FOURIER SERIES REPRESENTATION

A periodic functions, $\mathrm{F}(\mathrm{t})$, can be represented as a Fourier series, with the following form.

$$
F(t)=a_{o}+\sum_{j=1}^{\infty}\left(a_{j} \cos \frac{j 2 \pi t}{T_{0}}+b_{j} \sin \frac{j 2 \pi t}{T_{0}}\right)
$$

where T_{0} is the period of the function. This series solution can also be expressed as:

$$
F(t)=a_{o}+\sum_{j=1}^{\infty}\left(a_{j} \cos j \omega_{0} t+b_{j} \sin j \omega_{0} t\right)
$$

where $\omega_{0}=\frac{2 \pi}{T_{0}}$
By pre-multiplying both sides of this equation by $\cos \left(j \omega_{0} t\right)$ and by $\sin \left(j \omega_{0} t\right)$ and integrating over one full cycle, one can derive expressions for the constants that multiply the cosine and sine terms of the series.

$$
\begin{aligned}
& a_{o}=\frac{1}{T_{0}} \int_{t=0}^{T_{0}} F(t) d t \\
& a_{j}=\frac{2}{T_{0}} \int_{t=0}^{T_{0}} F(t) \cos \left(j \omega_{0} t\right) d t \\
& b_{j}=\frac{2}{T_{0}} \int_{t=0}^{T_{0}} F(t) \sin \left(j \omega_{0} t\right) d t
\end{aligned}
$$

The response of a single-degree-of-freedom system to such a periodic force can be obtained by determining the displacement response to each term of the series individually, $\mathrm{u}_{\mathrm{j}}(\mathrm{t})$, and then summing the individual displacement response.

The particular (steady-state) solution for the first force term is $\mathrm{u}_{0}(\mathrm{t})=\mathrm{a}_{0} / \mathrm{k}$. The particular solution for each sine force term was determined earlier.

$$
u_{p, \sin , j}(t)=\frac{b_{j}}{k}\left\{\frac{\left(1-\beta_{j}^{2}\right) \sin \left(j \omega_{0} t\right)+2 \zeta \beta_{j} \cos \left(j \omega_{0} t\right)}{\left[1-\beta_{j}^{2}\right]^{2}+\left[2 \zeta \beta_{j}\right]^{2}}\right\}
$$

where $\beta j=j \omega_{0} / \omega_{n}$.
This solution can also be written as:

$$
u_{p, \text { sin }, j}(t)=\frac{b_{j} / k}{\sqrt{\left[1-\beta_{j}^{2}\right]^{2}+\left[2 \zeta \beta_{j}\right]^{2}}} \sin \left(j \omega_{0} t-\phi_{j}\right)
$$

where

$$
\tan \phi_{j}=\frac{2 \zeta \beta_{j}}{1-\beta_{j}^{2}}
$$

The particular solution for the cosine force terms is similar. Combining the constant, sine and cosine solutions, one obtains:

$$
u_{p}(t)=\frac{a_{o}}{k}+\sum_{j=1}^{\infty} \frac{1}{k}\left(\frac{\sqrt{a_{j}^{2}+b_{j}^{2}}}{\sqrt{\left[1-\beta_{j}^{2}\right]^{2}+\left[2 \zeta \beta_{j}\right]^{2}}} \sin \left(j \omega_{0} t-\phi_{j}\right)\right)
$$

where $\tan \phi_{j}=\frac{-a_{j}\left[1-\beta_{j}^{2}\right]+b_{j}\left[2 \zeta \beta_{j}\right]}{b_{j}\left[1-\beta_{j}^{2}\right]+a_{j}\left[2 \zeta \beta_{j}\right]}$
This expression can be rewritten as follows
$u_{p}(t)=\frac{a_{o}}{k}+\sum_{j=1}^{\infty} \frac{R_{d, j}}{k} \sqrt{a_{j}^{2}+b_{j}^{2}} \sin \left(j \omega_{0} t-\phi_{j}\right)$
where:

$$
R_{d, j}=\frac{1}{\sqrt{\left[1-\beta_{j}^{2}\right]^{2}+\left[2 \zeta \beta_{j}\right]^{2}}}
$$

The relative contributions of each response term depends on the amplitude of the components of the forcing function (a_{j}, b_{j}), and on the magnitude of the amplification term, $R_{d, j}$, which in turn depends on the frequency ratio, β_{j}.

