Dynamics of Structures

Instructor:	M.O. Eberhard
Office:	233 More Hall
Phone #:	543-4815
E-mail:	eberhard@u.washington.edu
Office Hours:	MWF 12:30-1:20
Website:	http://faculty.washington.edu/eberhard/teaching.htm

This course is directed towards first-year graduate students in Structural Engineering, who have been introduced to rigid-body dynamics (usually in their sophomore year, e.g., ME 230 at UW) but have had little exposure to the dynamics of deformable bodies.

This course primarily considers the dynamic response of lumped-mass, single-degree-of-freedom (SDOF) systems and multiple-degree-of-freedom (MDOF) systems. The course will also consider systems with distributed masses and frequency-domain response analysis. The objectives of the course are:

- to provide students with a fundamental understanding of the theory of structural dynamics, as well as typical analytical and numerical methods.
- to provide students with examples of the application of dynamic analysis to practical applications
- to prepare students for Earthquake Engineering I (CEE 515), Wind Engineering Design (CEE 517) and Geotechnical Earthquake Engineering (CEE 526).

Course Outline		Reading (Chopra)		
I.	Introduction	Ch. 1		
	 Role of Dynamic Analysis in Structural Engineering Dynamics of Particles Dynamics of Systems of Particles Dynamics of Rigid Bodies 			
II.	Single-Degree-of-Freedom Systems			
	 Equation of Motion Free Vibration Response to Periodic Excitations Response to Transient Excitations Numerical Procedures Earthquake Response 	Ch. 1 Ch. 2 Sec. 3.1-3.7, 3.12 Ch. 4 Ch. 5 Sec. 6.1-6.7		
III.	Multi-Degree-of-Freedom Systems			
	 Two-Degree-of-Freedom System Generalized Coordinates Free Vibration Modal Analysis 	Sec. 9.1-9.2 Ch. 10 Ch. 11 & 12		
IV.	Systems with Distributed Mass			
	 Vibration of Slender Beams Axial Wave Propagation 	Ch 16		
V.	Frequency-Domain Response Analysis (as time permits)			

Required Text

Chopra A.K., *Dynamics of Structures*, 3rd edition, Prentice Hall, 2007.

Other Texts

- Clough, R. and Penzien, J. (1975), Dynamics of Structures, McGraw-Hill Book Co.

- Humar. J.L. (2002), Dynamics of Structures, Taylor & Francis.

- Chopra, A. (2005), *Earthquake Dynamics of Structures, A Primer*, Earthquake Engineering Research Institute.

- Torby, J.B. (1984), Advanced Dynamics for Engineers, Hold, Rinehart and Winston.

Grading

Homework and in-class assignments	30%
Midterm	30%
Final Exam	40%

10% deduction per weekday for late homework.

Important Dates

Martin Luther King Day	Monday, January 21		
President's Day	Monday, February 18		
Last Day of Instruction	Friday, March 14		
Final Exam	Monday, March 17, 8:30-10:20 AM.		

Systems of Units

The problems in the class will use both the English system and SI systems of units. A conversion table is provided for your convenience.

Quantity	English System	SI System	Conversion Factor
Length	foot (ft.)	meter (m)	0.3048
	inch (in.)	meter (m)	0.0254
Force	pound (lb.)	newton (N)	4.4482
	kip (1000 lb.)	newton (N)	4448.2
Mass	slug (lb-sec ² /ft)	kilogram (kg)	14.59
	pound-mass (lbm)*	kilogram (kg)	0.045359
Mass Density	lbm/ft ³	kg/m ³	16.02
	lbm/in ³	kg/m ³	27680.0
Stress/Pressure	lb/ft ²	N/m^2 (Pa)	47.88
	lb/in ²	N/m^2 (Pa)	6894.8
Acceleration	ft/sec ²	m/sec ²	0.3048
	in/sec ²	m/sec ²	0.0254
Velocity	ft/sec	m/sec	0.3048
	in/sec	m/sec	0.0254
Volume	ft ³	m³	0.028317
Moment/Torque	in-lb	N-m	0.113
	ft-lb	N-m	1.356
Gravity	386.4 in/sec^2	9.81 m/sec^2	0.0254