a conservative value of |B,| for
other structures. The potential effects of variability in T}, Vape,
and L; can also be evaluated in this manner.

Approximate response was computed for each of the bridges
analyzed previously and for each of the time histories in the
suite of accelerograms. Modal response time histories were
computed by multiplying time histories from appropriate sin-
gle-degree-of-freedom response time histories with the modi-
fied participation factors. Approximate dynamic response was
then computed using modal superposition. Finally, the com-
puted dynamic wave passage and coherency loss response
were normalized with respect to the approximate response.
The resulting end and central support reaction response ratios
are plotted in Fig. 7.

End support reactions to wave passage excitation were con-
servatively estimated for 86% of the analyses, while coherency
loss response was conservatively estimated for 83% of the
analyses. 90% upper-bound response ratios computed using
approximate responses are shown in Table 2. Although the
approximated values are conservative overall, predictions are
unconservative by as much as 20% for seven of the 1,092
computed quantities. For central support reactions, the ap-
proximate analyses were conservative for 100% of the wave
passage cases and 95% of the coherency loss cases.

Comparison of the coherent and approximate response 90%
upper bounds (Table 2) shows that the approximate analyses
provide a rational, improved estimate of the effects of spatially
variable excitation. Each of the response quantities is conser-
vatively predicted, without adding unnecessary conservatism
to the computations. The method was also found to work well
when applied to the relative midspan displacement, the central
support moment, and the sum of the support reactions (Table
2). Furthermore, the approximate method can be implemented
using commonly available software that assumes uniform sup-
port motions. The approximation also leads to tremendous sav-
ings over coherency loss analysis, because it is unnecessary to
perform the costly generation of support acceleration histories
needed for each combination of ground motion and span
length.

The proposed method provides a greatly improved estimate
of maximum dynamic response compared with coherent re-
sponse analysis. For cases in which differential support dis-
placements dominate total response, an estimate of pseudo-
static response must be included in the analysis. Unfortunately,
direct measurements of earthquake-induced differential dis-
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placements are insufficient to justify such an estimate at this
time.

SUMMARY

Computations were performed to determine the effects of
spatially variable ground motion on the response of short
bridges. Sets of support acceleration time histories were gen-
erated using a suite of accelerograms (Table 1) in conjunction
with coherent, wave passage, and coherency loss models of
spatially variable ground motion. Bridge support reaction time
histories were computed for each excitation. Response to spa-
tially variable support excitation was then compared with co-
herent response. Parametric studies were performed to deter-
mine the importance of bridge period and length in response
to multisupport excitation. The findings of the study can be
summarized as follows:

1. The dynamic response of short bridges can be influenced
significantly by the effects of variable support excitation.
For most of the bridges considered in this study, coherent
analysis provided a conservative estimate of the dynamic
central support reaction, the central support moment, and
the sum of support reactions of the idealized two-span
bridge. However, end support reactions and relative mid-
span displacements were consistently underpredicted by
coherent response analysis. The average error was only
10%, but for many combinations of bridge length, bridge
period, and earthquake excitation, coherent analysis was
unconservative in some cases by as much as 50%.

2. Spatially variable excitation affects each response quan-
tity differently depending on the contribution of individ-
ual modes. For each response quantity considered, the
influence of spatially variable excitation was consistent
with the generalized participation factor of the dominant
mode for the response quantity (Fig. 3). For example,
the antisymmetric modes contributed significantly to the
end support reaction; as a result, response to multisup-
port excitation significantly exceeded the response to co-
herent excitation. The central support reaction, however,
was strongly influenced by the first symmetric mode, so
it decreased when spatial variability was taken into ac-
count. Similar behavior was observed for relative mid-
span displacement, central support moment, and the sum
of support reactions. These trends with respect to in-
creased/decreased modal contribution are observed for
both wave passage and coherency loss models of spa-
tially variable ground motion.

3. For the coherency loss model implemented in this study,
the bridges studied can be divided into two categories,
based on whether the pseudostatic or dynamic response
dominated the total response. Bridges for which T,V ape/
Ls was small were found to have strong components of
pseudostatic response when subjected to coherency loss
excitation. Response of bridges with large values of
ToVare/Ls was dominated by the dynamic component of
response. The value of T,Vap/Ls at which this change
was observed depended on the relative support displace-
ments, for which few corroborative field measurements
are available, and on the properties of the structural
model.

4. The dynamic response of short bridges excited by the
wave passage and coherency loss models can be conser-
vatively approximated by modifying the modal partici-
pation factor to include the effects of wave passage ex-
citation. The proposed method is attractive because it can
easily be extended to structures other than those consid-
ered, it can be used with any deterministic description of
spatially variable ground motion, and it is computation-



ally inexpensive. The method can be easily automated
and used in conjunction with currently available finite
element analysis software.
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APPENDIX ll. NOTATION
The following symbols are used in this paper:

A = dynamic amplification factor;
A, a = constants for empirical model of coherency decay;
a, n = regression coefficients for bridge period database;
B = generalized modal participation factor;
EI, m = flexural rigidity and mass per unit length of ideal-
ized bridge model;
f, = support reactions;
L, Ly = total length and span length of bridge;
M, C, K = mass, damping, and stiffness matrices of idealized
bridge model;
S, = cross-spectral density between signals observed at
stations x and y;
T, = fundamental bridge period;
u, U = time- and frequency-domain values of support mo-
tion,
Vare = apparent propagation velocity of seismic distur-
bance;

Vi V4 Va = total, pseudostatic, and dynamic response compo-
nents for model degrees of freedom;
¥, Y = time- and frequency-domain values of jth modal re-
sponse history;

Yxy = coherency between signals measured at locations x
and y;

¥, = phase term of coherency loss;
v = station separation distance;

¥ = spatial variability of earthquake ground motion;

w = circular natural frequency (rad/s); and

w, § & = frequency, damping ratio, and shape of mode ;.
Subscripts

i = support or station number; and
J = mode number.
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