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ABSTRACT: A two-dimensional algorithm has been developed to determine the locations and sizes of steel
bars in reinforced concrete members. This algorithm uses magnetostatic relationships to relate measured
distortions in the magnetic field outside of a concrete member to the distribution of steel within the member.
An optimal solution for the locations and sizes of the steel bars is determined by minimizing the difference
between measured and computed distortions of the magnetic field. Finite-element analyses were conducted
to simulate the interaction between steel bars and an imposed magnetic field. On the basis of the simulated
magnetic distortion, the algorithm accurately identified the location and size of a single bar even when 20%
error was induced in the magnetic distortions. The algorithm also identified two bars spaced horizontally or
vertically. However, if one bar was much closer to the receivers than the other, only the closest bar was
identified accurately. When 109 error was induced in the simulated magnetic distortions, the algorithm
accurately located two bars only when the areas were already known.

INTRODUCTION

In many reinforced concrete structures, it is necessary to
nondestructively determine the locations and sizes of the rein-
forcing bars. This informatton is often desired to assess the
safety of aging structures and inspect new construction. Cur-
rently, the geometry of the reinforcement is most often de-
termined with induction meters. which rely on the magnetic
properties of the steel. Induction meters provide acceptable
results when the reinforcement configuration is simple. How-
ever, nondestructive evaluation with induction meters is less
reliable when the geometry of the reinforcement is compli-
cated by the presence of closely spaced bars, stirrups, and
ties (Lauer 1991).

The ability to evaluate civil engineering structures would
significantly improve if a magnetic method were available to
decipher complex reinforcement configurations. As a step
toward this goal, this paper presents the basis of a two-di-
mensional, magnetostatic technique to determine the loca-
tions and sizes of reinforcing bars. To implement this tech-
nique, a magnetic field (B,) is applied to a reinforced concrete
member, and the distortion of the field (B”), caused by the
steel within the member, is measured in several locations. A
possible configuration is shown schematically in Fig. 1. The
algorithm computes the reinforcement configuration whose
corresponding magnetic distortion most resembles the mea-
sured distortions.

After presenting an overview of the reconstruction algo-
rithm, the two-dimensional relationships that support the al-
gorithm are derived. The algorithm was applied to one-bar
and two-bar configurations for which input data were pro-
vided by finite-element simulations. To investigate the re-
construction algorithm’s sensitivity to measurement errors,
simulations of selected geometries were repeated with various
amounts of error.
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OVERVIEW OF ALGORITHM

A two-dimensional algorithm is proposed to determine lo-
cations and sizes of steel reinforcing bars in concrete. The
underlying physical phenomenon is the same as that exploited
by the three-dimensional algorithm presented by Pla et al.
(1994). The two-dimensional reconstruction procedure con-
sists of the following steps:

1. A long coil, generating a magnetic field B, is used to
magnetize the steel within a concrete member. This
magnetization induces an additional field, B”, at all points
in space (Fig. 1).

2. The two vector components of the total magnetic field
B normal to the length of the bars are measured outside
the member. This field is the sum of B, and B".

3. The measured distortion in the magnetic field B;,.,.
caused by the steel inside the member, is determined
by subtracting the magnetic field generated by the coil
from the total magnetic field (i.e.. B;,.., = B — By).

4. For a trial configuration of reinforcing bars (trial x-co-
ordinates, y-coordinates, and area values for an as-
sumed number of bars), B, at the center of each bar is
computed.

5. The magnetic dipole density M for each trial bar is de-
termined by simultaneously solving two sets of equa-
tions. The first equation relates M to the magnetic field
to which the bar is subjected. This field is the sum of
the imposed magnetic field B, and the magnetic field
caused by magnetization of the other bars B".

XN}
M=—">>—(B, + B |
il + 05x,) B ) W
where x,, = the magnetic susceptibility of the steel; and
K, = the permeability constant in vacuum (410~ 7N/
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A?). The second equation relates magnetic distortion at
the location of one bar B” to the magnetic dipole density
M at another:

(B':) ™, W P L1 <M> @

B! 2u(x* + y?)? 2xy y = x? M,
where x and y are the distances along the x- and y-axes,
respectively, from the bar having the influence to the
bar being investigated. Both (1) and (2) are derived in
the next section.

6. Eq. (2) is used to calculate the distortion in the magnetic
field at the receivers, B, In this step, M is the magnetic
dipole density at a bar, and x and y are the distances
from the bar to the receiver.

7. The sum of squared differences (SSD) is computed for
all of the receivers:

SSD = (B, = Bl.) (B, — Bly) (3}

8. New configurations are selected, and steps 4-7 are re-
peated until SSD is minimized. This minimization re-
sults in the identification of the locations and sizes of
reinforcing bars that would cause magnetic distortions
most similar to those measured.

TWO-DIMENSIONAL RELATIONSHIPS

The proposcd algorithm relies heavily on (1) and (2), which
are derived in this section. In deriving these equations, the
steel is assumed to be square in cross section and infinitely
long. It is also assumed that the magnetic field is constant
along the length of the bar and over the bar’s cross section.

Magnetization Induced by Ambient Magnetic Field

A relationship between magnetic dipole density (M} and
ambient magnetic field (B, + B") can be developed for the
geometry shown in Fig. 2. The reinforcing bar is square in
cross section (xy-plane), and extends to infinity in the z-di-
rection. If M is assumed constant within the reinforcing bar,
the magnetization can be modeled with a current distribution
on the surface of the steel (Nayfeh and Brussel 1985). For
this geometry, the current distribution consists of differential
current loops. The magnitudes of the currents are M, dx and
M, dy for loops about the x-axis and y-axis, respectively (Fig. 2).

‘Magnetization of the steel causes a magnetic field B’ within
the bar. This field can be determined from the current dis-
tribution. If the bar extends to infinity, only currents along
the length (z-direction) of the bar contribute to B’. Therefore,
the x- and y-components of the magnetic field caused by a
single loop can be computed as the sum of the contributions
from two, infinitely-long, wires. Starting with Biot-Savart’s
law (Nayfeh and Brussel 1985), it can be shown that the
magnetic field generated by a single wire with current / is:

/ N

y (=M, dx)

FIG. 2. Difterential Current Loop on Surface of Rectangular Bar
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where r = the two-dimensional vector from the wire centroid
to the point being considered (the center of the bar); r = the
magnitude of vector r; and k = a unit vector parallel to the
direction of current.

The resulting magnetic field B is the sum of the contri-
butions of all the differential current loops. For the x-com-
ponent. the following is obtained:

B’ sz roM,

- w? a 2 .
™ 3 + x

x dx (5)
Performing this integration for both the x- and y- components
results in:

N
B 5 M {6)
For low values of magnetic intensity, magnetization varies
linearly with the magnetic field (Bleaney and Bleaney 1965):

_ Xu(By + B" + B')
p‘ll(l + Xm)

Substituting (6) into (7) allows the magnetic dipole density
to be expressed as a function of the ambient magnetic field
at a reinforcing bar. This relationship was previously defined
as (1).

M

(M

Two-Dimensional Magnetic Dipole Formula

The two-dimensional magnetic dipole formula in (2) relates
distortion in the magnetic field, B", at one point to the mag-
netic dipole moment at another point. This relationship may
be derived from the three-dimensional magnetic dipole for-
mula (Nayfeh and Brussel 1985):

PR RYR
B = o/ [3<m R) R m] (8)

where R = the vector from the magnetized material to the
point where the magnetic field is being investigated; and m
= the magnetic dipole moment.

In the two-dimensional case. the reinforcing bars are as-
sumed to be infinitely long and uniformly magnetized by a
long coil. Therefore, the distortion in the magnetic field at a
point is the sum of the distortions caused by an infinite num-
ber of differential volumes, as shown in Fig. 3.

The x-component of B” caused by a single differential ele-
ment, dB%, can be obtained by expanding (8) and substituting
MA, .dz for m:

FIG. 3. Differential Magnetic Dipole Moments Causing Distortion
in Magnetic Field
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where the dimensions x. y, and z are measured from the
center of the magnetized element to the point at which the
distortion in the magnetic field is being evaluated. Similar
expressions may be obtained for dB} and dB’. Integrating
these expressions from negative infinity to positive infinity in
the z-direction leads to (2). There is no need to measure the
z-component of the magnetic field because, theoretically,
B! is zero.

IMPLEMENTATION OF ALGORITHM

The reconstruction algorithm (steps 4-8) has been imple-
mented with the software package MATLAB (Sigmon 1992).
The user provides initial trial values of the bar coordinates
and areas. Then, the program computes the distortion in the
magnetic field at the receivers as well as the difference be-
tween the computed and measured distortions. The output
of the program is the bar configuration that minimizes SSD,
which is defined in (3).

Two optimization commands are used to minimize SSD.
SSD is minimized using a simplex solution method described
by Nelder and Mead (1964) with the fimins( ) command (Grace
1990). SSD is also minimized using the leastsq( ) command,
using a search algorithm based on Levenberg’s (1944) and
Marquardt’s (1963) work. The algorithm used by leastsq( ),
which is intended for least-squares problems, is described by
More (1977).

One-Bar Problems

If it is assumed that only one steel bar is present, three
variables need to be determined. These variables are the bar’s
horizontal location (x-coordinate), depth (y-coordinate), and
area (A,.). The initial trial values were x = 0,y = 10 mm,
and A ., = 100 mm?>. Assuming that only one bar is present
makes it possible to simplify the algorithm. In particular,
there is no distortion in the magnetic field at the bar due to
magnetization of another bar. Therefore, B” in (1) is zero,
and (2) may be ignored in step 5 of the algorithm.

The algorithm used to determine the location and size of
one bar minimized SSD with both optimization commands.
In almost all cases, both commands yielded the same results.
In those few cases where the results differed, the result with
the lowest SSD was selected as the algorithm’s solution to
the problem.

Two-Bar Problems

If two bars may be present, the number of variables doubles
and the complexity of the governing equations increases. The
number of unknown variables increases to six: two x-coor-
dinate values, two y-coordinate values, and two area values.
In addition, interaction between reinforcing bars must be con-
sidered because the magnetized steel in one bar will distort
the magnetic field at the other bar [(2)].

The procedure used to identify as many as two bars in-
volved solving the problem first as if one bar was present [Fig.
4(a)], and then as if two bars were present [Fig. 4(b)]. Initial
trial values for the two-bar problems were x = — 10 mm, y
= 10 mm, and A, = 100 mm? for one bar and x = 10 mm,
y = 10mm, and A,,., = 100 mm” for the second bar. During
preliminary investigations, the minimization commands often
converged to a local minimum when two bars were close
together. In particular, the computed configuration consisted

— X
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a) Assume one bar is present. b) Assume two bars ore present
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c) First split of Bor 1
identified by step (b).

d) Second split of Bar 1
identified by step (b).

e) First split of Bar 2
identified by step (b).

f) Second split of Bar 2
identified by step (b).

FIG. 4. Sequence of Initial Trial Locations (TL) for Two-Bar Search
Algorithm

of one large bar at an intermediate position [Fig. 4(b)] and
a second bar with an unrealistic location or an area that was
either negative or excessively large.

To obtain the global minimum for SSD, four additional
trial configurations were provided. The four additional con-
figurations were based on the results of the first two-bar min-
imization. In particular, trial configurations for other two-bar
solutions were selected that represented diagonal corners of
one of the two bars identified by the initial two-bar solution.
Both bars in the new trial configuration were assigned areas
equal to one-half that of the bar being split. The splitting
process was repeated so that both bars identified by the initial
two-bar solution were split twice, once along each diagonal.
The series of initial trial locations is described in Fig. 4. This
process was performed with both optimization commands.
The lowest SSD from the 12 solutions was selected as the
best solution.

SIMULATIONS

Finite-element analyses were conducted on configurations
containing rectangular steel bars to provide input data with
which to test the reconstruction algorithm. All analyses were
conducted with the same finite-element mesh. The model was
prepared and analyzed with Ansoft Corp.’s Maxwell 2-D Field
Simulator (Maxwell 1991), which uses a conjugate gradient
method to solve magnetostatic problems. This finite-element
model used 30,881 triangular elements to describe the ge-
ometry shown in Fig. 5. The outer boundary of the problem
was located at a value of 200 mm in each coordinate direction.
The conjugate gradient solver was allowed to perform 575
iterations on every problem simulated.
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FIG. 5. Geometry of Finite-Element Model (All Units in Millime-
ters)

Two 2 by 2 mm wires with 1,000-A currents flowing in
opposite directions were used to model the long coil. These
wires were placed 120 mm apart center to center, symmet-
rically about the y-axis, and resting in the xz-plane. Five
receiver locations were included in the model. They are de-
noted by R1-RS.

Eight possible locations for steel reinforcing bars were also
provided. They are labeled V1-V8 in Fig. 5. Potential lo-
cations of reinforcing bars were 12 mm square in cross section,
which corresponds to one-tenth of the coil’s wire spacing. The
cross-sectional area of 144 mm? was close to the nominal area
of a No. 4 reinforcing bar, 127 mm?. In locations where steel
was present, the relative permeability was specified to be
2,000 (CRC 1992). In all other locations, the relative perme-
ability was specified to be 1.0 (the value associated with free
space).

To describe the bar geometries with nondimensional quan-
tities, two parameters were defined. The ratio of bar depth
to the distance between the coil wires was defined as the depth
factor alpha, and the ratio of the x-coordinate to the distance
between wires was defined as the horizontal location factor
beta.

One-Bar Problems

Configurations containing one bar were analyzed with the
bar located at x-coordinate equal to zero and increasing depths
{(y-coordinates) of 30, 45, 60, and 90 mm. These depths cor-
respond to o = 0.25, 0.375, 0.5, and 0.75. Configurations
were also analyzed for a depth equal to one-half the coil wire
spacing and x-coordinates of 0, 20, 40, and 60 mm. These x-
coordinates correspond to B values of 0, 0.167, 0.333, and
0.5. Errors in the reconstructed coordinates were normalized
with respect to the exact depth of the bar, and errors in
reconstructed area were normalized with respect to the exact
area.

Results for the one-bar problems are presented in Tabie 1.
Normalized errors in the x- and y-coordinates were all less than
1.5%. They did not increase or decrease consistently with in-
creasing coordinate values. The results also show that the error
in bar area decreased as the x-coordinate or the y-coordinate
of the bar increased. However, this decrease, less than 2.5%
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error over the range of a and B, was smail compared with the
total error in the bar areas (approximately 8-10%).

Two-Bar Problems

Configurations containing two bars were analyzed with the
same finite-element mesh used to analyze the one-bar prob-
lems. Reconstructions were performed with the bars at var-
ious horizontal spacings and with the bars at various vertical
spacings. In particular, effects of horizontal spacing were in-
vestigated by analyzing configurations 7-8, 3-7, 3-6, and 3-5,
where the two numbers in each configuration name refer to
the volume elements filled with steel (Fig. 5). The center-to-
center bar spacing in each configuration was 120, 60, 40, and
20 mm, respectively. In all of these configurations the bar
depths were 60 mm.

The results of implementing the two-bar search algorithm
are reported in Table 2. Normalized errors from the exact
values associated with these results are plotted against the
ratio of bar depth to bar spacing for horizontally spaced bars
in Fig. 6. Again, errors in the coordinates were normalized
with respect to the exact depth of the bar, and errors in area
were normalized with respect to the exact area. Fig. 6 shows
that the algorithm effectively identified two horizontally spaced
bars. The identification was successful even when the clear
distance between the bars was less than the dimension of the
bars (depth to spacing ratio of 2.5).

Effects of vertical spacing were investigated by analyzing
configurations 1-4, 2-4, 3-4, and 2-3. Normalized errors from
the algorithm’s solutions for vertically spaced bars are plotted
against the ratio of the depth of bar 2 (deepest bar) to the
depth of bar 1 (shallowest bar) in Fig. 7. These plots show
that the algorithm identified both bars with less than 20 per-
cent error when the ratio of bar depths was 2 or less. The
algorithm was unable to identify the bar farthest from the
receivers when the ratio of bar depths was equal to 3. The
closer bar masked the influence of the farther bar because
the closer bar caused much greater distortion in the magnetic
field. As the farthest bar’s contribution to the distortion de-
creased in proportion to the contribution of the shallow bar,
the problem became similar to a problem that contained only
one bar.

SENSITIVITY TO MEASUREMENT ERROR

The error sensitivity of the proposed algorithm is an im-
portant consideration for future development because dis-
tortions in the magnetic field must be measured in the pres-
ence of a magnetic field of much greater intensity. For example,
the ratios of B” to B, ranged from about 0.0011 to 26 across
the receivers when the bar was located at o = (.25 (depth
of 30 mm) and B = 0. When o was increased to (.75 (depth
of 90 mm), the ratios ranged from 0.0006 to 0.9660. To quan-
tify the algorithm’s sensitivity to measurement errors, sensi-
tivity analyses were performed for all one-bar configurations
and for one two-bar configuration (configuration 7-8).

One-Bar Problems

For configurations containing one bar, each measured dis-
tortion was modified by the addition of induced random er-
rors. The induced errors had a mean of zero and standard
deviation o calculated as follows:

B)'(®)
n

=& (10)
where £ ranged from 1-20%:; and n = the number of com-
ponents in B” (twice the number of receivers). At each per-
centage level of induced error, the reconstruction was per-



FIG. 6. Effects of Horizontal Spacing

formed 50 times, each time with new random errors. The
minimization routine used to solve problems containing one
bar was then used to determine the location and size of each
bar for each set of erroneous simulated measurements.

The mean absolute normalized errors from the algorithm
solutions were plotted against the percentage of induced error.
These plots are shown for a bar with varying depth in Fig. 8

TABLE 1. Locations and Sizes Determined for One-Bar Problems®
Exact Values Minimization Resuits Normalized Error
Alpha: Beta Xo Yo A, x y A X y A
Yo/w? Xo/w? (mm) (mmy) (mm2) (mm) (mm) (mm?2) (%) (%) (%)
m 2) (3) (4) (5) (6) (7) (8) (9) (10) (11)
(a) Varying Horizontal Location
0.5 0 0 60 144 0 60.0 156.0 0.0 0.0 8.3
0.5 0.167 20 60 144 19.5 59.9 155.5 0.8 0.2 8.0
0.5 0.333 40 60 144 39.1 59.7 154.9 1.5 0.5 7.6
0.5 0.5 60 60 144 59.5 59.4 154.0 0.8 1.0 6.9
(b) Varying Vertical Location
0.25 0 0 30 144 0 30.3 158.5 0.0 1.0 10.1
0.375 0 0 45 144 0 45.1 156.8 0.0 0.2 8.9
0.5 0 0 60 144 0 60.0 156.0 0.0 0.0 8.3
0.75 4} 0 90 144 0 89.9 155.1 0.0 0.1 7.7
“w is the width of the coil (120 mm).
TABLE 2. Locations and Sizes Determined for Two-Bar Problems
BAR 1 BAR 2
Exact Values Results Exact Values Results
Baf X y Asleel X y Asteel X y Asteel X y Asteel
configuration| (mm) (mm) (mm3) (mm) {mm) (mm?) (mm) (mm) (mm?2) (mm) (mm) (mm?2)
(1 2 (3) 4) (5) (6) 7 (8) (9) (10) (11 (12) (13)
(a) Horizontally Spaced Bars
7-8 —6() 6() 14 -594 59.2 152.5 60 ol 144 59.4 59.0 151.1
37 0 60 144 -0.9 59.0 141.9 60 o0) 144 57.3 61.4 174.4
3-6 0 60 144 -2.2 58.2 122.5 40 60 144 36.2 61.6 192.6
3-5 0 60 144 -1.6 59.1 133.8 20 60) 144 19.3 60.2 168.6
(b) Vertically Spaced Bars
1-4 0 30 144 0 30.9 169.3 0 90 144 1.4 129.5 302.7
2-4 0 45 144 0 45.6 165.2 0 90 144 0.1 92.7 144.1
3-4 0 &) 144 0 59.5 135.0 0 90 144 0 83.7 154.3
2-3 0 45 144 0 46.2 155.6 0 60 144 0 58.6 117.1
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FIG. 7. Effects of Vertical Spacing

and for a bar with varying x-coordinate in Fig. 9. These plots
show that error sensitivity increased with increasing bar depth
or x-coordinate value. Nevertheless, even when as much as 20%
error was induced in the measured distortions, errors in resulting
bar locations were less than 15%. Errors in determined bar
areas were all less than 50%. which would result in an error of
no more than one bar size for a No. 4 reinforcing bar.
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FIG. 9. Single Bar with Increasing x-Coordinate

Two-Bar Problems

A similar error analysis was conducted on bar configuration
7-8 (Fig. 5). In this error analysis, the induced errors ranged
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FIG. 11. Sensitivity Analysis with A, Set Equal to 144 mm? for
Both Bars

from 1%-10%. Solution errors in coordinates and areas, nor-
malized as before, are plotted against the induced error in
Fig. 10. These plots show that when the induced error in B
exceeded 3%, the area values determined by the search al-
gorithm differed greatly from the exact values.

The sensitivity analysis was repeated with A, for both
bars held at 144 mm?, representing a scenario in which the
bar sizes are known and the locations need to be determined.
Consequently, there were only four unknown variables in the
problem (x- and y-coordinates for two bars). Plots of nor-
malized errors in the x- and y-coordinates against induced
error are provided in Fig. 11. The algorithm’s sensitivity to
errors decreased when the bar areas were known in advance.
In fact, the largest normalized error was approximately 15%
when 10% error was induced in the magnetic measurements.
This error corresponds to 9 mm, which is less than the bar
dimension.

These observations demonstrate that the algorithm re-
quired accurate measurements to determine the area of more
than one bar. However, if the areas of the bars were already
known, the algorithm identified the locations of the bars even
in the presence of errors. Design and selection of measure-
ment equipment should be based on the information provided
by these sensitivity analyses.



COMPARISON WITH THREE-DIMENSIONAL
ALGORITHM

The two-dimensional algorithm presented here is similar
to the three-dimensional algorithm presented by Pla et al.
(1994). Both rely on fundamental magnetostatic relationships
that describe the interaction between steel reinforcement and
an imposed magnetic field.

In the previous algorithm, the three-dimensional space was
discretized into small volume elements, and the unknowns
were the volumes of steel in the volume elements. The dis-
cretization approach is attractive because the steel in each
volume element can be determined by solving a set of linear
equations. No iteration is required. A disadvantage of the
discretization approach is that it is necessary to measure the
magnetic field at a number of locations at least equal to the
number of volume elements. Many measurements would be
required to obtain reasonable resolution in three dimensions.

An important advantage of the new algorithm is the great
reduction in the number of measurements it requires. In the
new formulation, only two components of B must be mea-
sured, and the number of unknowns is equal to three times
the number of bars. The disadvantage of the new algorithm
is the increase in computational effort. Whereas the previous
formulation required that a set of linear equations be solved,
the problem has been recast as an optimization problem.
Nevertheless, the problem can be implemented on a personal
computer.

Another consideration is the difference in error sensitivity
between the algorithms. Errors in the finite-element simu-
lation greatly affected the results of the three-dimensional
reconstruction (Pla et al. 1994). The two-dimensional algo-
rithm is much less sensitive to errors. The decreased sensi-
tivity results from the fact that the distortion caused by a unit
volume of steel is small compared with the distortion caused
by a unit area of steel that extends to infinity in the third
dimension.

CONCLUSIONS

In applications requiring the detection of a single rein-
forcing bar, the proposed imaging algorithm accurately de-
termined the location and size of the bar. The algorithm’s

ability to identify a single bar did not appear to be sensitive
to the errors induced by the researchers in the measurements
of magnetic distortion.

It was also possible for the imaging algorithm to identify
the locations of two bars if the bar depths were approximately
the same. If one of the two bars was much closer to the
receivers, only the closest bar was accurately identified by
the algorithm. For problems involving two bars with unknown
areas, the present formulation of the algorithm was unable
to identify either bar accurately when small errors were in-
duced in the measured distortions. If the areas of both bars
were known, the algorithm was able to locate both bars ac-
curately, even in the presence of 10% induced error.
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